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Outline of today’s class
1. Multi-task learning of (measurable) disease progression 

• Application to Alzheimer’s disease (Zhou et al., KDD ‘12)

2. Discovering fine-grained disease states using hidden 
Markov models

• Application to Alzheimer’s disease (Sukkar et al., IEEE EMBS 
’12)

3. Unsupervised learning of (grounded, multi-dimensional) 
disease progression models

• Application to chronic obstructive pulmonary disease (Wang 
et al., KDD ‘14)



Chronic diseases
• A chronic disease is a human health 
condition that persists or otherwise is long-
lasting in its effects

• E.g., lasting for more than 3 months
• Common chronic diseases include:

• Arthritis
• Asthma
• Cancer
• Heart failure
• Diabetes
• Hepatitis C
• HIV/AIDS

[Slide credit: Farzad Kamalzadeh]



Epidemiology
• Chronic diseases constitute a major cause of mortality

• WHO: 38 million deaths a year to non-communicable diseases
• United States: 25% of adults have at least two chronic conditions
• 1 in 2 Americans (133 million) have at least one chronic medical 

condition
• 61% of deaths among people older than 65 in the population

• Diabetes
• 7th leading cause of death in the US
• Leading cause of complications such as kidney failure, non-

traumatic lower limb amputations, blindness
• Major cause of heart disease

[Slide credit: Farzad Kamalzadeh]



Economic impact
• Chronic diseases constitute a major section of 
medical care spending (direct costs):
• 75% of the $2 trillion spent annually in US medical care
• Diabetes: $1 in $3 Medicare expenditure

• (indirect costs)
• Limitations in daily activities
• Loss in productivity
• Loss in days of work

• Diabetes: $322 billion per year

[Slide credit: Farzad Kamalzadeh]



Nature of chronic diseases
Nature of Chronic Diseases

time
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[Image credit: Farzad Kamalzadeh]



Predicting disease progression in 
Alzheimer’s disease

[Image credit: Wikipedia; "Alzheimer's Disease Education and Referral Center, a service 
of the National Institute on Aging.”]



Predicting disease progression in 
Alzheimer’s disease
• Goal: Predict disease status in 6 months, 
12 months, 24 months, 36 months…

• Rather than learn several independent 
models, view as multi-task learning:
• Select a common set of biomarkers for al time 
points

• Also allow for specific set of biomarkers at 
different time points

• Incorporate temporal smoothness in models
[Zhou et al., KDD ’12]



Predicting disease progression in 
Alzheimer’s disease
• Number of patients X months after baseline 
(Alzheimer’s Disease Neuroimaging Initiative):

M06 = 6 months after baseline

[Zhou et al., KDD ’12]

Table 1: The sample size and feature dimensional-
ity of different data sets used in the experiments.
M denotes baseline MMSE features and E denotes
baseline META features.
Target Source M06 M12 M24 M36 M48 Dim.

MMSE
M 648 642 569 389 87 306

M+E 648 642 569 389 87 371

ADAS
M 648 638 564 377 85 306

M+E 648 642 569 389 87 371

Table 2: Features included in the META dataset.
In META, we include baseline cognitive scores as
features to predict the future cognitive scores. A
detailed explanation of each cognitive score and lab
test can be found at [1].

Type Features
Demographic age, years of education, gender
Genetic ApoE-ε4 information
Baseline
cognitive
scores

MMSE, ADAS-Cog, ADAS-MOD, ADAS sub-
scores, CDR, FAQ, GDS, Hachinski, Neu-
ropsychological Battery, WMS-R Logical
Memory

Lab tests RCT1, RCT11, RCT12, RCT13, RCT14,
RCT1407, RCT1408, RCT183, RCT19,
RCT20, RCT29, RCT3, RCT392, RCT4,
RCT5, RCT6, RCT8

biomarkers (M, P, C) as META (E). A detailed list of the
META data is given in Table 2. The date when the patient
performs the screening in the hospital for the first time is
called baseline, and the time point for the follow-up visits is
denoted by the duration starting from the baseline. For in-
stance, we use the notation “M06” to denote the time point
half year after the first visit. Currently ADNI has up to 48
months’ follow-up data for some patients. However, many
patients drop out from the study for many reasons (e.g. de-
ceased). In our experiments, we predict future MMSE and
ADAS-Cog scores using various measurements at the base-
line. For each target we build a prediction model using a
data set that only contains baseline MRI features (M), and
another data set that contains both MRI and META fea-
tures (M+E). In the current study, CSF and PET are not
used due to the small sample size. The MRI features are
extracted in the same way as in [43]. There are 5 types
of MRI features used: white matter parcellation volume
(Vol.WM.), cortical parcellation volume (Vol.C.), surface
area (Surf. Area), cortical thickness average (CTA), cortical
thickness standard deviation (CTStd). The sample size and
dimensionality for each time point and feature combination
is given in Table 1.

6.2 Prediction Performance
In the first experiment, we compare the proposed meth-

ods including Convex Fused Sparse Group Lasso (cFSGL)
and the two Non-Convex Fused Group Lasso: nFSGL1 in
Eq. (16) and nFSGL2 in Eq. (17) with ridge regression (Ridge)
and Temporal Group Lasso (TGL) on the prediction of MMSE
and ADAS-Cog using selected types of feature combinations,
namely M and M+E. Note that Lasso is a special case of
cFSGL when both λ2 and λ3 are set to 0. For each feature
combination, we randomly split the data into training and
testing sets using a ratio 9 : 1. The 5-fold cross validation
is used to select model parameters. For the regression per-

formance measures, we use Normalized Mean Squared Error
(nMSE) as used in the multi-task learning literature [40, 3]
and weighted correlation coefficient (R-value) as employed
in the medical literature addressing AD progression prob-
lems [10, 31, 18]. We report the mean and standard devia-
tion based on 20 iterations of experiments on different splits
of data. To investigate the effects of the fused Lasso term,
in cFSGL we fix the value of λ2 in Eq.(2) to be 20, 50, 100,
and perform cross validation to select λ1 and λ3. The three
configurations are labeled as cFSGL1, cFSGL2 and cFSGL3
respectively.

The experimental results using 90% training data on MRI
and MRI+META are presented in Table 3 and Table 4.
Overall our proposed approaches outperform Ridge and TGL,
in terms of both nMSE and correlation coefficient. We have
the following observations: 1) The fused Lasso term is effec-
tive. We witness significant improvement in cFSGL when
changing the parameter value for the fused Lasso term. 2)
The proposed cFSGL and nFSGL formulations witness sig-
nificant improvement for later time points. This may be due
to the data sparseness at later time points (see Table 1),
as the proposed sparsity-inducing models are expected to
achieve better generalization performance in this case. 3)
The non-convex nFSGL formulations are better than cFSGL
in many tasks. One practical strength of the non-convex
nFSGL formulations is that they have fewer parameters to
be estimated (only 2 parameters).

6.3 Temporal Patterns of Biomarkers
One of the strengthens of the proposed formulations is

that they facilitate the identification of temporal patterns
of biomarkers. In this experiment we study the temporal
patterns of biomarkers using longitudinal stability selection
with cFSGL and nFSGL. Note that because the sample size
at the M48 time point is too small, we perform stability
selection for M06, M12, M24, and M36 only.

The stability vectors of MRI stable features using cFSGL
nFSGL1 and nFSGL2 formulations are given in Figure 1,
Figure 2 and Figure 3 respectively. In the figures, we collec-
tively list the stable features (η = 20) at the 4 time points.
The total number of features may be less than 80 because
one feature may be identified as a stable feature at multi-
ple time points. In Figure 1(a), we observe that cortical
thickness average of left middle temporal, cortical thickness
average of left and right Entorhinal, and white matter vol-
ume of left Hippocampus are important biomarkers for all
time points, which agrees with the previous findings [43].
Cortical volume of left Entorhinal provides significant infor-
mation in later stages than in the first 6 months. Several
biomarkers including white matter volume of left and right
Amygdala, and surface area of right Bankssts provide use-
ful information only in later time points. On the contrary,
some biomarkers have a large stability score during the first
2 years after baseline screening, such as cortical thickness
average of left inferior temporal, left inferior parietal, and
cortical thickness standard deviation of left isthmus cingu-
late, right lingual, left inferior parietal, and cortical volume
of right precentral, right isthmus cingulate, and left middle
temporal cortex.

The stability vector of stable MRI features for MMSE are
given in Figure 1(b). We obtain very different patterns from
ADAS-Cog. We find that most biomarkers provide signifi-
cant information for the first 2 years and very few of them
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Convex fused sparse group lasso
• Simultaneously learn all 5 models by solving the 
following convex optimization problem:

• Squared loss:
(S accounts for labels that might be missing in a subset of 
the tasks)

• Group Lasso penalty            given by
• R =

[Zhou et al., KDD ’12]

tion problem:

min
W

L(W ) + λ1 ∥W∥1 + λ2

∥∥∥RWT
∥∥∥
1
+ λ3 ∥W∥2,1 , (2)

where ∥W∥1 is the Lasso penalty, the group Lasso penalty

∥W∥2,1 is given by
∑d

i=1

√∑t
j=1 W

2
ij ,

∥∥RWT
∥∥
1
is the fused

Lasso penalty, R is an (t − 1) × t sparse matrix in which
Ri,i = 1 and Ri,i+1 = −1, and λ1, λ2 and λ3 are regulariza-
tion parameters. The combination of Lasso and group Lasso
penalties is also known as the sparse group Lasso penalty,
which allows simultaneous joint feature selection for all tasks
and selection of a specific set of features for each task. The
fused Lasso penalty is employed to incorporate the tempo-
ral smoothness. We call the formulation in Eq. (2) “convex
fused sparse group Lasso”(cFSGL). The cFSGL formulation
involves three non-smooth terms, and is thus challenging to
solve. We propose to solve the optimization problem by the
accelerated gradient method (AGM) [27, 28]. One of the
key steps in using AGM is the computation of the proxi-
mal operator associated with the composite of non-smooth
penalties defined as follows:

π(V ) = argmin
W

1
2
∥W − V ∥2F + λ1∥W∥1

+ λ2∥RWT ∥1 + λ3∥W∥2,1. (3)

It is clear that each row of W is decoupled in Eq. (3). Thus
for obtaining the ith row wi, we only need to solve the fol-
lowing optimization problem:

π(vi) = argmin
wi

1
2
∥wi − vi∥22 + λ1∥wi∥1

+λ2∥Rwi∥1 + λ3∥wi∥2, (4)

where vi is the ith row of V . The proximal operator in
Eq. (4) is challenging to compute due to the presence of three
non-smooth terms. One of the key technical contributions
of this paper is to show that the proximal operator exhibits
a certain decomposition property, based on which we can
efficiently compute the proximal operator in two stages, as
summarized in the following theorem:

Theorem 1. Define

πFL(v) = argmin
w

1
2
∥w − v∥22 + λ1∥w∥1 + λ2∥Rw∥1 (5)

πGL(v) = argmin
w

1
2
∥w − v∥22 + λ3∥w∥2. (6)

Then the following holds:

π(v) = πGL(πFL(v)). (7)

Proof: The necessary and sufficient optimality conditions
for (4), (5), and (6) can be written as:

0 ∈ π(v)− v + λ1SGN(π(v))

+ λ2R
TSGN(Rπ(v)) + λ3∂g(π(v)), (8)

0 ∈ πFL(v)− v + λ1SGN(πFL(v))

+ λ2R
TSGN(RπFL(v)), (9)

0 ∈ πGL(πFL(v))− πFL(v) + λ3∂g(πGL(πFL(v))), (10)

where SGN(x) is a set defined in a componentwise manner
as:

(SGN(x))i =

⎧
⎨

⎩

[−1, 1] xi = 0
{1} xi > 0
{−1} xi < 0,

(11)

and

∂g(x) =

{ x
∥x∥2

x ̸= 0
{y : ∥y∥2 ≤ 1} x = 0.

(12)

It follows from (10) and (12) that: 1) if ∥πFL(v)∥2 ≤ λ3,
then πGL(πFL(v)) = 0; and 2) if ∥πFL(v)∥2 > λ3, then

πGL(πFL(v)) =
∥πFL(v)∥2−λ3

∥πFL(v)∥2
πFL(v).

It is easy to observe that, 1) if the i-th entry of πFL(v)
is zero, so is the i-th entry of πGL(πFL(v)); 2) if the i-th
entry of πFL(v) is positive (or negative), so is the i-th entry
of πGL(πFL(v)). Therefore, we have:

SGN(πFL(v)) ⊆ SGN(πGL(πFL(v))). (13)

Meanwhile, 1) if the i-th and the (i + 1)-th entries of
πFL(v) are identical, so are those of πGL(πFL(v)); 2) if the
i-th entry is larger (or smaller) than the (i+ 1)-th entry in
πFL(v), so is in πGL(πFL(v)). Therefore, we have:

SGN(RπFL(v)) ⊆ SGN(RπGL(πFL(v))). (14)

It follows from (9), (10), (13), and (14) that:

0 ∈ πGL(πFL(v))− v + λ1SGN(πGL(πFL(v)))

+ λ2R
TSGN(RπGL(πFL(v))) + λ3∂g(πGL(πFL(v))).

(15)

Since (4) has a unique solution, we can get (7) from (8)
and (15). ✷
Note that the fused Lasso signal approximator [13] in

Eq.(5) can be effectively solved using [24]. The complete
algorithm for computing the proximal operator associated
with cFSGL is given in Algorithm 1.

Algorithm 1 Proximal operator associated with the Con-
vex Fused Sparse Group Lasso (cFSGL)

Input: V ∈ Rd×t, R ∈ Rt−1×t, λ1, λ2, λ3

Output: W ∈ Rd×t

1: for i = 1 : d do
2: ui = argminw

1
2∥w − vi∥22 + λ1∥w∥1 + λ2∥Rw∥1

3: wi = argminw
1
2∥w − ui∥22 + λ3∥w∥2

4: end for

3. NON-CONVEX PROGRESSION MODELS
In cFSGL, we aim to select task-shared and task-specific

features using the sparse group Lasso penalty. However, the
decomposition property shown in Theorem 1 implies that
a simple composition of the ℓ1-norm penalty and ℓ2,1-norm
penalty may be sub-optimal. Besides, the sparsity-inducing
penalties are known to lead to biased estimates [12]. To
this end, we propose the following non-convex multi-task
regression formulation for modeling disease progression:

min
W

L(W ) + λ
d∑

i=1

√
∥wi∥1 + γ∥RWT ∥1, (16)

where the second term is the summation of the squared root
of ℓ1-norm of wi (wi is the ith row of W ), and is called the
composite ℓ(0.5,1)-norm regularization. Note that it is in fact
not a valid norm due to its non-convexity. It is known that
the ℓ0.5 penalty leads to a sparse solution, thus many of the
rows of W will be zero, i.e., the features corresponding to
the zero rows will be removed from all tasks. In addition,
for the nonzero rows, due to the use of the ℓ1 penalty for
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cognitive subscale (ADAS-Cog) [10, 31], or the volume of a
certain brain region [16], or clinically defined categories [9,
26]. When high-dimensional data, such as neuroimages (i.e.,
MRI and/or PET) are used as input features, the methods of
sequentially evaluating individual features are suboptimal.
In such cases, dimension reduction techniques such as prin-
ciple component analysis are commonly applied to project
the data into a lower-dimensional space [10]. One disadvan-
tage of using dimension reduction is that the models are no
longer interpretable. A better alternative is to use feature
selection in modeling the disease progression [31]. Most ex-
isting work focus on the prediction of target at a single time
point (baseline [31], or one year [10]); however, a joint analy-
sis of data from multiple time points is expected to improve
the performance especially when the number of subjects is
small and the number of input features is large.

To address the aforementioned challenges, multi-task learn-
ing techniques have recently been proposed to model the dis-
ease progression [39, 43]. The idea of multi-task learning is
to utilize the intrinsic relationships among multiple related
tasks in order to improve the generalization performance;
it is most effective when the number of samples for each
task is small. One of the key issues in multi-task learning
is to identify how the tasks are related and build learning
models to capture such task relatedness. One way of model-
ing multi-task relationship is to assume all tasks are related
and task models are closed to each other [11], or tasks are
clustered into groups [4, 20, 32, 41]. Alternatively, one can
assume that the tasks share a common subspace [2, 7], or
a common set of features [3, 29]. In [39], the prediction of
different types of targets such as MMSE and ADAS-Cog is
modeled as a multi-task learning problem and all models are
constrained to share a common set of features. In [43], multi-
task learning is used to model the longitudinal disease pro-
gression. Given the set of baseline features of a patient, the
prediction of the patient’s disease status at each time point
can be considered as a regression task. Multiple prediction
tasks at different time points are performed simultaneously
to capture the temporal smoothness of the prediction mod-
els across different time points. However, similar to [39], the
formulation in [43] constrains the models at all time points
to select a common set of features, thus failing to capture the
temporal patterns of the biomarkers in disease progression [6,
19]. It is thus desirable to develop formulations that allow
the simultaneous selection of a common set of biomarkers
for multiple time points and specific sets of biomarkers for
different time points.

In this paper, we propose novel multi-task learning formu-
lations for predicting the disease progression measured by
the clinical scores (ADAS-Cog and MMSE). Specifically, we
propose a convex fused sparse group Lasso (cFSGL) formu-
lation that simultaneously selects a common set of biomark-
ers for all time points and selects a specific set of biomark-
ers at different time points using the sparse group Lasso
penalty [14], and in the meantime incorporates the tempo-
ral smoothness using the fused Lasso penalty [33]. The pro-
posed formulation is, however, challenging to solve due to
the use of several non-smooth penalties including the sparse
group Lasso and fused Lasso penalties. We show that the
proximal operator associated with the optimization prob-
lem in cFSGL exhibits a certain decomposition property
and can be solved efficiently. Therefore cFSGL can be effi-
ciently solved using the accelerated gradient method [27, 28].

The convex sparsity-inducing penalties are known to intro-
duce shrinkage bias [12]. To further improve the progression
model and reduce the shrinkage bias in cFSGL, we propose
two non-convex progression formulations. We employ the
difference of convex (DC) programming technique to solve
the non-convex formulations, which iteratively solves a se-
quence of convex relaxed optimization problems. We show
that at each step the convex relaxed problems are equivalent
to reweighted sparse learning problems [5].

We have performed extensive experiments to demonstrate
the effectiveness of the proposed models using data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). We
have also performed longitudinal stability selection [43] us-
ing our proposed formulations to identify and analyze the
temporal patterns of biomarkers in disease progression.

2. A CONVEX FORMULATION OF MOD-
ELING DISEASE PROGRESSION

In the longitudinal AD study, cognitive scores of selected
patients are repeatedly measured at multiple time points.
The prediction of cognitive scores at each time point can
be considered as a regression problem, and the prediction
of cognitive scores at multiple time points can be treated as
a multi-task regression problem. By employing multi-task
regression, the temporal information among different tasks
can be incorporated into the model to improve the prediction
performance.

Consider a multi-task regression problem of t tasks with
n samples of d features. Let {x1, · · · ,xn} be the input data
at the baseline, and let {y1, · · · ,yn} be the targets, where
each xi ∈ Rd represents a sample (patient), and yi ∈ Rt is
the corresponding targets (clinical scores) at different time
points. We collectively denote X = [x1, · · · ,xn]

T ∈ Rn×d

as the data matrix, Y = [y1, · · · ,yn]
T ∈ Rn×t as the target

matrix, andW =
[
w1, · · · ,wt

]
∈ Rd×t as the weight matrix.

To consider the missing values from the target, we denote
the loss function as:

L(W ) = ∥S ⊙ (XW − Y )∥2F , (1)

where matrix S ∈ Rn×t indicates missing target values:
Si,j = 0 if the target value of sample i is missing at the
jth time point, and Si,j = 1 otherwise. The component-
wise operator ⊙ is defined as follows: Z = A ⊙ B denotes
Zi,j = Ai,jBi,j , for all i, j. The multi-task regression solves
the following optimization problem: minW L(W ) + Ω(W ),
where Ω(W ) is a regularization term that captures the task
relatedness.

In the multi-task setting for modeling disease progression,
each task is to predict a specific target (e.g., MMSE) for a
set of subjects at different time points. It is thus reason-
able to assume that the difference of the predictions between
immediate time points is small, i.e., the temporal smooth-
ness [43]. It is also well believed in the literature that a
small subset of biomarkers are related to the disease pro-
gression, and biomarkers involved at different stages may be
different [19]. To this end, we propose a novel multi-task
learning formulation for modeling disease progression which
allows simultaneous joint feature selection for multiple tasks
and task-specific feature selection, and in the meantime in-
corporates the temporal smoothness. Mathematically, the
proposed formulation solves the following convex optimiza-
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tion problem:

min
W

L(W ) + λ1 ∥W∥1 + λ2

∥∥∥RWT
∥∥∥
1
+ λ3 ∥W∥2,1 , (2)

where ∥W∥1 is the Lasso penalty, the group Lasso penalty

∥W∥2,1 is given by
∑d

i=1

√∑t
j=1 W

2
ij ,

∥∥RWT
∥∥
1
is the fused

Lasso penalty, R is an (t − 1) × t sparse matrix in which
Ri,i = 1 and Ri,i+1 = −1, and λ1, λ2 and λ3 are regulariza-
tion parameters. The combination of Lasso and group Lasso
penalties is also known as the sparse group Lasso penalty,
which allows simultaneous joint feature selection for all tasks
and selection of a specific set of features for each task. The
fused Lasso penalty is employed to incorporate the tempo-
ral smoothness. We call the formulation in Eq. (2) “convex
fused sparse group Lasso”(cFSGL). The cFSGL formulation
involves three non-smooth terms, and is thus challenging to
solve. We propose to solve the optimization problem by the
accelerated gradient method (AGM) [27, 28]. One of the
key steps in using AGM is the computation of the proxi-
mal operator associated with the composite of non-smooth
penalties defined as follows:

π(V ) = argmin
W

1
2
∥W − V ∥2F + λ1∥W∥1

+ λ2∥RWT ∥1 + λ3∥W∥2,1. (3)

It is clear that each row of W is decoupled in Eq. (3). Thus
for obtaining the ith row wi, we only need to solve the fol-
lowing optimization problem:

π(vi) = argmin
wi

1
2
∥wi − vi∥22 + λ1∥wi∥1

+λ2∥Rwi∥1 + λ3∥wi∥2, (4)

where vi is the ith row of V . The proximal operator in
Eq. (4) is challenging to compute due to the presence of three
non-smooth terms. One of the key technical contributions
of this paper is to show that the proximal operator exhibits
a certain decomposition property, based on which we can
efficiently compute the proximal operator in two stages, as
summarized in the following theorem:

Theorem 1. Define

πFL(v) = argmin
w

1
2
∥w − v∥22 + λ1∥w∥1 + λ2∥Rw∥1 (5)

πGL(v) = argmin
w

1
2
∥w − v∥22 + λ3∥w∥2. (6)

Then the following holds:

π(v) = πGL(πFL(v)). (7)

Proof: The necessary and sufficient optimality conditions
for (4), (5), and (6) can be written as:

0 ∈ π(v)− v + λ1SGN(π(v))

+ λ2R
TSGN(Rπ(v)) + λ3∂g(π(v)), (8)

0 ∈ πFL(v)− v + λ1SGN(πFL(v))

+ λ2R
TSGN(RπFL(v)), (9)

0 ∈ πGL(πFL(v))− πFL(v) + λ3∂g(πGL(πFL(v))), (10)

where SGN(x) is a set defined in a componentwise manner
as:

(SGN(x))i =

⎧
⎨

⎩

[−1, 1] xi = 0
{1} xi > 0
{−1} xi < 0,

(11)

and

∂g(x) =

{ x
∥x∥2

x ̸= 0
{y : ∥y∥2 ≤ 1} x = 0.

(12)

It follows from (10) and (12) that: 1) if ∥πFL(v)∥2 ≤ λ3,
then πGL(πFL(v)) = 0; and 2) if ∥πFL(v)∥2 > λ3, then

πGL(πFL(v)) =
∥πFL(v)∥2−λ3

∥πFL(v)∥2
πFL(v).

It is easy to observe that, 1) if the i-th entry of πFL(v)
is zero, so is the i-th entry of πGL(πFL(v)); 2) if the i-th
entry of πFL(v) is positive (or negative), so is the i-th entry
of πGL(πFL(v)). Therefore, we have:

SGN(πFL(v)) ⊆ SGN(πGL(πFL(v))). (13)

Meanwhile, 1) if the i-th and the (i + 1)-th entries of
πFL(v) are identical, so are those of πGL(πFL(v)); 2) if the
i-th entry is larger (or smaller) than the (i+ 1)-th entry in
πFL(v), so is in πGL(πFL(v)). Therefore, we have:

SGN(RπFL(v)) ⊆ SGN(RπGL(πFL(v))). (14)

It follows from (9), (10), (13), and (14) that:

0 ∈ πGL(πFL(v))− v + λ1SGN(πGL(πFL(v)))

+ λ2R
TSGN(RπGL(πFL(v))) + λ3∂g(πGL(πFL(v))).

(15)

Since (4) has a unique solution, we can get (7) from (8)
and (15). ✷
Note that the fused Lasso signal approximator [13] in

Eq.(5) can be effectively solved using [24]. The complete
algorithm for computing the proximal operator associated
with cFSGL is given in Algorithm 1.

Algorithm 1 Proximal operator associated with the Con-
vex Fused Sparse Group Lasso (cFSGL)

Input: V ∈ Rd×t, R ∈ Rt−1×t, λ1, λ2, λ3

Output: W ∈ Rd×t

1: for i = 1 : d do
2: ui = argminw

1
2∥w − vi∥22 + λ1∥w∥1 + λ2∥Rw∥1

3: wi = argminw
1
2∥w − ui∥22 + λ3∥w∥2

4: end for

3. NON-CONVEX PROGRESSION MODELS
In cFSGL, we aim to select task-shared and task-specific

features using the sparse group Lasso penalty. However, the
decomposition property shown in Theorem 1 implies that
a simple composition of the ℓ1-norm penalty and ℓ2,1-norm
penalty may be sub-optimal. Besides, the sparsity-inducing
penalties are known to lead to biased estimates [12]. To
this end, we propose the following non-convex multi-task
regression formulation for modeling disease progression:

min
W

L(W ) + λ
d∑

i=1

√
∥wi∥1 + γ∥RWT ∥1, (16)

where the second term is the summation of the squared root
of ℓ1-norm of wi (wi is the ith row of W ), and is called the
composite ℓ(0.5,1)-norm regularization. Note that it is in fact
not a valid norm due to its non-convexity. It is known that
the ℓ0.5 penalty leads to a sparse solution, thus many of the
rows of W will be zero, i.e., the features corresponding to
the zero rows will be removed from all tasks. In addition,
for the nonzero rows, due to the use of the ℓ1 penalty for
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tion problem:

min
W

L(W ) + λ1 ∥W∥1 + λ2

∥∥∥RWT
∥∥∥
1
+ λ3 ∥W∥2,1 , (2)

where ∥W∥1 is the Lasso penalty, the group Lasso penalty

∥W∥2,1 is given by
∑d

i=1

√∑t
j=1 W

2
ij ,

∥∥RWT
∥∥
1
is the fused

Lasso penalty, R is an (t − 1) × t sparse matrix in which
Ri,i = 1 and Ri,i+1 = −1, and λ1, λ2 and λ3 are regulariza-
tion parameters. The combination of Lasso and group Lasso
penalties is also known as the sparse group Lasso penalty,
which allows simultaneous joint feature selection for all tasks
and selection of a specific set of features for each task. The
fused Lasso penalty is employed to incorporate the tempo-
ral smoothness. We call the formulation in Eq. (2) “convex
fused sparse group Lasso”(cFSGL). The cFSGL formulation
involves three non-smooth terms, and is thus challenging to
solve. We propose to solve the optimization problem by the
accelerated gradient method (AGM) [27, 28]. One of the
key steps in using AGM is the computation of the proxi-
mal operator associated with the composite of non-smooth
penalties defined as follows:

π(V ) = argmin
W

1
2
∥W − V ∥2F + λ1∥W∥1

+ λ2∥RWT ∥1 + λ3∥W∥2,1. (3)

It is clear that each row of W is decoupled in Eq. (3). Thus
for obtaining the ith row wi, we only need to solve the fol-
lowing optimization problem:

π(vi) = argmin
wi

1
2
∥wi − vi∥22 + λ1∥wi∥1

+λ2∥Rwi∥1 + λ3∥wi∥2, (4)

where vi is the ith row of V . The proximal operator in
Eq. (4) is challenging to compute due to the presence of three
non-smooth terms. One of the key technical contributions
of this paper is to show that the proximal operator exhibits
a certain decomposition property, based on which we can
efficiently compute the proximal operator in two stages, as
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Theorem 1. Define

πFL(v) = argmin
w

1
2
∥w − v∥22 + λ1∥w∥1 + λ2∥Rw∥1 (5)

πGL(v) = argmin
w

1
2
∥w − v∥22 + λ3∥w∥2. (6)

Then the following holds:

π(v) = πGL(πFL(v)). (7)

Proof: The necessary and sufficient optimality conditions
for (4), (5), and (6) can be written as:

0 ∈ π(v)− v + λ1SGN(π(v))

+ λ2R
TSGN(Rπ(v)) + λ3∂g(π(v)), (8)

0 ∈ πFL(v)− v + λ1SGN(πFL(v))

+ λ2R
TSGN(RπFL(v)), (9)

0 ∈ πGL(πFL(v))− πFL(v) + λ3∂g(πGL(πFL(v))), (10)

where SGN(x) is a set defined in a componentwise manner
as:

(SGN(x))i =

⎧
⎨

⎩

[−1, 1] xi = 0
{1} xi > 0
{−1} xi < 0,

(11)

and

∂g(x) =

{ x
∥x∥2

x ̸= 0
{y : ∥y∥2 ≤ 1} x = 0.

(12)
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then πGL(πFL(v)) = 0; and 2) if ∥πFL(v)∥2 > λ3, then

πGL(πFL(v)) =
∥πFL(v)∥2−λ3

∥πFL(v)∥2
πFL(v).

It is easy to observe that, 1) if the i-th entry of πFL(v)
is zero, so is the i-th entry of πGL(πFL(v)); 2) if the i-th
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0 ∈ πGL(πFL(v))− v + λ1SGN(πGL(πFL(v)))

+ λ2R
TSGN(RπGL(πFL(v))) + λ3∂g(πGL(πFL(v))).

(15)

Since (4) has a unique solution, we can get (7) from (8)
and (15). ✷
Note that the fused Lasso signal approximator [13] in

Eq.(5) can be effectively solved using [24]. The complete
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1
2∥w − vi∥22 + λ1∥w∥1 + λ2∥Rw∥1
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1
2∥w − ui∥22 + λ3∥w∥2
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Outcome 
(label) 
derived from 
clinical 
score:



Predicting disease progression in 
Alzheimer’s disease
• Features considered:

• 306 in total

[Zhou et al., KDD ’12]

Table 1: The sample size and feature dimensional-
ity of different data sets used in the experiments.
M denotes baseline MMSE features and E denotes
baseline META features.
Target Source M06 M12 M24 M36 M48 Dim.

MMSE
M 648 642 569 389 87 306

M+E 648 642 569 389 87 371

ADAS
M 648 638 564 377 85 306

M+E 648 642 569 389 87 371

Table 2: Features included in the META dataset.
In META, we include baseline cognitive scores as
features to predict the future cognitive scores. A
detailed explanation of each cognitive score and lab
test can be found at [1].

Type Features
Demographic age, years of education, gender
Genetic ApoE-ε4 information
Baseline
cognitive
scores

MMSE, ADAS-Cog, ADAS-MOD, ADAS sub-
scores, CDR, FAQ, GDS, Hachinski, Neu-
ropsychological Battery, WMS-R Logical
Memory

Lab tests RCT1, RCT11, RCT12, RCT13, RCT14,
RCT1407, RCT1408, RCT183, RCT19,
RCT20, RCT29, RCT3, RCT392, RCT4,
RCT5, RCT6, RCT8

biomarkers (M, P, C) as META (E). A detailed list of the
META data is given in Table 2. The date when the patient
performs the screening in the hospital for the first time is
called baseline, and the time point for the follow-up visits is
denoted by the duration starting from the baseline. For in-
stance, we use the notation “M06” to denote the time point
half year after the first visit. Currently ADNI has up to 48
months’ follow-up data for some patients. However, many
patients drop out from the study for many reasons (e.g. de-
ceased). In our experiments, we predict future MMSE and
ADAS-Cog scores using various measurements at the base-
line. For each target we build a prediction model using a
data set that only contains baseline MRI features (M), and
another data set that contains both MRI and META fea-
tures (M+E). In the current study, CSF and PET are not
used due to the small sample size. The MRI features are
extracted in the same way as in [43]. There are 5 types
of MRI features used: white matter parcellation volume
(Vol.WM.), cortical parcellation volume (Vol.C.), surface
area (Surf. Area), cortical thickness average (CTA), cortical
thickness standard deviation (CTStd). The sample size and
dimensionality for each time point and feature combination
is given in Table 1.

6.2 Prediction Performance
In the first experiment, we compare the proposed meth-

ods including Convex Fused Sparse Group Lasso (cFSGL)
and the two Non-Convex Fused Group Lasso: nFSGL1 in
Eq. (16) and nFSGL2 in Eq. (17) with ridge regression (Ridge)
and Temporal Group Lasso (TGL) on the prediction of MMSE
and ADAS-Cog using selected types of feature combinations,
namely M and M+E. Note that Lasso is a special case of
cFSGL when both λ2 and λ3 are set to 0. For each feature
combination, we randomly split the data into training and
testing sets using a ratio 9 : 1. The 5-fold cross validation
is used to select model parameters. For the regression per-

formance measures, we use Normalized Mean Squared Error
(nMSE) as used in the multi-task learning literature [40, 3]
and weighted correlation coefficient (R-value) as employed
in the medical literature addressing AD progression prob-
lems [10, 31, 18]. We report the mean and standard devia-
tion based on 20 iterations of experiments on different splits
of data. To investigate the effects of the fused Lasso term,
in cFSGL we fix the value of λ2 in Eq.(2) to be 20, 50, 100,
and perform cross validation to select λ1 and λ3. The three
configurations are labeled as cFSGL1, cFSGL2 and cFSGL3
respectively.
The experimental results using 90% training data on MRI

and MRI+META are presented in Table 3 and Table 4.
Overall our proposed approaches outperform Ridge and TGL,
in terms of both nMSE and correlation coefficient. We have
the following observations: 1) The fused Lasso term is effec-
tive. We witness significant improvement in cFSGL when
changing the parameter value for the fused Lasso term. 2)
The proposed cFSGL and nFSGL formulations witness sig-
nificant improvement for later time points. This may be due
to the data sparseness at later time points (see Table 1),
as the proposed sparsity-inducing models are expected to
achieve better generalization performance in this case. 3)
The non-convex nFSGL formulations are better than cFSGL
in many tasks. One practical strength of the non-convex
nFSGL formulations is that they have fewer parameters to
be estimated (only 2 parameters).

6.3 Temporal Patterns of Biomarkers
One of the strengthens of the proposed formulations is

that they facilitate the identification of temporal patterns
of biomarkers. In this experiment we study the temporal
patterns of biomarkers using longitudinal stability selection
with cFSGL and nFSGL. Note that because the sample size
at the M48 time point is too small, we perform stability
selection for M06, M12, M24, and M36 only.
The stability vectors of MRI stable features using cFSGL

nFSGL1 and nFSGL2 formulations are given in Figure 1,
Figure 2 and Figure 3 respectively. In the figures, we collec-
tively list the stable features (η = 20) at the 4 time points.
The total number of features may be less than 80 because
one feature may be identified as a stable feature at multi-
ple time points. In Figure 1(a), we observe that cortical
thickness average of left middle temporal, cortical thickness
average of left and right Entorhinal, and white matter vol-
ume of left Hippocampus are important biomarkers for all
time points, which agrees with the previous findings [43].
Cortical volume of left Entorhinal provides significant infor-
mation in later stages than in the first 6 months. Several
biomarkers including white matter volume of left and right
Amygdala, and surface area of right Bankssts provide use-
ful information only in later time points. On the contrary,
some biomarkers have a large stability score during the first
2 years after baseline screening, such as cortical thickness
average of left inferior temporal, left inferior parietal, and
cortical thickness standard deviation of left isthmus cingu-
late, right lingual, left inferior parietal, and cortical volume
of right precentral, right isthmus cingulate, and left middle
temporal cortex.
The stability vector of stable MRI features for MMSE are

given in Figure 1(b). We obtain very different patterns from
ADAS-Cog. We find that most biomarkers provide signifi-
cant information for the first 2 years and very few of them
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Outline of today’s class
1. Multi-task learning of (measurable) disease progression 

• Application to Alzheimer’s disease (Zhou et al., KDD ‘12)

2. Discovering fine-grained disease states using hidden 
Markov models

• Application to Alzheimer’s disease (Sukkar et al., IEEE EMBS 
’12)

3. Unsupervised learning of (grounded, multi-dimensional) 
disease progression models

• Application to chronic obstructive pulmonary disease (Wang 
et al., KDD ‘14)



Disease progression

[Image credit: Farzad Kamalzadeh]
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Markov models for disease progression

[Bennet et al, Estimates of the Cost-Effectiveness of a Single Course of Interferon-α2b in 
Patients with Histologically Mild Chronic Hepatitis C, Annals of Internal Medicine, 1997]

HCC = hepatocellular carcinoma



Estimating Markov models when there is 
missing data: use Baum–Welch or EM

[Image credit: Farzad Kamalzadeh]
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What if staging system is unknown, or 
incomplete?
• 3 currently defined clinical stages of Alzheimer’s 
disease:
• Normal
• MCI (Mild Cognitive Impairment)
• AD (Alzheimer’s disease)

• But, are there really just 3 stages?
• Goal: using clinical data, learn a new 6 stage 
system

• How does this relate to disease subtyping as 
discussed last week?

[Sukkar et al., IEEE EMBS ‘12]



Alzheimer’s disease neuroimaging 
dataset
• Alzheimer’s disease neuroimaging dataset:

• 819 subjects
• 229 “Normal” at beginning, 398 “MCI”, and 192 “AD”
• Followed for up to 36 months with visits every 6 months

[Sukkar et al., IEEE EMBS ‘12]

  

Cross validation is performed by processing the testing 
set with the trained HMM. The Viterbi algorithm is used to 
determine the optimal maximum likelihood state sequence 
for each subject given his/her biomarker measurements at 
each visit. To evaluate the model for its performance in 
modeling disease progression, the HMM state sequences 
were correlated with the subjects’ actual clinical diagnosis at 
the corresponding visit. As a result, we have, for each 
subject, an HMM state sequence and a corresponding 
sequence of clinical diagnoses. Using this data, we then 
compute the probability of a specific diagnosis given an 
HMM state, P[Diagnosis|State]. Figure 3 shows two plots of 
these probabilities for the three classes of diagnoses given the 
HMM states computed over the testing and training set, 
respectively. We can see that “Normal” diagnosis dominates 
in early (i.e., low index) states and diminishes with increasing 
state index, while “AD” diagnosis behaves in the opposite 
way monotonically increasing with state index. The “MCI” 
diagnosis, dominates in states 4 and 3 for the testing and 
training set, respectively, and diminishes as we move away 
from these middle states. Given that the clinical diagnoses are 
progressing stages of the disease, we can interpret these 
results as evidence that the states of the HMM represent 
varying and more granular stages in disease progression. To 
gain more insight into the performance of the HMM in 
modeling disease progression, we used a measurement called 
the Clinical Dementia Rating Scale Sum of Boxes (CDR-
SB). The CDR-SB score is derived from patient interviews 
and mental status examination and is included in the ADNI 
dataset for each visit. The score ranges from 0-8 where 
higher scores indicate higher dementia impairment and 
correlates with Alzheimer’s disease progression [11].  To 
relate the CDR-SB score to the trained HMM, we determined 
a CDR-SB value for each state in the model.  We did so, by 
processing the training set past the model and determining 
the optimal state sequence for all the subjects in that set. 
Then, we computed the average CDR-SB score over all visits 
that dwelled in a given HMM state given the optimal state 
sequence for each subject. Specifically, we compute,   , the 
CDR-SB score for state   over the training set, as follows: 
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computed over the training set as Equation (1) indicates, and 
the other computed over the testing set. This figure clearly 
shows that for both the training and testing sets there is a 
monotonic relationship between the state CDR-SB score and 
the state index indicating that the states of the model correlate 
with disease progression.  

To see how each individual subject progresses through 
the model relative to the CDR-SB scores of the subject’s 
visit, we compute the root mean square deviation between the 
sequence of    values along the optimal state sequence for a 
given testing set subject and the actual CDR-SB score of each 
visit for the subject, as follows: 
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where   is the total number of subjects in the testing set,    is 
the number of visits for subject  , and    is the root mean 
squared deviation for subject  .  Figure 5 shows a histogram 
of    computed across all subjects in the testing set. Although 
the majority of the subjects exhibit low deviations, 25% of 
the subjects have deviations greater than 2. This suggests that 

 
Figure 2. Scatter plot of the normalized hippocampus 
volume versus VBSI for Normal and AD subjects. 

 

 
Figure 3. Probability of clinical diagnosis over all visits 
that the optimal state sequence assigned to a given 
state, (a) Testing set (b) Training set. 
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Brain ventricular and 
hippocampus 
volumes, as measured 
by MRI, correlated 
with AD diagnosis:



HMM feature vector
• We observe four features at each time point:

• Ventricular boundary shift integral (VBSI),
• Hippocampus volume normalized by the skull volume,
• Change in VBSI between two sucessive visits
• Change in normalized hippocampus volume between 

two successive visits

• (A modern version of this study would use a deep 
generative model directly on the images)

[Sukkar et al., IEEE EMBS ‘12]



Results
• Each subject regardless of clinical diagnosis at 
any of his/her visits allowed to enter HMM at any 
state, end at any state

• HMM restricted to only allow transitions between 
neighboring states, e.g. 1<->2, 2<->3, …

[Sukkar et al., IEEE EMBS ‘12]



Results

[Sukkar et al., IEEE EMBS ‘12]
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Results

[Sukkar et al., IEEE EMBS ‘12]
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while the results of Figure 4 give evidence of disease 
progression as a function of state index with a semi-linear 
relationship between state indexes and the mean CDR-SB 
score,   , Figure 5 results show that, for some subjects in the 
cross validation set, the HMM provides a different disease 
progression path than that indicated by the CDR-SB scores. 
Such a different path may provide more revealing aspects of 
the progression of the disease. To gain more insight into how 
the progression paths of the HMM and CDR-SB compare, 
Figure 6 shows the Root Mean Squared Deviation computed 
across all testing set subjects visits that dwelled in a 
particular HMM state according to the optimal HMM state 
sequence. We see here that the deviation at the low HMM 
state indexes are lower than at the high state indexes. This 
suggests that at the normal and early stages of the disease the 
HMM and the CDR-SB indicate similar progression path. 
However, as the disease progresses, the HMM provides an 
increasingly different disease progression path which can 
give a different perspective on the progression of the disease. 

VI. CONCLUSIONS 

We presented a model for disease progression based on a 
Hidden Markov Model framework. Using the ADNI data set 
biomarkers for Alzheimer’s disease, we trained an HMM in 
an unsupervised way with the goal of uncovering more 
granular stages in disease progression. We showed that the 
trained HMM is able to model disease progression more 
granularly than the currently defined clinical stages.  
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Figure 4. Mean CDR-SB computed over all visits that 
dwelled in a given HMM state versus HMM state index. 
 

 
Figure 5. Histogram of subject CDR-SB Root Mean 
Squared Deviation,   , computed over the testing set. 
 

 
Figure 6. HMM state CDR-SB Root Mean Squared 
Deviation computed over all test set subjects visits that 
dwelled in a given HMM state versus HMM state index. 
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Outline of today’s class
1. Multi-task learning of (measurable) disease progression 

• Application to Alzheimer’s disease (Zhou et al., KDD ‘12)

2. Discovering fine-grained disease states using hidden 
Markov models

• Application to Alzheimer’s disease (Sukkar et al., IEEE EMBS 
’12)

3. Unsupervised learning of (grounded, multi-dimensional) 
disease progression models

• Application to chronic obstructive pulmonary disease (Wang 
et al., KDD ‘14)



Goal: Learn from Electronic Health Records (EHR)

PID DAY_ID CLINICAL_EVENT ICD9_LONGNAME
000000 74053 305.1 Tobacco	Use	Disorder
000000 74053 496 Chronic	Airway	Obstruction,	Not	Elsewhere	Classified
000000 74053 733 Osteoporosis,	Unspecified
000000 74053 724.2 Lumbago
000000 74091 733 Osteoporosis,	Unspecified
000000 74148 733 Osteoporosis,	Unspecified
000000 74148 782.3 Edema
000000 74148 780.79 Other	Malaise	And	Fatigue

Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet. 2012 May 2;13(6):395-405.



The big picture: generative model for patient data

Markov	Jump	Process

Progression	Stages

K phenotypes,	each	
with	its	own	Markov	

chain

Observations

[Wang, Sontag, Wang, “Unsupervised learning of Disease Progression Models”, KDD 2014]

Diabetes

Depression

Lung cancer



Disease stage on
Feb. ‘12?

Disease stage on
Jun. ‘12?

Disease stage on
Mar. ‘11?

Disease stage on
Apr. ‘11?

Model for patient’s disease progression across time

• A continuous-time Markov process with irregular discrete-time 
observations

• The transition probability is defined by an intensity matrix and the time 
interval:

Matrix Q:   Parameters to learn

S1 S2 ST-1 ST……

S(τ)Underlying
disease state

� = 34 days



Model for data at single point in time:
Noisy-OR network

Previously used for medical diagnosis, e.g. QMR-DT 
(Shwe et al. ’91)



Model for data at single point in time:
Noisy-OR network

Previously used for medical diagnosis, e.g. QMR-DT 
(Shwe et al. ’91)

Comorbidities / Phenotypes
(hidden)

“Everything else”
(always on)

Diagnosis codes,
medications, etc.

Clinical findings
(observable)

Diabetes Depression Lung cancer

205.02 296.3 Methotrexate

All binary variables
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Model for data at single point in time:
Noisy-OR network

Previously used for medical diagnosis, e.g. QMR-DT 
(Shwe et al. ’91)

Comorbidities / Phenotypes
(hidden)

“Everything else”
(always on)

Clinical findings
(observable)

Diabetes Depression Lung cancer

205.02 296.3 Methotrexate

We also learn 
which edges exist

Associated with 
each edge is a 
failure probability



• An anchor is a finding that 
can only be caused by a 
single comorbidity

• We can specify one or 
more anchors for each 
hidden variable

• Use anchors findings to 
enable injection of domain 
expertise

Anchored noisy-OR network

Diabetes

205.02

Y. Halpern, YD Choi, S. Horng, D. Sontag. Using Anchors to Estimate Clinical State without Labeled Data. To appear in 
the American Medical Informatics Association (AMIA) Annual Symposium, Nov. 2014



Has diabetes
Feb. ‘12?

Has diabetes
Jun. 7, ‘12?

Has diabetes
Mar. ‘11?

Has diabetes
Apr. ‘11?

Model of comorbidities across time

S1 S2 ST-1 ST

…
…

S(τ)

X1,1 X1,2 X1,T-1 X1,T
…
…

• Presence of comorbidities depends on value at previous time step 
and on disease stage

• Later stages of disease = more likely to develop comorbidities

• Once patient has a comorbidity, likely to always have it



Experimental evaluation

• We create a COPD cohort of 3,705 patients:
• At least one COPD-related diagnosis code

• At least one COPD-related drug

• Removed patients with too few records
• Clinical findings derived from 264 diagnosis codes

• Removed ICD-9 codes that only occurred to a small number of 
patients

• Combined visits into 3-month time windows
• 34,976 visits, 189,815 positive findings



Inference
• Outer loop

• EM
• Algorithm to estimate the Markov Jump Process is 

borrowed form recent literature in physics 

• Inner loop
• Gibbs sampler used for approximate inference
• We perform block sampling of the Markov chains, improving 

the mixing time of the Gibbs sampler

P. Metzner, I. Horenko, and C. Schutte. Generator estimation of markov jump processes based on 
incomplete observations nonequidistant in time. Physical Review E, 76(6):066702, 2007.



Implementation and optimization
• Implemented in Python

• Initially, each Gibbs sampling update took hours

• Parallelization
• Parallelize over patients and findings
• Almost linear speedup

• Computational tricks
• Each Gibbs update can be performed in time linear in the number of 

positive findings
• Caching
• Pre-compute sufficient statistics

• After these, each update takes < 3 minutes (using 24 cores)



Customizations for COPD
• Enforce monotonic stage progression, i.e. St+1 ≥ St:

• Enforce monotonicity in distributions of comorbidities in first time step, 
e.g. Pr(Xj,1 | S1 = 2) ≥ Pr(Xj,1 | S1 = 1) 
• To do this, we solve a tiny convex optimization problem within EM

• Enforce that transitions in X can only happen at the same time as 
transitions in S

• Edge weights given a Beta(0.1, 1) prior to encourage sparsity

S1 S2 ST-1 ST……

S(τ)



Specifying the latent variables
• We provide anchors for each of the comorbidities
that we want to model:

• Can be viewed as a type of weak supervision, 
using clinical domain knowledge

• Without these, the results are less interpretable



Which edges are learned?

Comorbidities / Phenotypes
(hidden)

“Everything else”
(always on)

Clinical 
findings

(observable)

Diabetes Depression Lung cancer

205.02 296.3 Methotrexate



*585.3 0.20 Chronic Kidney Disease, Stage Iii (Moderate)
285.9 0.15 Anemia, Unspecified

*585.9 0.10 Chronic Kidney Disease, Unspecified
599.0 0.08 Urinary Tract Infection, Site Not Specified

*585.4 0.08 Chronic Kidney Disease, Stage Iv (Severe)
*584.9 0.07 Acute Renal Failure, Unspecified
*586 0.07 Renal Failure, Unspecified
782.3 0.06 Edema

*585.6 0.05 End Stage Renal Disease
593.9 0.04 Unspecified Disorder Of Kidney And Ureter
272.4 0.04 Other And Unspecified Hyperlipidemia
272.2 0.03 Mixed Hyperlipidemia

Diagnosis code Weight

Edges learned for kidney disease



*585.3 0.20 Chronic Kidney Disease, Stage Iii (Moderate)
285.9 0.15 Anemia, Unspecified

*585.9 0.10 Chronic Kidney Disease, Unspecified
599.0 0.08 Urinary Tract Infection, Site Not Specified

*585.4 0.08 Chronic Kidney Disease, Stage Iv (Severe)
*584.9 0.07 Acute Renal Failure, Unspecified
*586 0.07 Renal Failure, Unspecified
782.3 0.06 Edema

*585.6 0.05 End Stage Renal Disease
593.9 0.04 Unspecified Disorder Of Kidney And Ureter
272.4 0.04 Other And Unspecified Hyperlipidemia
272.2 0.03 Mixed Hyperlipidemia

Diagnosis code Weight

Edges learned for kidney disease



*585.3 0.20 Chronic Kidney Disease, Stage Iii (Moderate)
285.9 0.15 Anemia, Unspecified

*585.9 0.10 Chronic Kidney Disease, Unspecified
599.0 0.08 Urinary Tract Infection, Site Not Specified

*585.4 0.08 Chronic Kidney Disease, Stage Iv (Severe)
*584.9 0.07 Acute Renal Failure, Unspecified
*586 0.07 Renal Failure, Unspecified
782.3 0.06 Edema

*585.6 0.05 End Stage Renal Disease
593.9 0.04 Unspecified Disorder Of Kidney And Ureter
272.4 0.04 Other And Unspecified Hyperlipidemia
272.2 0.03 Mixed Hyperlipidemia

Diagnosis code Weight

Edges learned for kidney disease
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like eggs, fish and liver. Your 
body needs these important 
minerals and vitamins to help 
make red blood cells.

■   A poor diet

 You can become anemic 
if you do not eat healthy 
foods with enough vitamin 
B12, folic acid and iron. Your 
body needs these important 
vitamins and minerals to help 
make red blood cells.

Before starting anemia treatment, 
your doctor will order tests to find 
the exact cause of your anemia.

Why do people with kidney  
disease get anemia?

Your kidneys make an important 
hormone called erythropoietin 
(EPO). Hormones are secretions 
that your body makes to help 
your body work and keep you 
healthy. EPO tells your body to 
make red blood cells. When you 
have kidney disease, your kidneys 
cannot make enough EPO. This 
causes your red blood cell count 
to drop and anemia to develop. 



*162.9 0.60 Malignant Neoplasm Of Bronchus And Lung
518.89 0.15 Other Diseases Of Lung, Not Elsewhere Classified

*162.8 0.15 Malignant Neoplasm Of Other Parts Of Lung
*162.3 0.15 Malignant Neoplasm Of Upper Lobe, Lung
786.6 0.15 Swelling, Mass, Or Lump In Chest
793.1 0.10 Abnormal Findings On Radiological Exam Of Lung
786.09 0.07 Other Respiratory Abnormalities

*162.5 0.06 Malignant Neoplasm Of Lower Lobe, Lung
*162.2 0.04 Malignant Neoplasm Of Main Bronchus
702.0 0.03 Actinic Keratosis
511.9 0.03 Unspecified Pleural Effusion

*162.4 0.03 Malignant Neoplasm Of Middle Lobe, Lung

Diagnosis code Weight

Edges learned for lung cancer



*162.9 0.60 Malignant Neoplasm Of Bronchus And Lung
518.89 0.15 Other Diseases Of Lung, Not Elsewhere Classified

*162.8 0.15 Malignant Neoplasm Of Other Parts Of Lung
*162.3 0.15 Malignant Neoplasm Of Upper Lobe, Lung
786.6 0.15 Swelling, Mass, Or Lump In Chest
793.1 0.10 Abnormal Findings On Radiological Exam Of Lung
786.09 0.07 Other Respiratory Abnormalities

*162.5 0.06 Malignant Neoplasm Of Lower Lobe, Lung
*162.2 0.04 Malignant Neoplasm Of Main Bronchus
702.0 0.03 Actinic Keratosis
511.9 0.03 Unspecified Pleural Effusion

*162.4 0.03 Malignant Neoplasm Of Middle Lobe, Lung

Diagnosis code Weight

Edges learned for lung cancer



*162.9 0.60 Malignant Neoplasm Of Bronchus And Lung
518.89 0.15 Other Diseases Of Lung, Not Elsewhere Classified

*162.8 0.15 Malignant Neoplasm Of Other Parts Of Lung
*162.3 0.15 Malignant Neoplasm Of Upper Lobe, Lung
786.6 0.15 Swelling, Mass, Or Lump In Chest
793.1 0.10 Abnormal Findings On Radiological Exam Of Lung
786.09 0.07 Other Respiratory Abnormalities

*162.5 0.06 Malignant Neoplasm Of Lower Lobe, Lung
*162.2 0.04 Malignant Neoplasm Of Main Bronchus
702.0 0.03 Actinic Keratosis
511.9 0.03 Unspecified Pleural Effusion

*162.4 0.03 Malignant Neoplasm Of Middle Lobe, Lung

Diagnosis code Weight

Edges learned for lung cancer



*486 0.30 Pneumonia, Organism Unspecified
786.05 0.10 Shortness Of Breath
786.09 0.10 Other Respiratory Abnormalities
786.2 0.10 Cough
793.1 0.06 Abnormal Findings On Radiological Exam Of Lung
285.9 0.05 Anemia, Unspecified
518.89 0.05 Other Diseases Of Lung, Not Elsewhere Classified
466.0 0.05 Acute Bronchitis
799.02 0.05 Hypoxemia
599.0 0.04 Urinary Tract Infection, Site Not Specified
V58.61 0.04 Long-Term (Current) Use Of Anticoagulants
786.50 0.04 Chest Pain, Unspecified

Diagnosis code Weight

Edges learned for lung infection



Progression of a single patient

2010 2013



Prevalence of comorbidities across stages 
(Kidney disease)
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Prevalence of comorbidities across stages
(Diabetes & Musculoskeletal disorders)
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Prevalence of comorbidities across stages
(Cardiovascular disease)
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Prevalence of comorbidities across stages
(Cardiovascular disease)
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