
CSCI-UA.0480-007 Problem Set 7 1

Introduction to Machine Learning, Spring 2016

Problem Set 7: Deep learning with neural networks
Due: Monday, May 9, 2016 at 10pm (upload to NYU Classes.)

Important: See problem set policy on the course web site.

Instructions. You must show all of your work and be rigorous in your writeups to obtain full credit. Your
answers to the below, plots, and all code that you write for this assignment should be uploaded to NYU Classes.

1. Back-Propagation (5 pts)

Logistic regression is a popular technique in machine learning to classify data into two categories (y=0 or
1). This technique builds over linear regression by using the same linear model but it is followed by the
sigmoid function which converts the output of the linear model to a value between 0 and 1. This value can
then be interpreted as a probability:

p(y = 1|x) = σ(z) =
1

1 + e−(wTx+b)
(1)

where x is the input feature vector, z = wTx + b, and σ represents the sigmoid function. Further denote
ŷ = p(y = 1|x). Answer the follow questions:

(a) Suppose that we have a loss function l(ŷ, y) which measures the dissimilarity between the prediction ŷ
and the true label y. Assume that we already calculated ∂l

∂ŷ , write down the expression for ∂l
∂w given

∂l
∂ŷ .

(b) We decide to use the cross entropy loss (which corresponds to maximum likelihood estimation):
l(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ). Suppose that the current weights are given by wt and bias bt,
and consider the input x and true label y given by:

wt =

(
2
1

)
, bt = 0, x =

(
0
1

)
, y = 1

Using these, calculate ŷ, l(ŷ, y) as well as ∂l
∂w for this data point, evaluated at wt, bt.

2. Convolutional Neural Nets for Digit Recognition (12 pts)

In PS3, we experimented with SVM-based approaches on MNIST dataset. In this assignment, we will
attack the same digit recognition problem with convolutional neural networks using TensorFlow. The
MNIST dataset was processed and pickled to make it easier to use in python.1

Sample code is provided to you. data.py defines a data class that loops through the dataset and pro-
vides mini-batches during training; model.py defines a simple 2-layer convolutional neural network model;
train.py defines the training process. Execute python train.py to start training.

(a) Read through the sample code, making sure you understand each part. Refer to the TensorFlow
Python API for specific usage of functions. What are the kernel sizes and strides of the first and
second convolutional layers (counting from the input layer)?

(b) Pooling and convolution normally change the size of the input. Suppose you have an input image of 96
by 96 pixels, what is the size of the output after a convolutional layer (without padding) with kernel
size 5 by 5 and stride 1 followed by a pooling layer with kernel size 3 by 3 and stride 3? Explain how
you get the result.

1http://deeplearning.net/data/mnist/mnist.pkl.gz

https://www.tensorflow.org/versions/r0.8/api_docs/python/index.html
https://www.tensorflow.org/versions/r0.8/api_docs/python/index.html
http://deeplearning.net/data/mnist/mnist.pkl.gz

CSCI-UA.0480-007 Problem Set 7 2

(c) In train.py, accuracy is reported every 100 iterations. Which part of the data are these accuracies
evaluated on? Implement the function get_accuracy and report accuracy evaluated on the whole
validation set every 100 iterations.

(d) A technique that is often used to prevent over-fitting in neural networks is early-stopping. A simple
version is to stop training after the best validation error does not change for a certain number of
iterations. Implement early-stopping in train.py to stop training after the validation error does not
decrease for 300 iterations (validation error evaluated every 100 iterations). How many iterations does
it take before training stops?

(e) Choose at least one of the hyper-parameters (kernel size, number of filters, number of convolutional
layers, dropout probability, etc.) and experiment with the effect of the hyper-parameter on model
performance. Report the validation accuracy for each configuration you tried as a table. After you
finish this, evaluate the best model on the test set and report your results. Make sure to use early-
stopping as implemented in the previous question.

(f) (bonus 2 pts) Visualize the 32 kernels in the first convolutional layer. Hint: you can save and restore a
session containing all the trained weights using tf.train.Saver. The value of a variable var can be
retrieved using session.run(var). Refer to maplotlib.pyplot.imshow for visualizing a 2D array.

3. Convolutional Neural Nets for Text Classification (6 pts)

In this section, we are going to study word embeddings and convolutional neural networks (CNNs) for text
classification. We have provided you with sample code which trains the model shown in the below figure
(Kim, EMNLP 2014). Word embeddings are a technique often used in Natural Language Processing to
get a vector representation of a word. There are multiple techniques to obtain such embeddings, one of
the most popular ones being Word2Vec 2. The embeddings learned by Word2Vec exhibit nice properties
: similar words tend to cluster together (”lunch”, ”dinner”, ”breakfast” for example). In this assignment,
we provide you with embeddings learned using Word2Vec. You are going to evaluate the quality of these
embeddings, and then use them to do sentiment analysis on Rotten Tomatoes movie reviews.

wait
for
the

video
and
do
n't

rent
it

n x k representation of
sentence with static and

non-static channels

Convolutional layer with
multiple filter widths and

feature maps

Max-over-time
pooling

Fully connected layer
with dropout and
softmax output

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . . � xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

(a) Read the code in the file nearestneighbors.py, and implement the function getNN. This function
should return the list of words whose embeddings are the closest to the embedding of a given word
in terms of cosine similarity. The cosine similarity betweens two vectors ~u and ~v is ~u·~v

‖~u‖‖~v‖ . In your

report, show the 10 nearest neighbors of the following words: “movie”, “man”, “computer”.

(b) Read the code for text classification using CNN (files train.py, data_helpers.py and text_cnn.py.
The first layer of this model is the embedding layer. Change this layer to use the pre-trained em-
beddings of the file embeddingMatrix.npy, and do not include this layer in the trainable parameters
(thus keeping the embeddings fixed3). Report the final cross-validation accuracy you obtain.

2https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.

pdf
3See https://www.tensorflow.org/versions/r0.8/api_docs/python/state_ops.html#trainable_variables for reference

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.tensorflow.org/versions/r0.8/api_docs/python/state_ops.html#trainable_variables

