
CSCI-UA.0480-007 Problem Set 4 1

Introduction to Machine Learning, Spring 2016

Problem Set 4: VC dimension & Decision trees
Due: Sunday, March 6, 2016 at 10pm (upload to NYU Classes.)

Important: See problem set policy on the course web site.

Instructions. You must show all of your work and be rigorous in your writeups to obtain full
credit. Your answers to the below, plots, and all code that you write for this assignment should
be uploaded to NYU Classes.

1. (15 points) VC-dimension

(a) Show that the VC-dimension of a finite hypothesis set H is at most log2 |H|.
(b) Consider a hypothesis class of binary classifiers given by decision trees where we use

threshold splits (assume we have only real-valued features, not categorical). The trees
have no depth limit, but we restrict each attribute to only be split once on any single
path from a root to a leaf (note this is a big restriction!). Show that the VC-dimension
is at least 2d, where d is the dimension of a feature vector.

2. (15 points) Decision Trees

We are writing a nature survival guide and need to provide some guidance about which
mushrooms are poisonous and which are safe. (Caution - example only - do not eat any
mushrooms based on this table.) We gather some examples of both types of mushroom,
collected in a table, and decide to train a binary decision tree to classify them for us (two
children per node, i.e., each decision chooses some variable to split on, and divides the
data into two subsets). We have one real-valued feature (size) and two categorical features
(spots and color). Recall that we do binary splits on a real-valued variable by finding the
threshhold with the highest information gain (see lecture 11 slides).

CS178 Homework #3
Machine Learning & Data Mining: Winter 2012

Due Wednesday February 28th, 2012

Problem 1: Decision Trees

We are writing a nature survival guide and need to provide some guidance about which mushrooms
are poisonous and which are safe. (Caution - example only - do not eat any mushrooms based on
this table.) We gather some examples of both types of mushroom, collected in a table, and decide
to train a binary decision tree to classify them for us (two children per node, i.e., each decision
chooses some variable to split on, and divides the data into two subsets). We have one real-valued
feature (size) and two discrete-valued features (spots and color). Notes: please do this problem by
hand and show your work, to ensure you know the algorithm well. However, if you want to check
your answers you can use Matlab’s implementation to verify your tree.

y = Poisonous? x1 = size (real-valued) x2 = spots? x3 = color

N 1 N White
N 5 N White
N 2 Y White
N 2 N Brown
N 3 Y Brown
N 4 N White
N 1 N Brown
Y 5 Y White
Y 4 Y Brown
Y 4 Y Brown
Y 1 Y White
Y 1 Y Brown

(a) What is the entropy of the target variable, “poisonous”?

(b) What is the first attribute a decision tree trained using the entropy or information gain
method we discussed in class would use to classify the data?

(c) What is the information gain of this attribute?

(d) Draw the full decision tree learned from this data set (no pruning, no minimum set size).
(If you don’t know what these are, you probably won’t use them; but if you read another
description of the algorithm and it talks about applying pruning or stopping early, don’t.
These are also options that you would need to make Matlab’s code reproduce your by-hand
results.)

If you wish to check your answer, you can create a classification tree in matlab; see the code for
the next question for appropriate options.

Now suppose we had the following data and wished to predict target variable “Y”. We train a
decision tree (again using information gain, and again with no pruning or minimum set size.)

1

Do this problem by hand and show all of your work. Your answer must be a binary tree
(any branch on x1 must have an associated threshold).

(a) What is the entropy of the target variable, “poisonous”?

CSCI-UA.0480-007 Problem Set 4 2

(b) What is the first attribute a decision tree trained using the entropy or information
gain method we discussed in class would use to classify the data?

(c) What is the information gain of this attribute?

(d) Draw the full decision tree learned from this data set (no pruning, no bound on its
size).

(e) Now consider the following data, where we wish to predict the target variable Y .
Suppose we train a decision tree (again using information gain, and again with no
pruning or bound on size).

Y A B C

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 0
0 0 1 1
1 0 1 1
0 1 0 0
1 1 0 1
1 1 1 0
0 1 1 1
1 1 1 1

(a) What would be the training error of our classifier? Give as a percentage. (Hint: you can do
this by inspection; there are no significant calculations required.)

Problem 2: Boosting

−1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

Figure 1: Data for AdaBoost
problem.

Consider the following classification problem. You wish to use
boosting to learn a classifier consisting of a decision stump –
using a single feature, a threshold on the value of x1 (horizontal
axis) or x2 (vertical axis) at each level. Find the first two classi-
fiers learned by AdaBoost, where your weak learning algorithm
at each stage directly minimizes the weighted classification er-
ror over all possible decision stumps (there are only 5 viable
classifiers to check). At each step, compute the weighted error
of your newly selected classifier, the resulting classifier weight
alpha, and the new example weights to be used at the next
stage. Show how you computed these values.

If you compute the error of the overall (ensemble) classifier
(not required), you will notice that it does not improve between
the first and second weak learners. (It does improve on the 3rd.) Why is this the case?

Problem 3: Clustering

We will examine the behavior of the k-means algorithm for clustering data using a (subset of the)
handwritten digit database called MNIST. Download the zip file with code snippets and data from
the course webpage. For this problem we will use the “X” and “Y” data; the “X” data consist of
200 images of each handwritten digit, each of which is a 28 x 28 grayscale image “reformed” into a
784-length vector. “Y” is the actual digit label, which we will use only for analysis, not for training.

data = load (’mnist.txt’) ;
Y=data (: , 1) ; X=data (: , 2 : end) ;

You can visualize any of the examples by converting the 1x784 vector into an image and dis-
playing it:

x1 = X(1 , :) ;
imagesc (reshape (x1 , [2 8 2 8]) ’) ; colormap (gray) ; ax i s o f f ;

2

What would be the training error of our classifier? Give as a percentage, and ex-
plain why. (Hint: you can do this by inspection; there are no significant calculations
required.)

3. (15 points) Decision Trees - Experiments with real data

Adult (Census Income) Dataset from UCI Machine Learning Repository

After working through the toy example, let’s work with a more realistic dataset. The
Adult Dataset (Blake and Merz, 1998) was extracted from the 1994 Census database. The
prediction task here is to determine whether a person makes over 50K a year. Out of
48,842 samples, it has about 24% positive (income >50K) and 76% negative (income <=
50K) samples; some of the features have missing values (marked by ‘?’) and there are 4
continuous and 8 categorical features.

You can refer to http://archive.ics.uci.edu/ml/datasets/Adult for more information
on the dataset and attributes. For this set of experiments, we have pre-processed the
original dataset: removed two unused features (fnlwgt, education num) and partitioned
them into training and testing.

Dataset: Please do not use the original dataset from the UCI repository. Data files should
be downloaded from the course website. http://cs.nyu.edu/~dsontag/courses/ml16/

Software: We will be using the Decision Tree implementation in the python based Ma-
chine Learning library scikit-learn.

http://scikit-learn.org/stable/modules/tree.html#classification

Experiments:

(a) Handle missing values: The scikit-learn implementation of Decision Trees does not
support missing values. In this step we will use a very simple method to fill in the

http://archive.ics.uci.edu/ml/datasets/Adult
http://cs.nyu.edu/~dsontag/courses/ml16/
http://scikit-learn.org/stable/modules/tree.html#classification

CSCI-UA.0480-007 Problem Set 4 3

missing values. For continuous values - you can substitute with the mean or median

value of the particular feature, for categorical values - you can substitute with the
mode. Calculation of these statistics should be done only on training data.

(b) More pre-processing: Another limitation of scikit-learn’s DecisionTreeClassifier

is that they do not accept non-numeric values. That is, the categorical features can-
not be used as is. (The same problem would arise had you wanted to use a SVM for
this classification problem.)

One way to overcome this is to transform the feature space, making one binary valued
feature out of each value of the categorical features, while keeping the numeric features
intact. Pseudocode goes something like this:

INITIALIZE new_features = []

FOR EACH feat IN original_features:

IF feat.type == CONTINUOUS or NUMERIC:

new_features.append(feat.name)

IF feat.type == CATEGORICAL:

FOR each feat.value:

new_feat_name=feat.name + SOME_SEPARATOR + feat.value

new_features.append(new_feat_name)

When transforming the original data record, numeric (i.e. continuous) features remain
unchanged, and each of the binary valued features that replace the categorical features
is set to 1 or 0 depending on whether the original categorical feature takes the relevant
value.

Finally, randomly assign the data points to the training set (70%) and validation set
(30%).

(c) Tune Decision Tree classifier: As mentioned in class, full depth Decision Trees are
prone to overfitting. One way to address this is via pruning, but scikit-learn does
not support pruning. Instead, it has two parameters that you can tune: max depth,
which limits the depth of the decision tree, and min samples leaf, which requires
that every leaf has at least this many data points.

Generate two plots where on the X-axis you vary one of the parameters (see below)
and on the y-axis you show classification accuracy. Each plot should have two lines on
it, one for accuracy on training set and another for accuracy on validation set:

1. max depth = [1,2,3...30]

2. min samples leaf = [1,2,3...50]

Save your best choices of parameters.

Create a visualization of the top 3 levels of your Decision Tree obtained using the op-
timal max depth and min samples leaf found above.. In scikit-learn you can
use pydot which uses graphviz binaries; refer the tutorial for example http://

scikit-learn.org/stable/modules/tree.html.

Optional: You can try other parameters and their combinations to find the best
performing classifier on the validation-set.

(d) Evaluate on test data: Train your best configuration of DecisionTreeClassifier on
the full training data, and report its performance on the test dataset.

http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html

