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What’s next...

We gave several machine learning algorithms:
— Perceptron
— Linear support vector machine (SVM)

— SVM with kernels, e.g. polynomial or Gaussian

How do we guarantee that the learned classifier will perform well
on test data?

How much training data do we need?



Example: Perceptron applied to spam classification

* Inyour homework 1, you trained a spam classifier using perceptron
— The training error was always zero
— With few data points, there was a big gap between training error and

test error!
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How much training data do you need?

 Depends on what hypothesis class the learning algorithm considers

* For example, consider a memorization-based learning algorithm

Input: training data S = { (x,, yi) }

Output: function f(x) which, if there exists (x,, y,) in S such that x=x, predicts y,,
and otherwise predicts the majority label

This learning algorithm will always obtain zero training error

But, it will take a huge amount of training data to obtain small test error
(i.e., its generalization performance is horrible)

* Linear classifiers are powerful precisely because of their simplicity

Generalization is easy to guarantee



Roadmap of lecture

Generalization of finite hypothesis spaces

VC-dimension

Will show that linear classifiers need to see approximately d training points,

where d is the dimension of the feature vectors

Explains the good performance we obtained using perceptron'I||

(we had a few thousand features)

Margin based generalization

Applies to infinite dimensional

feature vectors (e.g., Gaussian kernel)

[Figure from Cynthia Rudin]
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How big should your validation set be?

In PS1, you tried many configurations of your algorithms (avg vs.
regular perceptron, max # of iterations) and chose the one that had

smallest validation error

Suppose in total you tested |H|=40 different classifiers on the
validation set of m held-out e-mails

The best classifier obtains 98% accuracy on these m e-mails!!!
But, what is the true classification accuracy?

How large does m need to be so that we can guarantee that the
best configuration (measured on validate) is truly good?



A simple setting...

H, SH

consistent
with data

e Classification
— m data points
— Finite number of possible hypothesis (e.g., 40 spam classifiers)

* Alearner finds a hypothesis h that is consistent with
training data
— Gets zero error in training: error, ,.(h) =0

— l.e., assume for now that one of the classifiers gets 100%
accuracy on the m e-mails (we’ll handle the 98% case afterward)

* What is the probability that h has more than ¢ true error?

— error,,,(h) 2 €



Refresher on probability: outcomes

* An outcome space specifies the possible outcomes that we would
like to reason about, e.g.

Coin toss

- QOBSEH ...

* We specify a probability p(x) for each outcome x such that




Refresher on probability: events

 Aneventis a subset of the outcome space, e.g.

- TR—
{ 0’ @, @ }  0dd die tosses

* The probability of an event is given by the sum of the probabilities
of the outcomes it contains,

p(E) = Z p(x) E.g.. p(E)= p(@) * p(@) * p(@)

zel = 1/2. if fair die

E
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Refresher on probability: union bound

* P(AorBorCorDor...)
=<P(A)+P(B) +P(C)+P([D) + ...

Q: When is this a tight bound?  A: For disjoint events

(i.e., non-overlapping circles)



Refresher on probability: independence

e Two events A and B are independent if
p(ANB) =p(A)p(B)

Are these events independent?
1
wA(E) = (5)



Refresher on probability: independence

 Two events A and B are independent if _
Analogy: outcome space defines
p(A M B) = p(A)p(B) all possible sequences of e-mails

in training set

* Suppose our outcome space had two different die:

= {Q@,Q@,Qg, ,@@} 2 die tosses

62 = 36 outcomes

and the probability of each outcome is defined as

D(W) = a4 by p(@@) =a, b,

______ S
______ S,



Refresher on probability: independence

 Two events A and B are independent if
p(ANB) = p(A)p(B)

* Are these events independent?

Analogy: asking

about first e-mail ~

in training set p(A) = p(@) p(B) = p(&ﬁ ) = by
6 6

Analogy: asking
= E albj =a E bj = about second e-mail
j=1 j=1

in training set

Yes! p(ANB) = p(%ﬁ)

@ oD



Refresher of probability: discrete random
variables

@ A random variable X is a mapping X : Q2 — D

o D is some set (e.g., the integers)
e Induces a partition of all outcomes {2

@ For some x € D, we say
p(X =x) =p({w € Q2 : X(w) = x})

“probability that variable X assumes state x”

@ Notation: Val(X) = set D of all values assumed by X
(will interchangeably call these the “values” or “states” of variable X)

Q= {@ ,Qé@‘ ,Q ; ,@ } 2 die tosses



Refresher of probability: discrete random
variables

o p(X) is a distribution: >, v x) P(X =x) =1

* E.g. X; may refer to the value of the first dice, and X, to the value of the
second dice

* We call two random variables X and Y identically distributed if Val(X) =
Val(Y) and p(X=s) = p(Y=s) for all s in Val(X)

p(w) =a, by p(@@) =a b,

a, Ja, la, Ja,  Ja,  Ja, |
a,

X;and X, NOT =4 12 18 2 1 3 z_;a -
identically =

sevinies - (EEDESDEEDEECEN -,
-
j=1
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Refresher of probability: discrete random
variables

o p(X) is a distribution: >, v x) P(X =x) =1

* E.g. X; may refer to the value of the first dice, and X, to the value of the
second dice

* We call two random variables X and Y identically distributed if Val(X) =
Val(Y) and p(X=s) = p(Y=s) for all s in Val(X)

p(w) =aq ay p(@@) =a1 8

a,  la, Ja,  Ja, Ja, la_ | S a1
X; and X, 1 12 18 2 1 3 i—1 Z
identically

distributed

Q= {OQ,QQ,Q@, ,@@} 2 die tosses



Refresher of probability: discrete random
variables

X=x is simply an event, so can apply union bound, etc.
Two random variables X and Y are independent if:

pX=x,Y=9y)=p(X =2)p(Y =y) Vze Val(X),y € Val(Y)

!

Joint probability. Formally, given by theevent X =z NY =y

The expectation of X is defined as: E[X]= ) pX =2z
x€eVal(X)

If X is binary valued, i.e. x is either 0 or 1, then:
E[X] = p(X=0)-0+p(X=1)-1
= p(X=1)



A simple setting...

H, SH

consistent
with data

e Classification
— m data points
— Finite number of possible hypothesis (e.g., 40 spam classifiers)

* Alearner finds a hypothesis h that is consistent with
training data
— Gets zero error in training: error, ,.(h) =0

— l.e., assume for now that one of the classifiers gets 100%
accuracy on the m e-mails (we’ll handle the 98% case afterward)

* What is the probability that h has more than ¢ true error?

— error,,,(h) 2 €



How likely is a single hypothesis to get
m data points right?

The probability of a hypothesis h incorrectly classifying: €p = Z p(Z, y)1[R(T) # y]

(Z,y)
Let Z! be a random variable that takes two values: 1 if h correctly classifies it"
data point, and 0 otherwise
The Z" variables are independent and identically distributed (i.i.d.) with
Pr(Z} =0) =Y p(Zy)1[h(Z) #y] = €n
(Z,y)

What is the probability that h classifies m data points correctly?

Pr(h gets m iid data points right) = (1 — €;,)™ < e™ "™



Are we done?
Pr(h gets m jid data points right | error,.(h) 2 ) < e®*m

Says “if h gets m data points correct, then with very high
probablllty (i.e. 1-e*™M) it is close to perfect (i.e., will have
error<e)’

This only considers one hypothesis!

Suppose 1 billion classifiers were tried, and each was a
random function

For m small enough, one of the functions will classify all
points correctly — but all have very large true error



How likely is learner to pick a bad hypothesis?

Pr(h gets m jid data points right | error,, .(h) 2 €) < e*m

Suppose there are |H_| hypotheses consistent with the training data

— How likely is learner to pick a bad one, i.e. with true error > €?
— We need a bound that holds for all of them!

P(errory,.(h4) = ¢ OR errory,.(h,) 2 ¢ OR ... OR errory,(hy, ) 2 €)

<> . P(error, (h,) = ¢) < Union bound
< D (1-g)m < bound on individual h;s
< |H|(1-¢)m < |Hel = [H|

< |H| e™me & (1-¢) < e for 0<e<1



Generalization error of finite hypothesis spaces
[Haussler '88]

We just proved the following result:

Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < € <1 :for any
learned hypothesis h that is consistent on the
training data:

P(erroryye(h) >¢€) < |Hle ™



Using 2 PAC bound Argument: Since for all h we know that
P(errorgrye(h) > €) < |H|e ™€

Typically, 2 use cases: ... with probability 1-0 the following
— 1: Pick € and §, compute m holds... (either case 1 or case 2)

— 2: Pick m and 9, compute ¢
Says: we are willing to

—me tolerate a & probability of
p(errortrue(h) > 6) < |I_I|6 < 0 } having 2 ¢ error

e =6 =.01,|H| =40 In (|H|e™™) <In§
Need m > 830 |n|H|_m€§|n5
Case/ \E)ase 2
In|H| + In In|H|+ In
n|H|+In+ n|H|+In5
m > € >
€ o m
Log dependence on |H], € has stronger \
OK if exponential size (but influence than & ¢ shrinks at rate O(1/m)

not doubly)



Limitations of Haussler ‘88 bound

There may be no consistent hypothesis h (where error,,,;,(h)=0)
Size of hypothesis space

— What if |H| is really big?

— What if it is continuous?

First Goal: Can we get a bound for a learner with error, . (h) in the

data set?



Question: What's the expected error of a
hypothesis?

The probability of a hypothesis incorrectly classifying: Y p(& y)1[A(Z) # y]

(Z,y)

Let’s now let Z! be a random variable that takes two values, 1 if h correctly
classifies it" data point, and 0 otherwise

The Z variables are independent and identically distributed (i.i.d.) with

Pr(Zl =0) =Y p(&y)1[h(Z) # y|

(Z,y)
Estimating the true error probability is like estimating the parameter of a coin!

Chernoff bound: for m i.i.d. coin flips, X;,...,X,, where X, € {0,1}. For O<e<1:

1
P (Q—in > e) < g—2me
m <
Z..

B> X = — S Bl =

True error Observed fraction of
probability points incorrectly classified

(by linearity of expectation)



Generalization bound for |H| hypothesis

Theorem: Hypothesis space H finite, dataset D
with mi.i.d. samples, 0 < e < 1: for any learned
hypothesis h:

Pr(errory . (h) — errorp(h) > €) < |H\e_2m62

Why? Same reasoning as before. Use the Union
bound over individual Chernoff bounds



PAC bound and Bias-Variance tradeoff

for all h, with probability at least 1-6:

In|H|+1In
erToTsrye(h) < errorp(h) + H d
\ ' |\ '2m I

“bias” “variance”

* Forlarge |H]|
— low bias (assuming we can find a good h)
— high variance (because bound is looser)

* Forsmall |H]
— high bias (is there a good h?)
— low variance (tighter bound)



What about continuous hypothesis spaces?

In |H |

Ing

errOrtrue(h) < errOrtrafin(h) + \
2m

e Continuous hypothesis space:
— |H| =00

— Infinite variance???

* Only care about the maximum number of

points that can be classified exactly!



How many points can a linear boundary classify
exactly? (1-D)

2 Points: Yes!!

..... +_
...... -+
3 Points: No...
++_ .....
+_- .....
...... -++
._+_ .....

etc (8 total)



Shattering and Vapnik—Chervonenkis Dimension

A set of points is shattered by a hypothesis
space H iff:

— For all ways of splitting the examples into
positive and negative subsets

— There exists some consistent hypothesis h

The VC Dimension of H over input space X

— The size of the largest finite subset of X
shattered by H



How many points can a linear boundary classify
exactly? (2-D)

3 Points:  ves!! X \Q ) Ol** {
S gl A

+ = + =
P = &

4 Points: No...

etc.

[Figure from Chris Burges]



How many points can a linear boundary classify
exactly? (d-D)

* Alinear classifier 3;_, ywx +b canrepresent all
assignments of p055|ble 1abe|s to d+1 points

— But not d+2!!

— Thus, VC-dimension of d-dimensional linear classifiers is
d+1

— Bias term b required

— Rule of Thumb: number of parameters in model often
matches max number of points

 Question: Can we get a bound for error as a function of
the number of points that can be completely labeled?



PAC bound using VC dimension

e VCdimension: number of training points that can be
classified exactly (shattered) by hypothesis space H!!!
— Measures relevant size of hypothesis space

VC(H) (In‘_,g’(’}{) F1) +1n%

m

errortrue(h') < errortrain(h) | \

* Same bias / variance tradeoff as always
— Now, just a function of VC(H)

* Note: all of this theory is for binary classification
— Can be generalized to multi-class and also regression



What is the VC-dimension of rectangle
classifiers?

e First, show that there are 4 points that can be
shattered:

 Then, show that no set of 5 points can be

sllattered:
oA ﬁ

[Figures from Anand Bhaskar, llya Sukhar]




Generalization bounds using VC dimension

J VC(H) (In % +1)+1Inj

m

erroriryec(h) < erroryeqin(h)+

* Linear classifiers:
— VC(H) = d+1, for d features plus constant term b

e Classifiers using Gaussian Kernel
= =22 :
“VC(H) =0 (o = ewp (-1 IEY Gt
A g squared
A °

[Figure from Chris Burges]

[Figure from mblondel.org]



Gap tolerant classifiers

* Suppose data lies in R in a ball of diameter D

* Consider a hypothesis class H of linear classifiers that can only
classify point sets with margin at least M

 What is the largest set of points that H can shatter?

Y=0 Cannot shatter these points:
Y=+1
/ i
D=2
M=3/2
Q
= ' <M \ /
\Y—./ \‘/
V=1 Y=0
. . . D? 1 SVM attempts to
VC dimension = min ( d, — M =2y=2 minimize ||w||?, which
M2 [[]] L e
minimizes VC-dimension!!!

[Figure from Chris Burges]



Gap tolerant classifiers

* Suppose data lies in R in a ball of diameter D

* Consider a hypothesis class H of linear classifiers that can only
classify point sets with margin at least M

 What is the largest set of points that H can shatter?

Y=0 K (4, 7) = exp (_|I172—05’H%>

m What is R=D/2 for the Gaussian kernel?

: R = max||¢(2)]|

b=2 M = 3/2 = max Vo(z) - ¢(z)
= max /K (z, )
Y=0 x
e " —1 11l
Y=-1 _ . 2
v=0 What is ||w]|?? l|w]|? = (%)
. D? lwl> =11 ciyid(zi)l]3
VC dimension = min (d, W) Z ?

)
(]

[Figure from Chris Burges]



What you need to know

* Finite hypothesis space

— Derive results
— Counting number of hypothesis

 Complexity of the classifier depends on number of
points that can be classified exactly

— Finite case — number of hypotheses considered
— Infinite case — VC dimension
— VC dimension of gap tolerant classifiers to justify SVM

* Bias-Variance tradeoff in learning theory



