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Dimensionality	reduc9on	

•  Input	data	may	have	thousands	or	millions	of	
dimensions!	
– e.g.,	text	data	has	???,	images	have	???		

•  Dimensionality	reduc1on:	represent	data	with	
fewer	dimensions	
– easier	learning	–	fewer	parameters	
– visualiza9on	–	show	high	dimensional	data	in	2D	
– discover	“intrinsic	dimensionality”	of	data	

•  high	dimensional	data	that	is	truly	lower	dimensional		
•  noise	reduc9on	
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n = 2 
k = 1 

n = 3 
k = 2 



Example	(from	Bishop)	

•  Suppose	we	have	a	dataset	of	digits	(“3”)	
perturbed	in	various	ways:	

•  What	opera9ons	did	I	perform?	What	is	the	
data’s	intrinsic	dimensionality?	

•  Here	the	underlying	manifold	is	nonlinear	



Lower	dimensional	projec9ons	
•  Obtain	new	feature	vector	by	transforming	the	original	
features	x1	…	xn	

•  New	features	are	linear	combina9ons	of	old	ones	
•  Reduces	dimension	when	k<n	
•  This	is	typically	done	in	an	unsupervised	seZng		

–  just	X,	but	no	Y	
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In	general	will	not	be	
inver9ble	–	cannot	go	
from	z	back	to	x	



Which	projec9on	is	be[er?	
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example of this is if each data point represented a grayscale image, and each
x(i)
j took a value in {0, 1, . . . , 255} corresponding to the intensity value of

pixel j in image i.
Now, having carried out the normalization, how do we compute the “ma-

jor axis of variation” u—that is, the direction on which the data approxi-
mately lies? One way to pose this problem is as finding the unit vector u so
that when the data is projected onto the direction corresponding to u, the
variance of the projected data is maximized. Intuitively, the data starts off
with some amount of variance/information in it. We would like to choose a
direction u so that if we were to approximate the data as lying in the direc-
tion/subspace corresponding to u, as much as possible of this variance is still
retained.

Consider the following dataset, on which we have already carried out the
normalization steps:

Now, suppose we pick u to correspond the the direction shown in the
figure below. The circles denote the projections of the original data onto this
line.

4

We see that the projected data still has a fairly large variance, and the
points tend to be far from zero. In contrast, suppose had instead picked the
following direction:

Here, the projections have a significantly smaller variance, and are much
closer to the origin.

We would like to automatically select the direction u corresponding to
the first of the two figures shown above. To formalize this, note that given a
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Reminder:	Vector	Projec9ons	

•  Basic	defini9ons:	
– A.B	=	|A||B|cos	θ	

•  Assume	|B|=1	(unit	vector)	
– A.B	=	|A|cos	θ	
– So,	dot	product	is	length	of	
projec9on!	



Using	a	new	basis	for	the	data	
•  Project	a	point	into	a	(lower	dimensional)	space:	

– point:	x	=	(x1,…,xn)		
– select	a	basis	–	set	of	unit	(length	1)	basis	vectors	
(u1,…,uk)	
•  we	consider	orthonormal	basis:		

– uj•uj=1,	and	uj•ul=0	for	j≠l	
– select	a	center	–	x,	defines	offset	of	space		
– best	coordinates	in	lower	dimensional	space	
defined	by	dot-products:	(z1,…,zk),	zji	=	(xi-x)•uj	



Maximize	variance	of	projec9on	

5

unit vector u and a point x, the length of the projection of x onto u is given
by xTu. I.e., if x(i) is a point in our dataset (one of the crosses in the plot),
then its projection onto u (the corresponding circle in the figure) is distance
xTu from the origin. Hence, to maximize the variance of the projections, we
would like to choose a unit-length u so as to maximize:
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We easily recognize that the maximizing this subject to ||u||2 = 1 gives the

principal eigenvector of Σ = 1
m

∑m
i=1 x

(i)x(i)T , which is just the empirical
covariance matrix of the data (assuming it has zero mean).1

To summarize, we have found that if we wish to find a 1-dimensional
subspace with with to approximate the data, we should choose u to be the
principal eigenvector of Σ. More generally, if we wish to project our data
into a k-dimensional subspace (k < n), we should choose u1, . . . , uk to be the
top k eigenvectors of Σ. The ui’s now form a new, orthogonal basis for the
data.2

Then, to represent x(i) in this basis, we need only compute the corre-
sponding vector
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Thus, whereas x(i) ∈ Rn, the vector y(i) now gives a lower, k-dimensional,
approximation/representation for x(i). PCA is therefore also referred to as
a dimensionality reduction algorithm. The vectors u1, . . . , uk are called
the first k principal components of the data.

Remark. Although we have shown it formally only for the case of k = 1,
using well-known properties of eigenvectors it is straightforward to show that

1If you haven’t seen this before, try using the method of Lagrange multipliers to max-
imize uTΣu subject to that uTu = 1. You should be able to show that Σu = λu, for some
λ, which implies u is an eigenvector of Σ, with eigenvalue λ.

2Because Σ is symmetric, the ui’s will (or always can be chosen to be) orthogonal to
each other.

Let x(i) be the ith data point minus the mean. 

Choose unit-length u to maximize: 

Let ||u||=1 and maximize. Using the method of Lagrange 
multipliers, can show that the solution is given by the principal 
eigenvector of the covariance matrix! (shown on board) 

Covariance 
matrix ⌃



Basic	PCA	algorithm	

•  Start	from	m	by	n	data	matrix	X	
•  Recenter:	subtract	mean	from	each	row	of	X	

– Xc	←	X	–	X	

•  Compute	covariance	matrix:	
–  	Σ	←	1/m	Xc

T	Xc	

•  Find	eigen	vectors	and	values	of	Σ		
•  Principal	components:	k	eigen	vectors	with	
highest	eigen	values	

[Pearson	1901,	
	Hotelling,	1933]	



PCA	example	

Data: Projection: Reconstruction: 



Dimensionality	reduc9on	with	PCA	
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Percentage	of	total	variance	captured	
by	dimension	zj	for	j=1	to	10:	
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Eigenfaces	[Turk,	Pentland	’91]	
•  Input	images:	 !  Principal components: 



Eigenfaces	reconstruc9on	

•  Each	image	corresponds	to	adding	together	
(weighted	versions	of)	the	principal	
components:	



Scaling	up	

•  Covariance	matrix	can	be	really	big!	
–  	Σ	is	n	by	n	
– 10000	features	can	be	common!		
– finding	eigenvectors	is	very	slow…	

•  Use	singular	value	decomposi9on	(SVD)	
– Finds	k	eigenvectors	
– great	implementa9ons	available,	e.g.,	Matlab	svd	



SVD	
•  Write	X	=	Z	S	UT	

– X	←	data	matrix,	one	row	per	datapoint	

– S	←	singular	value	matrix,	diagonal	matrix	with	
entries	σi	
•  Rela9onship	between	singular	values	of	X	and	
eigenvalues	of	Σ	given	by	λi	=	σi2/m	

– Z	←	weight	matrix,	one	row	per	datapoint	
•  Z	9mes	S	gives	coordinate	of	xi	in	eigenspace		

– UT	←	singular	vector	matrix	
•  In	our	seZng,	each	row	is	eigenvector	uj	



PCA	using	SVD	algorithm	
•  Start	from	m	by	n	data	matrix	X	
•  Recenter:	subtract	mean	from	each	row	of	X	

– Xc	←	X	–	X	

•  Call	SVD	algorithm	on	Xc	–	ask	for	k	singular	
vectors	

•  Principal	components:	k	singular	vectors	with	
highest	singular	values	(rows	of	UT)	
– Coefficients:	project	each	point	onto	the	new	vectors	



Non-linear	methods	

12
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Isomap	

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2321

Goal:	use	geodesic	
distance	between	points	
(with	respect	to	manifold)	

Es9mate	manifold	using	
graph.	Distance	between	
points	given	by	distance	of	
shortest	path	

Embed	onto	2D	plane	
so	that	Euclidean	distance	
approximates	graph	
distance	

[Tenenbaum, Silva, Langford. Science 2000] 



Isomap	

ifolds, a guarantee of asymptotic conver-
gence to the true structure; and the ability to
discover manifolds of arbitrary dimensional-
ity, rather than requiring a fixed d initialized
from the beginning or computational resourc-
es that increase exponentially in d.

Here we have demonstrated Isomap’s per-
formance on data sets chosen for their visu-
ally compelling structures, but the technique
may be applied wherever nonlinear geometry
complicates the use of PCA or MDS. Isomap
complements, and may be combined with,
linear extensions of PCA based on higher
order statistics, such as independent compo-
nent analysis (31, 32). It may also lead to a
better understanding of how the brain comes
to represent the dynamic appearance of ob-
jects, where psychophysical studies of appar-
ent motion (33, 34) suggest a central role for
geodesic transformations on nonlinear mani-
folds (35) much like those studied here.
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Table 1. The Isomap algorithm takes as input the distances dX(i, j ) between all pairs i, j from N data points
in the high-dimensional input space X, measured either in the standard Euclidean metric (as in Fig. 1A)
or in some domain-specific metric (as in Fig. 1B). The algorithm outputs coordinate vectors yi in a
d-dimensional Euclidean space Y that (according to Eq. 1) best represent the intrinsic geometry of the
data. The only free parameter (! or K ) appears in Step 1.

Step

1 Construct neighborhood graph Define the graph G over all data points by connecting
points i and j if [as measured by dX(i, j )] they are
closer than ! (!-Isomap), or if i is one of the K
nearest neighbors of j (K-Isomap). Set edge lengths
equal to dX(i, j).

2 Compute shortest paths Initialize dG(i, j) # dX(i, j) if i, j are linked by an edge;
dG(i, j) # 0 otherwise. Then for each value of k #
1, 2, . . ., N in turn, replace all entries dG(i, j) by
min{dG(i, j), dG(i,k) / dG(k, j)}. The matrix of final
values DG # {dG(i, j)} will contain the shortest path
distances between all pairs of points in G (16, 19).

3 Construct d-dimensional embedding Let 'p be the p-th eigenvalue (in decreasing order) of
the matrix "(DG) (17 ), and v p

i be the i-th
component of the p-th eigenvector. Then set the
p-th component of the d-dimensional coordinate
vector yi equal to 1'pvp

i .

Fig. 4. Interpolations along straight lines in
the Isomap coordinate space (analogous to
the blue line in Fig. 3C) implement perceptu-
ally natural but highly nonlinear “morphs” of
the corresponding high-dimensional observa-
tions (43) by transforming them approxi-
mately along geodesic paths (analogous to
the solid curve in Fig. 3A). (A) Interpolations
in a three-dimensional embedding of face
images (Fig. 1A). (B) Interpolations in a four-
dimensional embedding of hand images (20)
appear as natural hand movements when
viewed in quick succession, even though no
such motions occurred in the observed data. (C)
Interpolations in a six-dimensional embedding of
handwritten “2”s (Fig. 1B) preserve continuity not
only in the visual features of loop and arch artic-
ulation, but also in the implied pen trajectories,
which are the true degrees of freedom underlying
those appearances.
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tion to geodesic distance. For faraway points,
geodesic distance can be approximated by
adding up a sequence of “short hops” be-
tween neighboring points. These approxima-
tions are computed efficiently by finding
shortest paths in a graph with edges connect-
ing neighboring data points.

The complete isometric feature mapping,
or Isomap, algorithm has three steps, which
are detailed in Table 1. The first step deter-
mines which points are neighbors on the
manifold M, based on the distances dX (i, j)
between pairs of points i, j in the input space

X. Two simple methods are to connect each
point to all points within some fixed radius !,
or to all of its K nearest neighbors (15). These
neighborhood relations are represented as a
weighted graph G over the data points, with
edges of weight dX(i, j) between neighboring
points (Fig. 3B).

In its second step, Isomap estimates the
geodesic distances dM (i, j) between all pairs
of points on the manifold M by computing
their shortest path distances dG(i, j) in the
graph G. One simple algorithm (16) for find-
ing shortest paths is given in Table 1.

The final step applies classical MDS to
the matrix of graph distances DG " {dG(i, j)},
constructing an embedding of the data in a
d-dimensional Euclidean space Y that best
preserves the manifold’s estimated intrinsic
geometry (Fig. 3C). The coordinate vectors yi

for points in Y are chosen to minimize the
cost function

E ! !#$DG% " #$DY%!L2 (1)

where DY denotes the matrix of Euclidean
distances {dY(i, j) " !yi & yj!} and !A!L2

the L2 matrix norm '(i, j Ai j
2 . The # operator

Fig. 1. (A) A canonical dimensionality reduction
problem from visual perception. The input consists
of a sequence of 4096-dimensional vectors, rep-
resenting the brightness values of 64 pixel by 64
pixel images of a face rendered with different
poses and lighting directions. Applied to N " 698
raw images, Isomap (K" 6) learns a three-dimen-
sional embedding of the data’s intrinsic geometric
structure. A two-dimensional projection is shown,
with a sample of the original input images (red
circles) superimposed on all the data points (blue)
and horizontal sliders (under the images) repre-
senting the third dimension. Each coordinate axis
of the embedding correlates highly with one de-
gree of freedom underlying the original data: left-
right pose (x axis, R " 0.99), up-down pose ( y
axis, R " 0.90), and lighting direction (slider posi-
tion, R " 0.92). The input-space distances dX(i, j )
given to Isomap were Euclidean distances be-
tween the 4096-dimensional image vectors. (B)
Isomap applied to N " 1000 handwritten “2”s
from the MNIST database (40). The two most
significant dimensions in the Isomap embedding,
shown here, articulate the major features of the
“2”: bottom loop (x axis) and top arch ( y axis).
Input-space distances dX(i, j ) were measured by
tangent distance, a metric designed to capture the
invariances relevant in handwriting recognition
(41). Here we used !-Isomap (with ! " 4.2) be-
cause we did not expect a constant dimensionality
to hold over the whole data set; consistent with
this, Isomap finds several tendrils projecting from
the higher dimensional mass of data and repre-
senting successive exaggerations of an extra
stroke or ornament in the digit.
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converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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What	you	need	to	know	

•  Dimensionality	reduc9on	
– why	and	when	it’s	important	

•  Principal	component	analysis	
– minimizing	reconstruc9on	error	
–  rela9onship	to	covariance	matrix	and	eigenvectors	
– using	SVD	

•  Non-linear	dimensionality	reduc9on	


