Introduction to Bayesian methods (continued) - Lecture 16

David Sontag
New York University

Slides adapted from Luke Zettlemoyer, Carlos Guestrin, Dan Klein, and Vibhav Gogate

Outline of lectures

Review of probability

(After midterm)

Maximum likelihood estimation

- 2 examples of Bayesian classifiers:
- Naïve Bayes
- Logistic regression

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Let's us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many practical systems (e.g. ASR, MT)
- In the running for most important ML equation!

Returning to thumbtack example...

• P(Heads) = θ , P(Tails) = $1-\theta$

- Flips are *i.i.d.*: $D = \{x_i | i = 1...n\}, P(D \mid \theta) = \prod_i P(x_i \mid \theta)$
 - Independent events
 - Identically distributed according to Bernoulli distribution
- Sequence D of $\alpha_{\rm H}$ Heads and $\alpha_{\rm T}$ Tails

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Called the "likelihood" of the data under the model

Maximum Likelihood Estimation

- Data: Observed set D of $\alpha_{\rm H}$ Heads and $\alpha_{\rm T}$ Tails
- Hypothesis: Bernoulli distribution
- Learning: finding θ is an optimization problem
 - What's the objective function?

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

• MLE: Choose θ to maximize probability of D

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

Your first parameter learning algorithm

$$\widehat{\theta}$$
 = $\underset{\theta}{\operatorname{arg\,max}} \ln P(\mathcal{D} \mid \theta)$
= $\underset{\theta}{\operatorname{arg\,max}} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$

Set derivative to zero, and solve!

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = \frac{d}{d\theta} \left[\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \right]
= \frac{d}{d\theta} \left[\alpha_H \ln \theta + \alpha_T \ln(1 - \theta) \right]
= \alpha_H \frac{d}{d\theta} \ln \theta + \alpha_T \frac{d}{d\theta} \ln(1 - \theta)
= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0 \qquad \widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

Data

$$L(\theta; \mathcal{D}) = \ln P(\mathcal{D}|\theta)$$

What if I have prior beliefs?

- Billionaire says: Wait, I know that the thumbtack is "close" to 50-50. What can you do for me now?
- You say: I can learn it the Bayesian way...
- Rather than estimating a single θ , we obtain a distribution over possible values of θ

Bayesian Learning

• Use Bayes' rule!

- Or equivalently: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$
- For uniform priors, this reduces to maximum likelihood estimation!

$$P(\theta) \propto 1$$
 $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)$

Bayesian Learning for Thumbtacks

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Likelihood:
$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

- What should the prior be?
 - Represent expert knowledge
 - Simple posterior form
- For binary variables, commonly used prior is the Beta distribution:

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

 Since the Beta distribution is conjugate to the Bernoulli distribution, the posterior distribution has a particularly simple form:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$$

$$\propto \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}$$

$$= \theta^{\alpha_H + \beta_H - 1} (1 - \theta)^{\alpha_T + \beta_T - 1}$$

$$= Beta(\alpha_H + \beta_H, \alpha_T + \beta_T)$$

Using Bayesian inference for prediction

- We now have a distribution over parameters
- For any specific f, a function of interest, compute the expected value of f:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

- Integral is often hard to compute
- As more data is observed, posterior is more concentrated
- MAP (Maximum a posteriori approximation): use most likely parameter to approximate the expectation

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D})$$

$$E[f(\theta)] \approx f(\widehat{\theta})$$

Outline of lectures

- Review of probability
- Maximum likelihood estimation

- 2 examples of Bayesian classifiers:
- Naïve Bayes
- Logistic regression

Bayesian Classification

- Problem statement:
 - Given features $X_1, X_2, ..., X_n$
 - Predict a label Y

[Next several slides adapted from: Vibhav Gogate, Jonathan Huang, Luke Zettlemoyer, Carlos Guestrin, and Dan Weld]

Example Application

Digit Recognition

- $X_1,...,X_n \in \{0,1\}$ (Black vs. White pixels)
- $Y \in \{0,1,2,3,4,5,6,7,8,9\}$

The Bayes Classifier

• If we had the joint distribution on $X_1,...,X_n$ and Y, could predict using:

$$\operatorname{arg} \max_{Y} P(Y|X_1,\ldots,X_n)$$

 (for example: what is the probability that the image represents a 5 given its pixels?)

So ... How do we compute that?

The Bayes Classifier

Use Bayes Rule!

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$
 Normalization Constant

 Why did this help? Well, we think that we might be able to specify how features are "generated" by the class label

The Bayes Classifier

Let's expand this for our digit recognition task:

$$P(Y = 5 | X_1, ..., X_n) = \frac{P(X_1, ..., X_n | Y = 5) P(Y = 5)}{P(X_1, ..., X_n | Y = 5) P(Y = 5) + P(X_1, ..., X_n | Y = 6) P(Y = 6)}$$

$$P(Y = 6 | X_1, ..., X_n) = \frac{P(X_1, ..., X_n | Y = 6) P(Y = 6)}{P(X_1, ..., X_n | Y = 5) P(Y = 5) + P(X_1, ..., X_n | Y = 6) P(Y = 6)}$$

 To classify, we'll simply compute these probabilities, one per class, and predict based on which one is largest

Model Parameters

- How many parameters are required to specify the likelihood, $P(X_1,...,X_n|Y)$?
 - (Supposing that each image is 30x30 pixels)
- The problem with explicitly modeling $P(X_1,...,X_n|Y)$ is that there are usually way too many parameters:
 - We'll run out of space
 - We'll run out of time
 - And we'll need tons of training data (which is usually not available)

Naïve Bayes

- Naïve Bayes assumption:
 - Features are independent given class:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

– More generally:

$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

- How many parameters now?
 - Suppose **X** is composed of *n* binary features

The Naïve Bayes Classifier

• Given:

- Prior P(Y)
- n conditionally independent features $X_1, ..., X_n$, given the class Y
- For each feature i, we specify $P(X_i | Y)$

Classification decision rule:

$$y^* = h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) P(x_1, \dots, x_n \mid y)$$

= $\arg \max_{y} P(y) \prod_{i} P(x_i \mid y)$

If certain assumption holds, NB is optimal classifier! (they typically don't)

A Digit Recognizer

Input: pixel grids

Output: a digit 0-9

Are the naïve Bayes assumptions realistic here?

What has to be learned?

MLE for the parameters of NB

- Given dataset
 - Count(A=a,B=b) ← number of examples where A=a and
 B=b
- MLE for discrete NB, simply:
 - Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

– Observation distribution:

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y)}{\sum_{x'} Count(X_i = x', Y = y)}$$

MLE for the parameters of NB

 Training amounts to, for each of the classes, averaging all of the examples together:

MAP estimation for NB

- Given dataset
 - Count(A=a,B=b) ← number of examples where A=a and
 B=b
- MAP estimation for discrete NB, simply:
 - Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

– Observation distribution:

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y) + \mathbf{a}}{\sum_{x'} Count(X_i = x', Y = y) + |\mathbf{X_i}|^* \mathbf{a}}$$

Called "smoothing". Corresponds to Dirichlet prior!