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Today’s lecture

Dual form of soft-margin SVM
Feature mappings & kernels
Convexity, Mercer’'s theorem

(Time permitting) Extensions:
* |mbalanced data

= Multi-class

= Other loss functions

= L1 regularization




Recap of dual SVM derivation
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Can solve for optimal w, b as function of «:
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Substituting these values back in (and simplifying), we obtain:
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So, in dual formulation we will solve for a directly!
« wand b are computed from « (if needed)



Solving for the offset “b”

Lagrangian: .
L(w,a) = 5W.wW —3 [(W.Xj + b) Y — 1}
Oéj Z O, \V/j

;> 0 for some j implies constraint
is tight. We use this to obtain b: W = Z QY X,
1
yj (W25 +0)=1 (1) b=y, — W.Xg
Yy (w, b) =y, (2) for any k£ where o, > 0



Dual formulation only depends on
dot-products of the features!

1
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First, we introduce a feature mapping:
XiXj 2 P(x;) - P(x)
Next, replace the dot product with an equivalent kernel function:
. 1
MaXxXimilzeq Zz o — izi,j aiajyiyjK(Xiaxj)

K(x;,%;) = P(x;) - P(x5)
> iaiy; =0 a>0

Do kernels need to be symmetric?



Classification rule using dual solution

Yy <— sign( - W = Z oY X5
1
Using dual solution b=y — W.Xp
for any k where ap >0

Yy < sign {Z ;Y (T; - T) + b

N

dot product of feature vectors of
new example with support vectors

Using a kernel function, predict with...

y < sign !Z oy K(x;,z) +b

)




Dual SVM interpretation: Sparsity

W= ) oysX;
)

Final solution tends to
be sparse

* ;=0 for most |

don’t need to store these
points to compute w or make
predictions

Non-support Vectors:

o =0

j .
-moving them will not | | SuUpport Vectors:
change w + 20




Soft-margin SVM

Primal: Solve for w,b, o
minimizey, %w.w +C X5 W = Z QYiXq
. . . : )
(W'XJ T b) yj 21 =&, v . b=y — W.Xp
for any kK where C' > ap, > 0
Dual: maximizes > ;o — %Zi,j 0O Y;Y XX
D OGY; =
C > Oy > 0

What changed?

» Added upper bound of C on «!

 Intuitive explanation:
» Without slack, a; = <« when constraints are violated (points
misclassified)
Upper bound of C limits the «,, so misclassifications are allowed



Common kernels

Polynomials of degree exactly d
K(u,v) = (u-v)?

Polynomials of degree up to d
K(u,v) = (u-v+1)¢

Gaussian kernels

= o2
K (@, 7) = exp (-”“ ””2>
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Sigmoid
K(u,v) =tanh(pu-v +vr)

And many others: very active area of research!



Polynomial kernel

d=1
o(u).op(v) = ( “ ) . ( o1 ) = U1V1 + U2V = UV
U2 U2
d=2 [ud \ [ i)
o(u).o(v) = Z;Zi . z;x — uvs + 2uiV1UVs + USVS
\ w3 )\ 03 ) = (mvr+uow)

= (u.v)?
For any d (we will skip proof):

(u).¢(v) = (u.v)?

Polynomials of degree exactly d



Gaussian kernel

= 7 2 I . —_—
K(@,7) = exp (_||u v||2> Level sets, i.e. w-¢(z) = r for some r

Support vectors

Y < sign Zaiyiexp( — 17— fZH%) +0b
i 202

[Cynthia Rudin] [mblondel.org]



Kernel algebra

kernel composition feature composition
a) k(x,v) = ka(x,v) + ky(x, V) P(x) = (@,(x), P(x)),
b) k(x,v) = fka(x,v), f >0 P(x) = v/ [a(x)
) k(x,V) = ko (x, v)Fy(x, V) G (X) = Dai(X) Bp; (X)
d) k(x,v) = xI'Av, A positive semi-definite ¢(x) = L'x, where A = LL'.
e) k(x,v) = f(x)f(v)ka(x,V) ¢(x) = f(x)Pa(x)

Q: How would you prove that the “Gaussian kernel” is a valid kernel?
A: Expand the Euclidean norm as follows:

= o2 =112 =112 > o
uUu— v U U u-v
exp( I~ 2\2> - (_”20";)6@ (_||20H22>6Xp( 02>
()
To see that this is a kernel, use the

Th | f b Taylor series expansion of the
en, apply (e) rom above exponential, together with repeated

application of (a), (b), and (c):

The feature mapping is X
infinite dimensional! - n;) nl

[Justin Domke]



Overfitting?

* Huge feature space with kernels: should we worry about
overfitting?
— SVM objective seeks a solution with large margin

* Theory says that large margin leads to good generalization
(we will see this in a couple of lectures)

— But everything overfits sometimes!!!
— Can control by:

« Setting C

« Choosing a better Kernel

« Varying parameters of the Kernel (width of Gaussian, etc.)



How to deal with imbalanced data?

* In many practical applications we may have
imbalanced data sets

 We may want errors to be equally distributed
between the positive and negative classes

« A slight modification to the SVM objective
o does the trick!

N=N, +N_

CN
: 2
min [wl3 + 55 > G+ 2N_ > g

\jyj/ T =1

Class-specific weighting of the slack variables



How do we do multi-class classification?




One versus all classification

Learn 3 classifiers:
- vs {0,+}, weights w_
*+ vs {0,-}, weights w,
*0 Vs {+,-}, weights w

Predict label using:

@eargmgx wg - T + by,

Any problems?

Could we learn this (1-D) dataset? > <= o >




Multi-class SVM

Simultaneously learn 3 sets
of weights:

How do we guarantee the
correct labels?

*Need new constraints!

The “score” of the correct
class must be better than the
“score” of wrong classes:

w¥i) . T+ b¥i) < ) . x; + b)Yy £ Y



Multi-class SVM

As for the SVM, we introduce slack variables and maximize margin:

minimizey; >, wW.wW) + Oy ¢;

To predict, we use:
Y — Brg Max w - T + by,
Now can we learn it? - P ! T
w_ . = — ’U]+ =1



