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Dimensionality reduction

* |[nput data may have thousands or millions of
dimensions!
— e.g., text data has ???, images have ???
* Dimensionality reduction: represent data with
fewer dimensions
— easier learning — fewer parameters
— visualization — show high dimensional data in 2D

— discover “intrinsic dimensionality” of data
* high dimensional data that is truly lower dimensional
* noise reduction



Dimension reduction

* Assumption: data (approximately) lies on
a lower dimensional space

* Examples:
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Slide from Yi Zhang




Example (from Bishop)

e Suppose we have a dataset of digits (“3”)
perturbed in various ways:

303 %13,

* What operations did | perform? What is the
data’s intrinsic dimensionality?

* Here the underlying manifold is nonlinear




Lower dimensional projections

Obtain new feature vector by transforming the original
features x, ... X,

In general will not be
() invertible — cannot go
° o from z back to x

2L — w(()k) + Z wgk)wi

New features are linear combinations of old ones
Reduces dimension when k<n

This is typically done in an unsupervised setting
— just X, butnoY



Which projection is better?

From notes by Andrew Ng



Reminder: Vector Projections

e Basic definitions:
—A.B=|A||B|cos 6

A cos6

 Assume |B|=1 (unit vector)
—A.B=|A|cos 6

— So, dot product is length of
projection!



Using a new basis for the data

* Project a point into a (lower dimensional) space:
— point: x = (X4,...,X,)
— select a basis — set of unit (length 1) basis vectors

(ug,...,u,)
e we consider orthonormal basis:
—u;*u=1, and u;*u=0 for j=|

— select a center — x, defines offset of space

— best coordinates in lower dimensional space
defined by dot-products: (z,,...,z), z' = (x'-X)*u,

k
X'=X+ ) zu
j=1




Maximize variance of projection

Let x( be the ith data point minus the mean.

Choose unit-length u to maximize:
1 £ T Covariance
E (4) 2 T (z
(z" u) Z Y matrix )]

1 N (T
_ T = () ,.(3)

Let |Ju||=1 and maximize. Using the method of Lagrange
multipliers, can show that the solution is given by the principal
eigenvector of the covariance matrix! (shown on board)



Basic PCA algorithm

[Pearson 1901,

Start from m by n data matrix X Hotelling, 1933]

Recenter: subtract mean from each row of X

— X, < X=X

Compute covariance matrix:

— X<—=1/mX_X_

Find eigen vectors and values of

Principal components: k eigen vectors with
highest eigen values



PCA example =%+ =y
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Dimensionality reduction with PCA

In high-dimensional problem, data usually lies near a linear subspace, as
noise introduces small variability

Only keep data projections onto principal components with large eigenvalues

Can ignore the components of lesser significance. . |
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You might lose some information, but if the eigenvalues are small, you don’t lose
much Slide from Aarti Singh



Elge nfaces [Turk, Pentland "91]

Principal components:

* Input images:




Eigenfaces reconstruction

* Each image corresponds to adding together
(weighted versions of) the principal
components:




Scaling up

* Covariance matrix can be really big!
— 2isnbyn
— 10000 features can be common!
— finding eigenvectors is very slow...

e Use singular value decomposition (SVD)
— Finds k eigenvectors
— great implementations available, e.g., Matlab svd



SVD

Write X=2ZS U'
— X < data matrix, one row per datapoint

— S < singular value matrix, diagonal matrix with
entries o,

e Relationship between singular values of X and
eigenvalues of X given by A. = 6.2/m

— Z <— weight matrix, one row per datapoint
* Z times S gives coordinate of x, in eigenspace

— UT <— singular vector matrix
* In our setting, each row is eigenvector u,



PCA using SVD algorithm

Start from m by n data matrix X
Recenter: subtract mean from each row of X
— X, < X-X

Call SVD algorithm on X_ — ask for k singular
vectors

Principal components: k singular vectors with
highest singular values (rows of U')

— Coefficients: project each point onto the new vectors



Non-linear methods

e Linear

Principal Component Analysis (PCA)

Factor Analysis

Independent Component Analysis (ICA)

* Nonlinear

Laplacian Eigenmaps
ISOMAP
Local Linear Embedding (LLE)

Slide from Aarti Singh



Isomap

Goal: use geodesic Estimate manifold using Embed onto 2D plane

distance between points graph. Distance between so that Euclidean distance

(with respect to manifold) points given by distance of approximates graph
shortest path distance

A B Cc

[Tenenbaum, Silva, Langford. Science 2000]



Isomap

Table 1. The Isomap algorithm takes as input the distances d, (i,j) between all pairs /,j from N data points

Step

1 Construct neighborhood graph Define the graph G over all data points by connecting
points i and j if [as measured by d,(i,j)] they are
closer than e (e-Isomap), or if i is one of the K
nearest neighbors of j (K-Isomap). Set edge lengths
equal to d,(i,j).



Isomap

Bottom loop articulation
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[Tenenbaum, Silva, Langford. Science 2000]



Isomap
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Isomap

Face images Swiss roll data
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What you need to know

* Dimensionality reduction
— why and when it’s important

* Principal component analysis
— minimizing reconstruction error

— relationship to covariance matrix and eigenvectors
— using SVD

* Non-linear dimensionality reduction



