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Outline of lectures

* Review of probability

(After midterm)

Maximum likelihood estimation
2 examples of Bayesian classifiers:
* Nalve Bayes

* Logistic regression



Bayes' Rule

Two ways to factor a joint distribution over two variables:

P(xz,y) = P(xz|y)P(y) = P(y|z)P(x)
Dividing, we get:

Paly) = 5000

Why is this at all helpful?
— Let’s us build one conditional from its reverse
— Often one conditional is tricky but the other one is simple
— Foundation of many practical systems (e.g. ASR, MT)

P(x)

In the running for most important ML equation!



Returning to thumbtack example...
 P(Heads) =0, P(Tails) =1-0
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* Flipsareiid.: D={x]|i=1..n}, P(D|0)=TLP(x;| 0)
— Independent events

— Identically distributed according to Bernoulli
distribution

* Sequence D of a,, Heads and o Tails

P(D|0) =0%(1—0)T

Called the “likelihood” of the data under the model



Maximum Likelihood Estimation

Data: Observed set D of o, Heads and o; Tails
Hypothesis: Bernoulli distribution
Learning: finding O is an optimization problem
— What’s the objective function?

P(D|60) =0%H(1 — 0)%T
MLE: Choose O to maximize probability of D

AN

0 = arg meax P(D | 0)
= argd m@ax In P(D | 6)



Your first parameter learning algorithm

§ = argmax InP(D|0)

0

= argmax Inf*H(1 — 0)°T
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Data ¢ \

(6; D) = In P(D)|6)
L(0;
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What if | have prior beliefs?

* Billionaire says: Wait, | know that the thumbtack
is “close” to 50-50. What can you do for me now?

* You say: | can learn it the Bayesian way...

* Rather than estimating a single 0, we obtain a
distribution over possible values of 0

In the beginning After observations
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Bayesian Learning

o Prior
e Use Bayes’ rule! ~ Data 'l'ke“hOOd ( 1
L
 peip = P@I0P@
| osterlolr /, P(D)
AN \ Normalization

» Orequivalently: P(0 | D) o« P(D|0)P(6H)
* For uniform priors, this reduces to

maximum likelihood estimation!

P(#) x1 P(6|D)x P(D|6)



Bayesian Learning for Thumbtacks

P(0| D) x P(D|0)P(6)
Likelihood: P(D | 6) = 6“H(1 — 6)°T

 What should the prior be?
— Represent expert knowledge
— Simple posterior form

* For binary variables, commonly used prior is the
Beta distribution:

6Pn—1(1 — 9)fr—1

PO = 5680

~ Beta(Bx, Br)




Beta prior distribution — P(0)
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Since the Beta distribution is conjugate to the Bernoulli distribution, the
posterior distribution has a particularly simple form:

PO |D) x P(D|6)P(H)
x 0°H (1 — 0)*T gPr—1(1 — g)Pr—1
_ eaH—i—BH—l (1 B H)OtT-FBT—l

— Beta(OzH-l—ﬁH, OéT—l—ﬁT)



Using Bayesian inference for prediction

We now have a distribution over parameters

For any specific f, a function of interest, compute the
expected value of f:

1
BIf(0)] = [ f(0)P(6| D)do

* Integral is often hard to compute
* As more data is observed, posterior is more concentrated

MAP (Maximum a posteriori approximation): use most likely
parameter to approximate the expectation

§ = arg max P(6 | D)
E[f(0)] =~ f(0)



Outline of lectures

* Review of probability
e Maximum likelihood estimation

2 examples of Bayesian classifiers:
* Naive Bayes
* Logistic regression



Bayesian Classification

* Problem statement:
— Given features X, X,,...,X,
— Predict a label Y

[Next several slides adapted from:
Vibhav Gogate, Jonathan Huang, Luke Zettlemoyer, Carlos
Guestrin, and Dan Weld]



Example Application

* Digit Recognition

XX, € {0,1} (Black vs. White pixels)
* Y&{0,1,2,3,4,5,6,7,8,9}



The Bayes Classifier

* If we had the joint distribution on X,,...,X, and Y, could predict
using:

argmax P(Y|X1,...,X,)

— (for example: what is the probability that the image
represents a 5 given its pixels?)

* So .. How do we compute that?



The Bayes Classifier

* Use Bayes Rule!

Likelihood Prior

\ /
P(X,,..., X,[V)P(Y)

Normalization Constant

 Why did this help? Well, we think that we might be able to
specify how features are “generated” by the class label



The Bayes Classifier

* Let’s expand this for our digit recognition task:

[ /= J —
P(Y: 5|4Y1,...,)(n) = P(‘Xla'--ax nI) = 5)P() = 5)

P(Y =6X1,...,X,) =

* To classify, we'll simply compute these probabilities, one per

class, and predict based on which one is largest

P(Xi1,...,X,[Y =5)P(Y =5) + P(X1,...,X,|Y = 6)P(Y = 6)
P(X1,...,X,|Y = 6)P(Y = 6)
P(Xi1,...,Xa|Y =5)P(Y =5) + P(X1,...,Xa|Y = 6)P(Y = 6)



Model Parameters

* How many parameters are required to specify the likelihood,
P(Xy,...,.X ]Y)?
— (Supposing that each image is 30x30 pixels)

* The problem with explicitly modeling P(X,...,X |Y) is that
there are usually way too many parameters:

— WEe’'ll run out of space

— We'll run out of time

— And we’ll need tons of training data (which is usually not
available)



Nailve Bayes

* Naive Bayes assumption:
— Features are independent given class:
P(X1, XolY) = P(X1[X2,Y)P(X3|Y)
= P(X1]Y)P(X2]Y)

— More generally:

P(X1..Xn|Y) = HP(Xi|Y)

* How many parameters now?

* Suppose X is composed of n binary features



The Naive Bayes Classifier

* Given:
— Prior P(Y) °

— n conditionally independent features
X, ..., X;, given the class Y

— For each feature i, we specify P(X.]Y) Q e o a

e (Classification decision rule:
y* — hNB(X) — Jard manP(y)P(.CE]_, ey dn | y)
= arg max P(y) 1] P(zily)
i

If certain assumption holds, NB is optimal classifier!
(they typically don't)



A Digit Recognizer

* Input: pixel grids

* Qutput: a digit 0-9
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Are the naive Bayes assumptions realistic here?



What has to be learned?

P(Y) P(F31 =on|Y) P(Fs55=onlY)
1|01 1 | 0.01 v 1 [0.05
2 101 2 10.05 2 |0.01
3 |0.1 3 10.05 3 10.90
4 101 / 4 10.30 4 0.80
5 [0.1 5 | 0.80 5 | 0.90
6 |0.1 6 | 0.90 6 | 0.90
7 0.1 7 10.05 7 10.25
8 |0.1 8 | 0.60 8 | 0.85
9 [0.1 9 | 0.50 9 | 0.60
0 |01 0 | 0.80 0 | 0.80




MLE for the parameters of NB

e Given dataset

— Count(A=a,B=b) +— number of examples where A=a and
B=b

* MLE for discrete NB, simply:

— Prior:

Count(Y =y)
Dy Count(Y =)

PY =y) =

— Observation distribution:

P(X; = 2|y = y) = Count(X; =x,Y = y)

> Count(X; =2/, Y =vy)



MLE for the parameters of NB

* Training amounts to, for each of the classes, averaging all of
the examples together:
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MAP estimation for NB

 Given dataset

— Count(A=a,B=b) +— number of examples where A=a and
B=b

 MAP estimation for discrete NB, simply:
— Prior:

Count(Y =y)
Dy Count(Y =)

PY =y) =

— Observation distribution:

Count(X; =x,Y =y) +a

P(Xz — :C’Y — y) — le CO’U,’Rt(Xz — Qj/7Y — y) + |X_i|*a

e Called “smoothing”. Corresponds to Dirichlet prior!



