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Introduction to Machine Learning, Spring 2016

Problem Set 6: Probabilistic models
Due: Monday, April 25, 2016 at 10pm (upload to NYU Classes.)

Important: See problem set policy on the course web site.

Instructions. You must show all of your work and be rigorous in your writeups to obtain full credit. Your
answers to the below, plots, and all code that you write for this assignment should be uploaded to NYU Classes.

1. Medical diagnosis. You go for your annual checkup and have several lab tests performed. A week later
your doctor calls you and says she has good and bad news. The bad news is that you tested positive for a
marker of a serious disease, and that the test is 97% accurate (i.e. the probability of testing positive given
that you have the disease is 0.97, as is the probability of testing negative given that you don’t have the
disease). The good news is that this is a rare disease, striking only 1 in 20,000 people. Why is it good news
that the disease is rare? What are the chances that you actually have the disease?

2. Naive Bayes. In this problem you will show that naive Bayes corresponds to a linear classifier. Consider
using a naive Bayes algorithm for binary prediction (two classes), where the features x1, . . . , xk are also
binary valued. Let θc = Pr(Y = c) and θci = Pr(Xi = 1 | Y = c) for c ∈ {0, 1}. It will be helpful to use the
following form for the joint distribution:

Pr(Y = 1, x1, . . . , xk ; ~θ) = θ1

k∏
i=1

θxi
1i (1− θ1i)1−xi (1)

Pr(Y = 0, x1, . . . , xk ; ~θ) = θ0

k∏
i=1

θxi
0i (1− θ0i)1−xi (2)

For a naive Bayes model given by parameters ~θ, demonstrate a weight vector w and offset b such that for
any new example x,

arg max
y

Pr(y | x ; ~θ) = arg max
y

y (w · x + b) ,

where ~θ refers to all parameters, including both θc and θci.

Hint: Use Bayes’ rule to obtain the posterior, and then take its logarithm (noticing that this is a monotonic
transformation which does not change the argmax).

Thus, if one had a sufficient amount of data, one would prefer to directly learn a linear model using logistic
regression or a SVM rather than using naive Bayes, since the former consider a strictly larger hypothesis
class than the latter. With limited numbers of training points (or settings where some features may be
missing) naive Bayes may be preferable.

3. Topic models. In this question you will use an off-the-shelf implementation of LDA to get practice with
learning topic models on real-world data, and to analyze various trade-offs that can be made during learning.

(a) Prepare a corpus of documents from which you’ll learn. You can find some already prepared text
collections here:

http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

However, we prefer that you be creative and construct your own!

(b) Learn a latent Dirichlet allocation model on your corpus using default parameters. You can use any
software package that you like. Two excellent options are:

http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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• Mallet (http://mallet.cs.umass.edu/)

• Gensim (http://radimrehurek.com/gensim/)

Qualitatively describe what topics are discovered.

(c) Re-run learning using varying numbers of topics (e.g., 5, 20, 100). Describe qualitatively the differences
that you observe as the number of topics increases.

4. Hidden Markov models. Andy lives a simple life. Some days he is Angry and some days he is Happy.
But he hides his emotional state, and so all we can observe is whether he smiles, frowns, laughs, or yells.
Andy’s best friend is utterly confused about whether Andy is actually happy or angry and decides to model
his emotional state using a hidden Markov model.

Let Xd ∈ {Happy, Angry} denote Andy’s emotional state on day d, and let Yd ∈ {smile, frown, laugh, yell}
denote the observation made about Andy on day d. Assume that on day 1 Andy is in the Happy
state, i.e. X1 = Happy. Furthermore, assume that Andy transitions between states exactly once per day
(staying in the same state is an option) according to the following distribution: p(Xd+1 = Happy | Xd =
Angry) = 0.1, p(Xd+1 = Angry | Xd = Happy) = 0.1, p(Xd+1 = Angry | Xd = Angry) = 0.9, and p(Xd+1 =
Happy | Xd = Happy) = 0.9.

The observation distribution for Andy’s Happy state is given by p(Yd = smile | Xd = Happy) = 0.6, p(Yd =
frown | Xd = Happy) = 0.1, p(Yd = laugh | Xd = Happy) = 0.2, and p(Yd = yell | Xd = Happy) = 0.1. The
observation distribution for Andy’s Angry state is p(Yd = smile | Xd = Angry) = 0.1, p(Yd = frown | Xd =
Angry) = 0.6, p(Yd = laugh | Xd = Angry) = 0.1, and p(Yd = yell | Xd = Angry) = 0.2. All of this is
summarized in the following figure:
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Be sure to show all of your work for each of the questions below!

(a) What is p(X2 = Happy)?

(b) What is p(Y2 = frown)?

(c) What is p(X2 = Happy | Y2 = frown)?

(d) What is p(Y80 = yell)?

(e) Assume that Y1 = Y2 = Y3 = Y4 = Y5 = frown. What is the most likely sequence of the states? That
is, compute the MAP assignment arg maxx1,...,x5 p(X1 = x1, . . . , X5 = x5 | Y1 = Y2 = Y3 = Y4 = Y5 =
frown).

http://mallet.cs.umass.edu/
http://radimrehurek.com/gensim/

