Learning theory Lecture 4

David Sontag
New York University

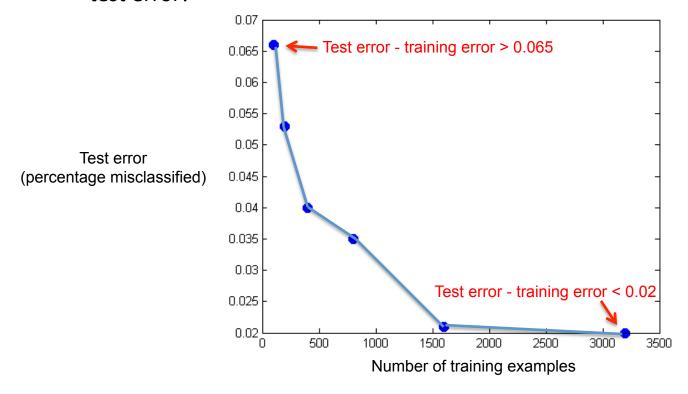
Slides adapted from Carlos Guestrin & Luke Zettlemoyer

What's next...

- We gave several machine learning algorithms:
 - Perceptron
 - Linear support vector machine (SVM)
 - SVM with kernels, e.g. polynomial or Gaussian
- How do we guarantee that the learned classifier will perform well on test data?
- How much training data do we need?

Example: Perceptron applied to spam classification

- In your homework 1, you trained a spam classifier using perceptron
 - The training error was always zero
 - With few data points, there was a big gap between training error and test error!



How much training data do you need?

- Depends on what hypothesis class the learning algorithm considers
- For example, consider a memorization-based learning algorithm
 - Input: training data $S = \{ (x_i, y_i) \}$
 - Output: function $f(\mathbf{x})$ which, if there exists (\mathbf{x}_i, y_i) in S such that $\mathbf{x} = \mathbf{x}_i$, predicts y_i , and otherwise predicts the majority label
 - This learning algorithm will always obtain zero training error
 - But, it will take a *huge* amount of training data to obtain small test error (i.e., its generalization performance is horrible)
- Linear classifiers are powerful precisely because of their simplicity
 - Generalization is easy to guarantee

Roadmap of lecture

1. Generalization of finite hypothesis spaces

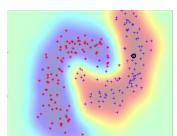
2. VC-dimension

Will show that linear classifiers need to see approximately d training points,
 where d is the dimension of the feature vectors

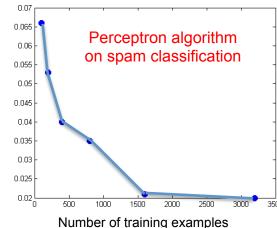
Test error (percentage

misclassified)

- Explains the good performance we obtained using perceptron!!!!
 (we had a few thousand features)
- 3. Margin based generalization
 - Applies to infinite dimensional feature vectors (e.g., Gaussian kernel)



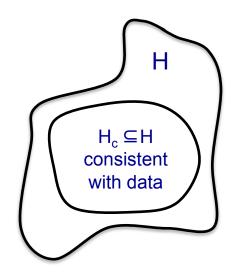
[Figure from Cynthia Rudin]



How big should your validation set be?

- In PS1, you tried many configurations of your algorithms (avg vs. regular perceptron, max # of iterations) and chose the one that had smallest validation error
- Suppose in total you tested | H | = 40 different classifiers on the validation set of m held-out e-mails
- The best classifier obtains 98% accuracy on these m e-mails!!!
- But, what is the true classification accuracy?
- How large does **m** need to be so that we can guarantee that the best configuration (measured on validate) is truly good?

A simple setting...



- Classification
 - m data points
 - Finite number of possible hypothesis (e.g., 40 spam classifiers)
- A learner finds a hypothesis h that is consistent with training data
 - Gets zero error in training: $error_{train}(h) = 0$
 - I.e., assume for now that one of the classifiers gets 100% accuracy on the m e-mails (we'll handle the 98% case afterward)
- What is the probability that h has more than ε **true** error?
 - $error_{true}(h) ≥ ε$

Refresher on probability: outcomes

 An outcome space specifies the possible outcomes that we would like to reason about, e.g.

$$\Omega = \{$$
 \emptyset , \emptyset \emptyset \emptyset Coin toss $\Omega = \{$ \emptyset , \emptyset \emptyset \emptyset Die toss

We specify a probability p(x) for each outcome x such that

$$p(x) \ge 0,$$
 $\sum_{x \in \Omega} p(x) = 1$ E.g., $p(x) = 0.6$ $p(x) = 0.4$

Refresher on probability: events

An event is a subset of the outcome space, e.g.

$$E = \{ \begin{tabular}{c} \begi$$

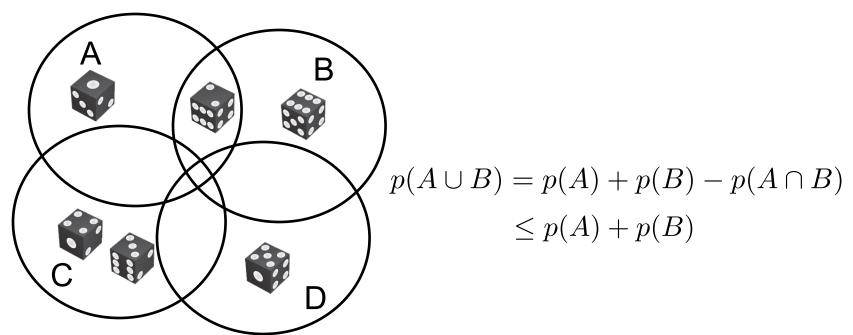
• The **probability** of an event is given by the sum of the probabilities of the outcomes it contains,

$$p(E) = \sum_{x \in E} p(x)$$
 E.g., p(E) = p(\vec{\pi}) + p(\vec{\pi}) + p(\vec{\pi}) = 1/2, if fair die

Refresher on probability: union bound

P(A or B or C or D or ...)

$$\leq P(A) + P(B) + P(C) + P(D) + ...$$



Q: When is this a tight bound?

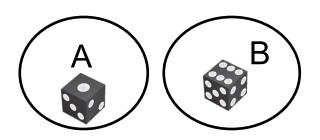
A: For disjoint events

(i.e., non-overlapping circles)

Refresher on probability: independence

Two events A and B are independent if

$$p(A \cap B) = p(A)p(B)$$



Are these events independent?

No!
$$p(A \cap B) = 0$$
 $p(A)p(B) = \left(\frac{1}{6}\right)^2$

Refresher on probability: independence

Two events A and B are independent if

$$p(A \cap B) = p(A)p(B)$$

Analogy: outcome space defines all possible sequences of e-mails in training set

Suppose our outcome space had two different die:

$$\Omega = \{ \emptyset \emptyset, \emptyset \emptyset, \dots, \emptyset \emptyset \}$$
 2 die tosses

 6^2 = 36 outcomes

and the probability of each outcome is defined as

$$p(p(p)) = a_1 b_1 p(p(p)) = a_1 b_2 \cdots$$

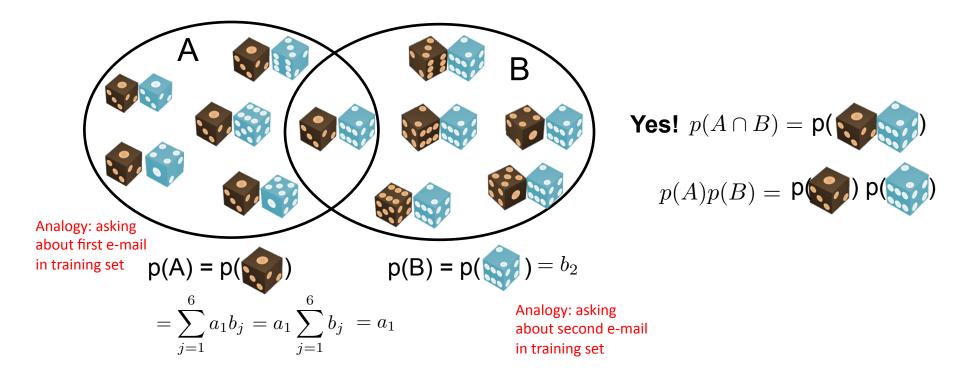
a ₁	a ₂	a ₃	a ₄	a ₅	a ₆
.1	.12	.18	.2	.1	.3
b ₁	b,	b ₃	b ₄	b ₅	b ₆
.19	.11	.1	.22	.18	.2

Refresher on probability: independence

Two events A and B are independent if

$$p(A \cap B) = p(A)p(B)$$

Are these events independent?



- A random variable X is a mapping $X : \Omega \to D$
 - *D* is some set (e.g., the integers)
 - ullet Induces a partition of all outcomes Ω
- For some $x \in D$, we say

$$p(X = x) = p(\{\omega \in \Omega : X(\omega) = x\})$$

"probability that variable X assumes state x"

• Notation: Val(X) = set D of all values assumed by X (will interchangeably call these the "values" or "states" of variable X)

$$\Omega = \{ \emptyset \emptyset, \emptyset \emptyset, \dots, \emptyset \emptyset \}$$
 2 die tosses

- p(X) is a distribution: $\sum_{x \in Val(X)} p(X = x) = 1$
- E.g. X₁ may refer to the value of the first dice, and X₂ to the value of the second dice
- We call two random variables X and Y identically distributed if Val(X) =
 Val(Y) and p(X=s) = p(Y=s) for all s in Val(X)

$$p(s) = a_1 b_1$$
 $p(s) = a_1 b_2$

X₁ and X₂ NOT identically distributed

a_1	a ₂	a ₃	a ₄	a ₅	a_6
.1	.12	.18	.2	.1	.3
b ₁	b ₂	b ₃	b ₄	b ₅	b ₆
.19	.11	.1	.22	.18	.2

$$\Omega = \{ \bigcirc, \bigcirc, \bigcirc, \cdots, \bigcirc, \cdots, \bigcirc \}$$

2 die tosses

 $\sum a_i = 1$

- p(X) is a distribution: $\sum_{x \in Val(X)} p(X = x) = 1$
- E.g. X₁ may refer to the value of the first dice, and X₂ to the value of the second dice
- We call two random variables X and Y identically distributed if Val(X) =
 Val(Y) and p(X=s) = p(Y=s) for all s in Val(X)

$$p(s) = a_1 a_1 p(s) = a_1 a_2 \cdots$$

X₁ and X₂ identically distributed

a ₁	a ₂	a ₃	a ₄	a ₅	a ₆
.1	.12	.18	.2	.1	.3

$$\sum_{i=1}^{6} a_i = 1$$

$$\Omega = \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \cdots, \bigcirc \bigcirc \}$$

- X=x is simply an event, so can apply union bound, etc.
- Two random variables X and Y are independent if:

$$p(X = x, Y = y) = p(X = x)p(Y = y) \quad \forall x \in Val(X), y \in Val(Y)$$

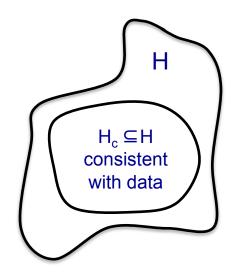
Joint probability. Formally, given by the event $X=x\cap Y=y$

- The **expectation** of **X** is defined as: $E[X] = \sum_{x \in Val(X)} p(X = x)x$
- If X is binary valued, i.e. x is either 0 or 1, then:

$$E[X] = p(X = 0) \cdot 0 + p(X = 1) \cdot 1$$

= $p(X = 1)$

A simple setting...



- Classification
 - m data points
 - Finite number of possible hypothesis (e.g., 40 spam classifiers)
- A learner finds a hypothesis h that is consistent with training data
 - Gets zero error in training: $error_{train}(h) = 0$
 - I.e., assume for now that one of the classifiers gets 100% accuracy on the m e-mails (we'll handle the 98% case afterward)
- What is the probability that h has more than ε **true** error?
 - $error_{true}(h) ≥ ε$

How likely is a **single** hypothesis to get *m* data points right?

- The probability of a hypothesis h incorrectly classifying: $\epsilon_h = \sum_{(\vec{x},y)} p(\vec{x},y) \mathbb{1}[h(\vec{x}) \neq y]$
- Let Z_i^h be a random variable that takes two values: **1** if h correctly classifies ith data point, and 0 otherwise
- The Z^h variables are **independent** and **identically distributed** (i.i.d.) with

$$\Pr(Z_i^h = 0) = \sum_{(\vec{x}, y)} p(\vec{x}, y) 1[h(\vec{x}) \neq y] = \epsilon_h$$

• What is the probability that *h* classifies *m* data points correctly?

Pr(h gets m iid data points right) = $(1 - \epsilon_h)^m \le e^{-\epsilon_h m}$

Are we done?

Pr(h gets m iid data points right | error_{true}(h) $\geq \epsilon$) $\leq e^{-\epsilon m}$

- Says "if h gets m data points correct, then with very high probability (i.e. $1-e^{-\epsilon m}$) it is close to perfect (i.e., will have error $\leq \epsilon$)"
- This only considers one hypothesis!
- Suppose 1 billion classifiers were tried, and each was a random function
- For m small enough, one of the functions will classify all points correctly – but all have very large true error

How likely is learner to pick a bad hypothesis?

Pr(h gets m *iid* data points right | error_{true}(h) $\geq \epsilon$) $\leq e^{-\epsilon m}$

Suppose there are |H_c| hypotheses consistent with the training data

- − How likely is learner to pick a bad one, i.e. with *true* error $\ge ε$?
- We need a bound that holds for all of them!

$$\begin{split} P(error_{true}(h_1) & \geq \epsilon \text{ OR error}_{true}(h_2) \geq \epsilon \text{ OR } \dots \text{ OR error}_{true}(h_{|H_c|}) \geq \epsilon) \\ & \leq \sum_k P(error_{true}(h_k) \geq \epsilon) & \leftarrow \text{ Union bound} \\ & \leq \sum_k (1 - \epsilon)^m & \leftarrow \text{ bound on individual } h_j s \\ & \leq |H|(1 - \epsilon)^m & \leftarrow |H_c| \leq |H| \\ & \leq |H| \ e^{-m\epsilon} & \leftarrow (1 - \epsilon) \leq e^{-\epsilon} \text{ for } 0 \leq \epsilon \leq 1 \end{split}$$

Generalization error of finite hypothesis spaces [Haussler '88]

We just proved the following result:

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\text{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

Using a PAC bound

Typically, 2 use cases:

- 1: Pick ε and δ, compute m
- 2: Pick m and δ , compute ϵ

Argument: Since for all h we know that

$$P(\mathsf{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

... with probability 1- δ the following holds... (either case 1 or case 2)

$$p(\text{error}_{true}(h) \geq \epsilon) \leq |H|e^{-m\epsilon} \leq \delta \qquad \text{tolerate a δ probability of having $\geq \epsilon$ error}$$

Says: we are willing to

$$\epsilon = \delta = .01, |H| = 40 \qquad \qquad \ln\left(|H|e^{-m\epsilon}\right) \leq \ln\delta$$

$$\log m \geq 830 \qquad \qquad \ln|H| - m\epsilon \leq \ln\delta.$$
 Case 1

Log dependence on |H|, OK if exponential size (but not doubly)

ε has stronger influence than δ

Case 2

 ε shrinks at rate O(1/m)

Limitations of Haussler '88 bound

- There may be no consistent hypothesis h (where $error_{train}(h)=0$)
- Size of hypothesis space
 - What if |H| is really big?
 - What if it is continuous?
- First Goal: Can we get a bound for a learner with error_{train}(h) in the data set?

Question: What's the expected error of a hypothesis?

- The probability of a hypothesis incorrectly classifying: $\sum_{(\vec{x},y)} p(\vec{x},y) 1[h(\vec{x}) \neq y]$
- Let's now let Z_i^h be a random variable that takes two values, 1 if h correctly classifies ith data point, and 0 otherwise
- The Z variables are **independent** and **identically distributed** (i.i.d.) with

$$\Pr(Z_i^h = 0) = \sum_{(\vec{x}, y)} p(\vec{x}, y) 1[h(\vec{x}) \neq y]$$

- Estimating the true error probability is like estimating the parameter of a coin!
- Chernoff bound: for m i.i.d. coin flips, $X_1,...,X_m$, where $X_i \in \{0,1\}$. For $0 < \varepsilon < 1$:

$$P\left(\theta-\frac{1}{m}\sum_i x_i>\epsilon\right)\leq e^{-2m\epsilon^2}$$

$$E[\frac{1}{m}\sum_{i=1}^m X_i]=\frac{1}{m}\sum_{i=1}^m E[X_i]=\theta$$
 True error Observed fraction of probability points incorrectly classified (by linearity of expectation)

Generalization bound for |H| hypothesis

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h:

$$\Pr(\operatorname{error}_{true}(h) - \operatorname{error}_{D}(h) > \epsilon) \le |H|e^{-2m\epsilon^{2}}$$

Why? Same reasoning as before. Use the Union bound over individual Chernoff bounds

PAC bound and Bias-Variance tradeoff

for all h, with probability at least 1- δ : $\mathrm{error}_{true}(h) \leq \mathrm{error}_D(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$ "variance"

For large | H |

- low bias (assuming we can find a good h)
- high variance (because bound is looser)

For small | H |

- high bias (is there a good h?)
- low variance (tighter bound)

What about continuous hypothesis spaces?

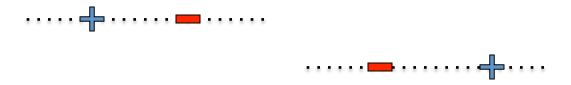
$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

- Continuous hypothesis space:
 - $|H| = \infty$
 - Infinite variance???

 Only care about the maximum number of points that can be classified exactly!

How many points can a linear boundary classify exactly? (1-D)

2 Points: Yes!!



3 Points: No...

Shattering and Vapnik-Chervonenkis Dimension

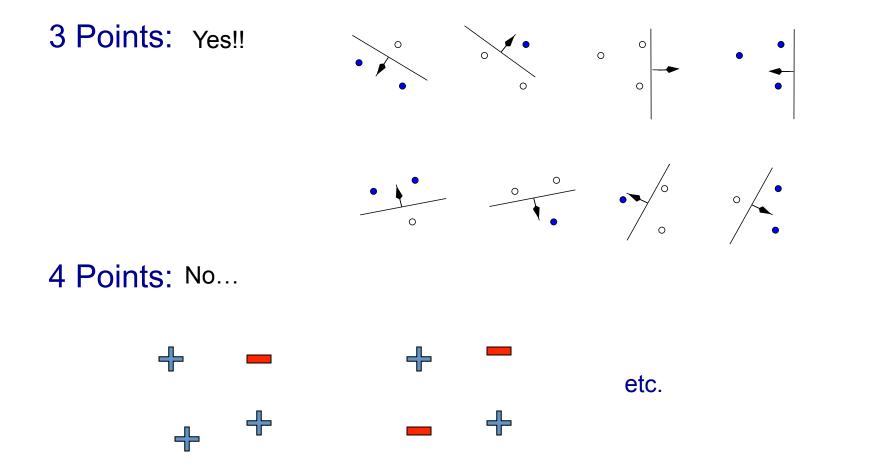
A **set of points** is *shattered* by a hypothesis space H iff:

- For all ways of splitting the examples into positive and negative subsets
- There exists some consistent hypothesis h

The *VC Dimension* of H over input space X

The size of the *largest* finite subset of X shattered by H

How many points can a linear boundary classify exactly? (2-D)



How many points can a linear boundary classify exactly? (d-D)

- A linear classifier $\sum_{j=1..d} w_j x_j + b$ can represent all assignments of possible labels to d+1 points
 - But not d+2!!
 - Thus, VC-dimension of d-dimensional linear classifiers is d+1
 - Bias term b required
 - Rule of Thumb: number of parameters in model often matches max number of points
- Question: Can we get a bound for error as a function of the number of points that can be completely labeled?

PAC bound using VC dimension

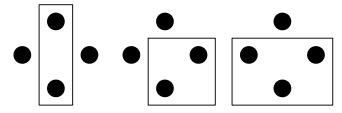
- VC dimension: number of training points that can be classified exactly (shattered) by hypothesis space H!!!
 - Measures relevant size of hypothesis space

$$\mathrm{error}_{true}(h) \leq \mathrm{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

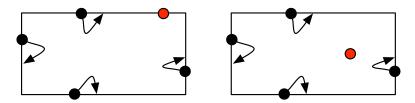
- Same bias / variance tradeoff as always
 - Now, just a function of VC(H)
- Note: all of this theory is for binary classification
 - Can be generalized to multi-class and also regression

What is the VC-dimension of rectangle classifiers?

• First, show that there are 4 points that *can* be shattered:



• Then, show that no set of 5 points can be shattered:



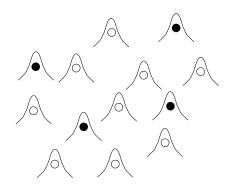
Generalization bounds using VC dimension

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

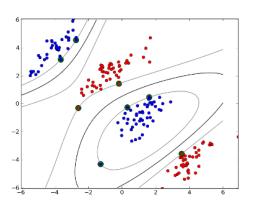
- Linear classifiers:
 - VC(H) = d+1, for d features plus constant term b
- Classifiers using Gaussian Kernel

$$-VC(H) = \infty$$

$$K(\vec{u},\vec{v}) = \exp\left(-\frac{||\vec{u}-\vec{v}||_2^2}{2\sigma^2}\right) \qquad \text{Euclidean distance, squared}$$



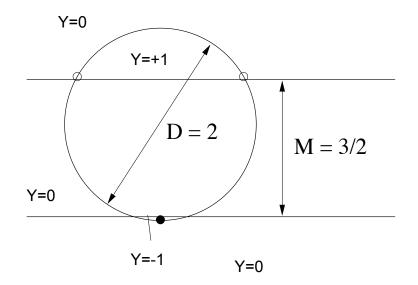
[Figure from Chris Burges]



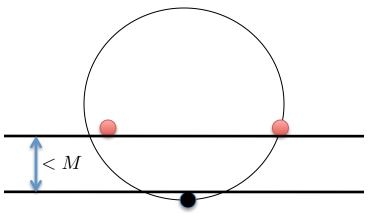
[Figure from mblondel.org]

Gap tolerant classifiers

- Suppose data lies in R^d in a ball of diameter **D**
- Consider a hypothesis class H of linear classifiers that can only classify point sets with margin at least M
- What is the largest set of points that H can shatter?



Cannot shatter these points:

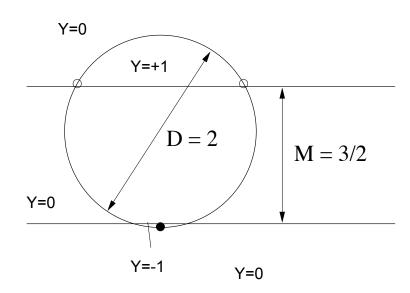


VC dimension =
$$\min\left(d,\frac{D^2}{M^2}\right)$$
 $M=2\gamma=2\frac{1}{||w||}$ SVM attempts to minimize $||w||^2$, which minimizes VC-dimension

$$M = 2\gamma = 2\frac{1}{||w||} \longrightarrow$$

Gap tolerant classifiers

- Suppose data lies in R^d in a ball of diameter D
- Consider a hypothesis class H of linear classifiers that can only classify point sets with margin at least M
- What is the largest set of points that H can shatter?



VC dimension =
$$\min\left(d, \frac{D^2}{M^2}\right)$$

$$K(\vec{u}, \vec{v}) = \exp\left(-\frac{||\vec{u} - \vec{v}||_2^2}{2\sigma^2}\right)$$

What is R=D/2 for the Gaussian kernel?

$$R = \max_{x} ||\phi(x)||$$

$$= \max_{x} \sqrt{\phi(x) \cdot \phi(x)}$$

$$= \max_{x} \sqrt{K(x, x)}$$

$$= 1 !!!$$

What is
$$||w||^2$$
?
$$||w||^2 = \left(\frac{2}{M}\right)^2$$

$$||w||^2 = ||\sum_i \alpha_i y_i \phi(x_i)||_2^2$$

$$= \sum_i \sum_j \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$

What you need to know

- Finite hypothesis space
 - Derive results
 - Counting number of hypothesis
- Complexity of the classifier depends on number of points that can be classified exactly
 - Finite case number of hypotheses considered
 - Infinite case VC dimension
 - VC dimension of gap tolerant classifiers to justify SVM
- Bias-Variance tradeoff in learning theory