Machine Learning for Healthcare 6.S897, HST.S53

Lecture 2: Risk stratification

Prof. David Sontag MIT EECS, CSAIL, IMES

(Thanks to Narges Razavian for some of the slides)

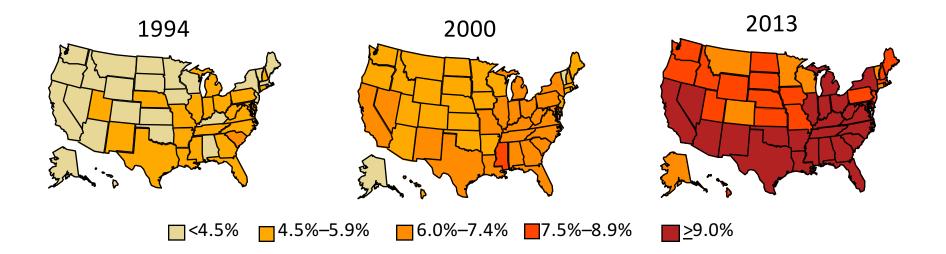
Outline for today's class

- 1. Case study for risk stratification: Early detection of Type 2 diabetes
- 2. Framing as supervised learning problem
- 3. Deriving labels
- 4. Evaluating risk stratification algorithms
- 5. Non-stationarity

Outline for today's class

- 1. Case study for risk stratification: Early detection of Type 2 diabetes
- 2. Framing as supervised learning problem
- 3. Deriving labels
- 4. Evaluating risk stratification algorithms
- 5. Non-stationarity

Type 2 Diabetes: A Major public health challenge



\$245 billion: Total costs of diagnosed diabetes in the United States in 2012\$831 billion: Total fiscal year federal budget for healthcare in the UnitedStates in 2014

Type 2 Diabetes Can Be Prevented *

Requirement for successful large scale prevention program

- 1. Detect/reach truly at risk population
- 2. Improve the interventions
- 3. Lower the cost of intervention

^{*} Diabetes Prevention Program Research Group. "Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin." The New England journal of medicine 346.6 (2002): 393.

Type 2 Diabetes Can Be Prevented *

Requirement for successful large scale prevention program

1. Detect/reach truly at risk population

2. Improve the interventions

3. Lower the cost of intervention

* Diabetes Prevention Program Research Group. "Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin." The New England journal of medicine 346.6 (2002): 393.

Traditional Risk Prediction Models

0 p.

2 n.

3 p.

4 p.

0 p.

1 p.

3 p.

0 n.

3 p.

4 p.

0 p.

2 p.

0 p.

1 p.

- Successful Examples
 - ARIC
 - KORA
 - FRAMINGHAM
 - AUSDRISC
 - FINDRISC
 - San Antonio Model
- Easy to ask/measure in the office, or for patients to do online
- Simple model: can calculate scores by hand

TYPE 2 DIABETES RISK ASSESSMENT FORM Circle the right alternative and add up your points. 1. Age 6. Have you ever taken anti-hypertensive Under 45 years medication regularly? 45-54 years 55-64 years No 0 p. Over 64 years 2 p. Yes 2. Body-mass index 7. Have you ever been found to have high (See reverse of form) blood glucose (e.g. in a health examination, Lower than 25kg/m² during an illness, during pregnancy)? 25-30 kg/m² Higher than 30 kg/m² No 0 p. 5 p. Yes 3. Waist circumference measured below the ribs (usually at the level of the navel) 8. Have any of the members of your WOMEN MEN immediate family or other relatives been Less than 94cm Less than 80cm diagnosed with diabetes (type 1 or type 2)? 94-102 cm 80-88cm More than 102 cm More than 88cm 0 p. No Yes: grandparent, aunt, uncle or first 3 p. cousin (but no own parent, brother, sister or child) Yes: parent, brother, sister or own child Total risk score The risk of developing type 2 diabetes within 10 years is Lower than 7 Low: estimated 1 in 100 will develop disease 4. Do you usually have daily at least 30 7-11 Slightly elevated: minutes of physical activity at work and/or estimated 1 in 25 during leisure time (including normal daily will develop disease activity)? 12 - 14Moderate: estimated 1 in 6 Yes will develop disease No 15 - 20High: estimated 1 in 3 will develop disease 5. How often do you eat vegetables, fruit'or Higher Very high: berries? than 20 estimated 1 in 2 Every day will develop disease Not every day Please turn over

Famiah Diabetes Association

Test designed by Professor Jaakin Tuomilohto, Department of Public Health, University of Helsinki, and Jaana Lindström, MPS, National Public Health Institute.

Challenges of Traditional Risk Prediction Models

- A screening step needs to be done for every member in the population
 - Either in the physician's office or as surveys
 - Costly and time-consuming
 - Infeasible for regular screening for millions of individuals
- Models not easy to adapt to multiple surrogates, when a variable is missing
 - Discovery of surrogates not straightforward

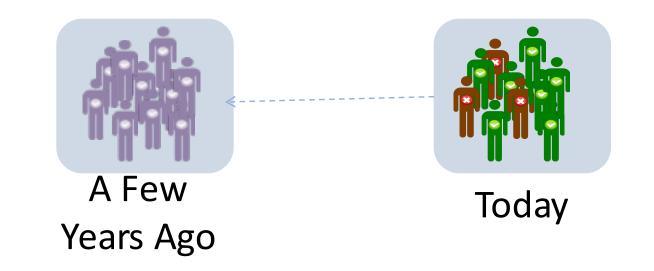
Population-Level Risk Stratification

- Key idea: Use readily available administrative, utilization, and clinical data
- Machine learning will find surrogates for risk factors that would otherwise be missing
- Perform risk stratification at the population level – millions of patients

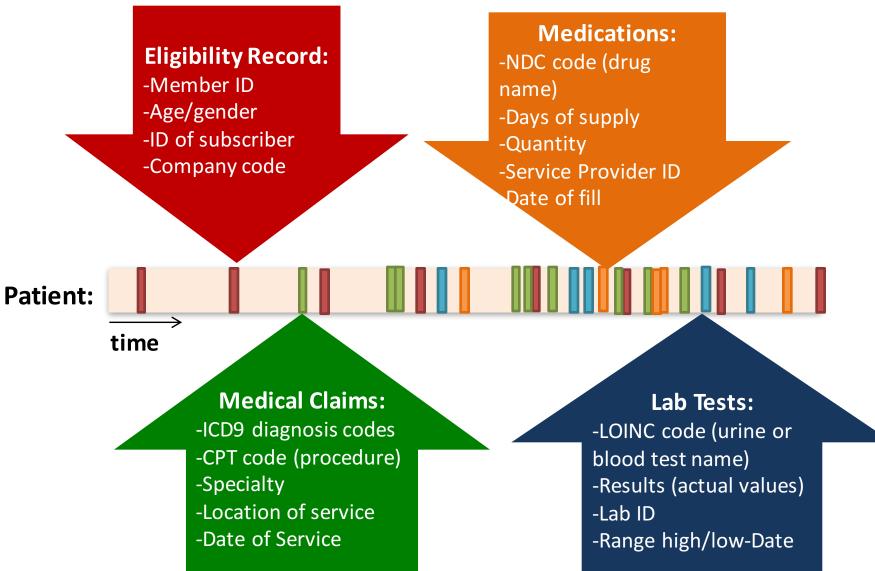
[Razavian, Blecker, Schmidt, Smith-McLallen, Nigam, Sontag. Big Data. '16]

A Data-Driven approach on Longitudinal Data

- Looking at individuals who got diabetes today, (compared to those who didn't)
 - Can we infer which variables in their record could have predicted their health outcome?



Reminder: Administrative & Clinical Data



Top diagnosis codes

3804 Impacted cerumen

24046

				Disease	count
				71947 Joint pain-ankle	28648
Disease	count	Disease	count	3004 Dysthymic disorder	28530
4011 Benign hypertension	447017	53081 Esophageal reflux	121064	2689 Vitamin D deficiency	
2724 Hyperlipidemia NEC/NOS	382030	42731 Atrial fibrillation	113798	NOS	28455
4019 Hypertension NOS	372477	7295 Pain in limb	112449	V7281 Preop cardiovsclr	
25000 DMII wo cmp nt st uncntr	339522	41401 Crnry athrscl natve vssl	104478	exam	27897
2720 Pure hypercholesterolem	232671	2859 Anemia NOS	103351	7243 Sciatica	27604
2722 Mixed hyperlipidemia	180015	78650 Chest pain NOS	91999	78791 Diarrhea	27424
V7231 Routine gyn examination	178709	5990 Urin tract infection NOS	87982	V221 Supervis oth normal	27320
2449 Hypothyroidism NOS	169829	V5869 Long-term use meds NEC	85544	preg	27320
78079 Malaise and fatigue NEC	149797	496 Chr airway obstruct NEC	78585	36501 Opn angl brderln lo risk	26033
V0481 Vaccin for influenza	147858	4779 Allergic rhinitis NOS	77963	37921 Vitreous	20000
7242 Lumbago	137345	41400 Cor ath unsp vsl ntv/gft	75519	degeneration	25592
V7612 Screen mammogram NEC	129445			4241 Aortic valve disorder	25425
V700 Routine medical exam	127848			61610 Vaginitis NOS	24736
				70219 Other sborheic	
Out of 135K natie	onts w	ho had laboratory	data	keratosis	24453
		γ	MULU		

Top lab test results

Lab test		Lab test		Lab test
2160-0 Creatinine	1284737	2085-9 Cholesterol.in HDL	1155666	770-8 Neutrophils/100
3094-0 Urea nitrogen	1282344	718-7 Hemoglobin	1152726	leukocytes
2823-3 Potassium	1280812	4544-3 Hematocrit	1147893	731-0 Lymphocytes
2345-7 Glucose	1299897	9830-1	1147033	704-7 Basophils
1742-6 Alanine		Cholesterol.total/Cholester	1037730	711-2 Eosinophils
aminotransferase	1187809	ol.in HDL		5905-5 Monocytes/100
1920-8 Aspartate		33914-3 Glomerular		leukocytes
aminotransferase	1187965	filtration rate/1.73 sq	561309 1070832	706-2 Basophils/100
2885-2 Protein	1277338	M.predicted		leukocytes
1751-7 Albumin	1274166	785-6 Erythrocyte mean corpuscular hemoglobin		751-8 Neutrophils
2093-3 Cholesterol	1268269			742-7 Monocytes
2571-8 Triglyceride	1257751	6690-2 Leukocytes	1062980	713-8 Eosinophils/100
13457-7 Cholesterol.in LDL	1241208	789-8 Erythrocytes	1062445	leukocytes
17861-6 Calcium	1165370	787-2 Erythrocyte mean		3016-3 Thyrotropin
2951-2 Sodium	1167675	corpuscular volume	1063665	4548-4 Hemoglobin
				A1c/Hemoglobin.total

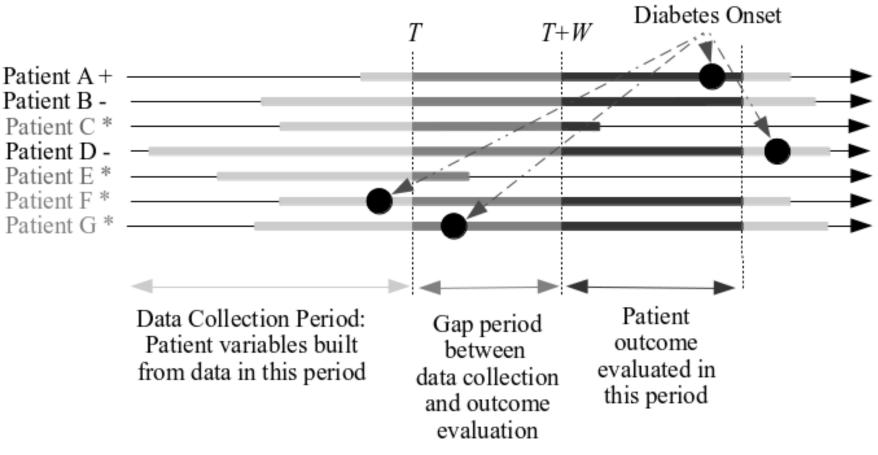
Count of people who have the test result (ever)

Outline for today's class

- 1. Case study for risk stratification: Early detection of Type 2 diabetes
- 2. Framing as supervised learning problem
- 3. Deriving labels
- 4. Evaluating risk stratification algorithms
- 5. Non-stationarity

Framing for supervised machine learning

Align by absolute time



Gap is important to prevent label leakage

Alternative framings

- Align by relative time, e.g.
 - 2 hours into patient stay in ER
 - Every time patient sees PCP
 - When individual turns 40 yrs old
- Align by data availability

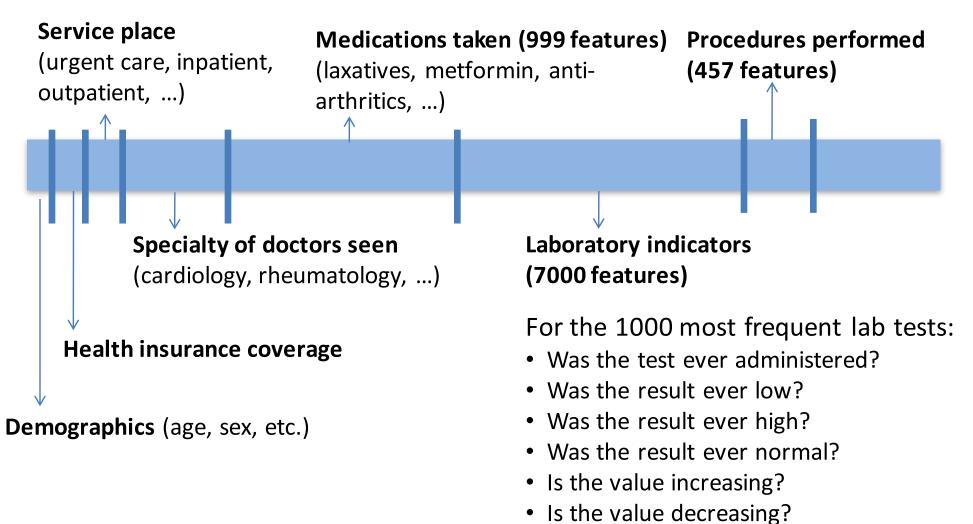
NOTE:

• If multiple data points per patient, make sure each patient in *only* train, validate, or test

Methods

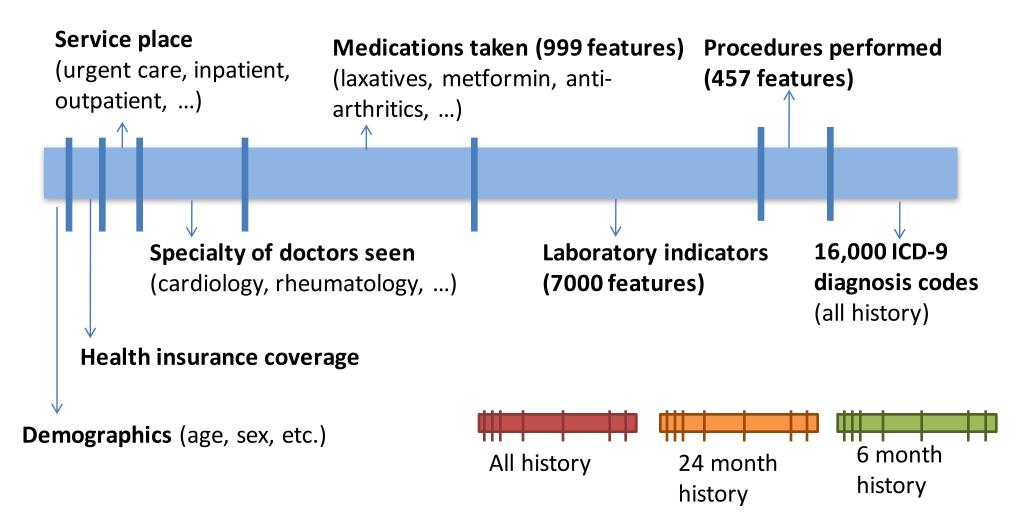
- L1 Regularized Logistic Regression
 - Simultaneously optimizes predictive performance *and*
 - Performs feature selection, choosing the subset of the features that are most predictive
- This prevents overfitting to the training data

Features used in models



Is the value fluctuating?

Features used in models



Total features per patient: 42,000

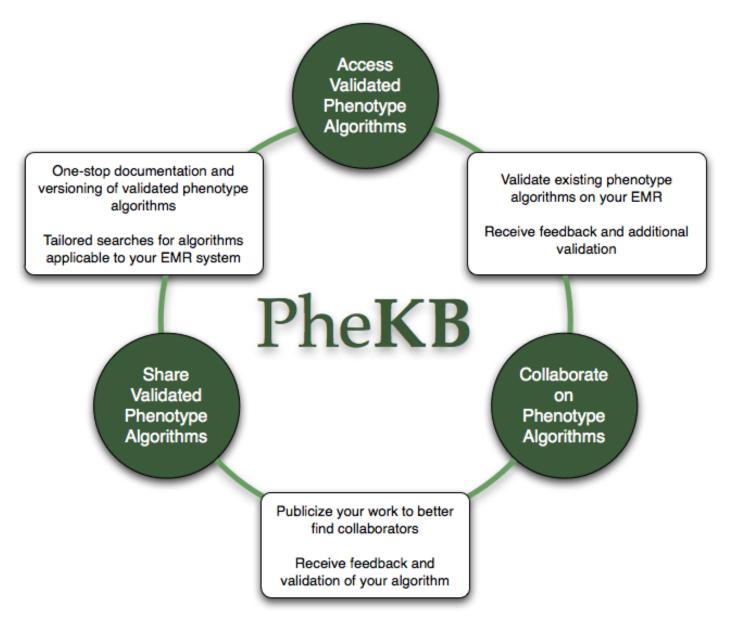
Outline for today's class

- 1. Case study for risk stratification: Early detection of Type 2 diabetes
- 2. Framing as supervised learning problem
- 3. Deriving labels
- 4. Evaluating risk stratification algorithms
- 5. Non-stationarity

Where do the labels come from? Patient A + T = T + W Diabetes Onset

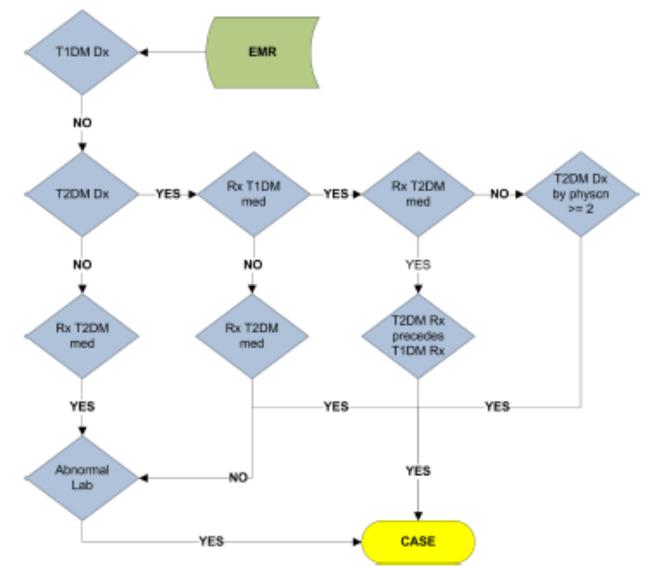
- 1. Manually label data by chart review
- 2. Electronic phenotyping from medical records
- 3. Use machine learning to get the labels themselves

Electronic phenotyping

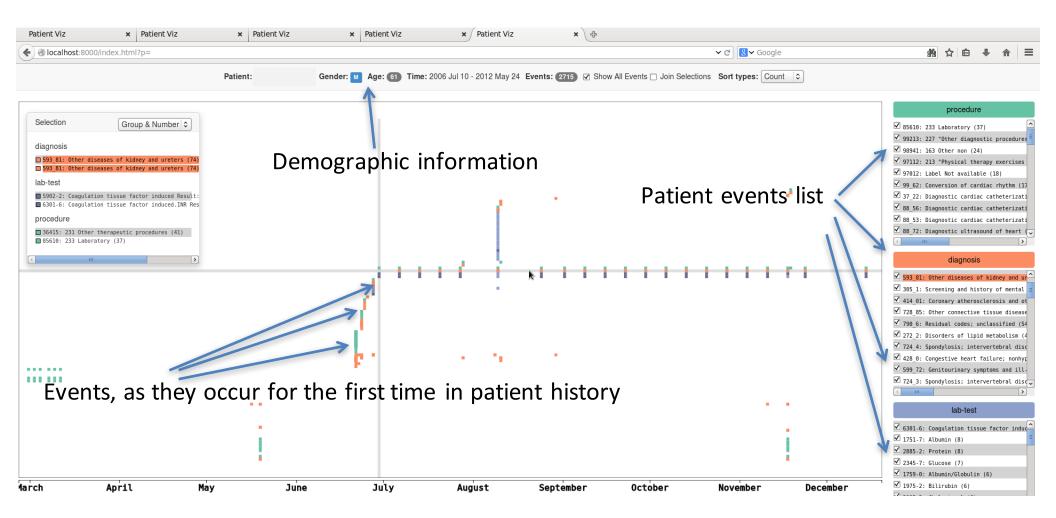


Electronic phenotyping

Figure 1: Algorithm for identifying T2DM cases in the EMR.



Visualization (looking at individual patients) is important to sanity check labeling method



Getting the labels using the Anchor & Learn Framework

- Use a combination of domain expertise (simple rules) and vast amounts of data (machine learning)
- Method does not require any manual labeling
- Anchors are highly transferable between institutions

[Halpern et al., AMIA 2014]

What are anchors?

- Rather than provide gold-standard labels, construct a simple rule that can catch some positive cases.
- Examples:

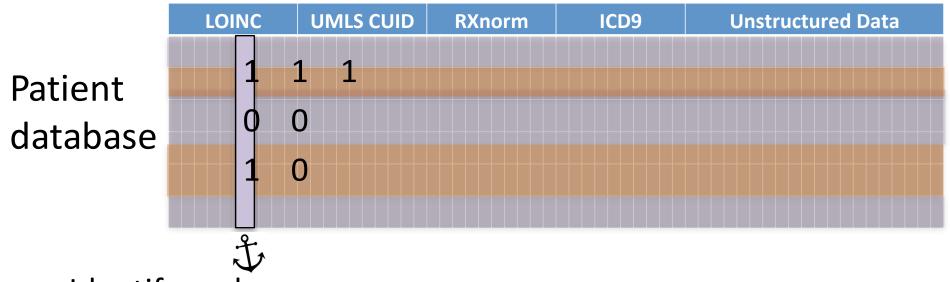
Clin. state var	Possible Anchor
Diabetic	gsn:016313 (insulin) in Medications
Cardiac	ICD9:428.X (heart failure) in Diagnoses
Nursing home	"from nursing home" in text
Social work	"social work consulted" in text

What are anchors?

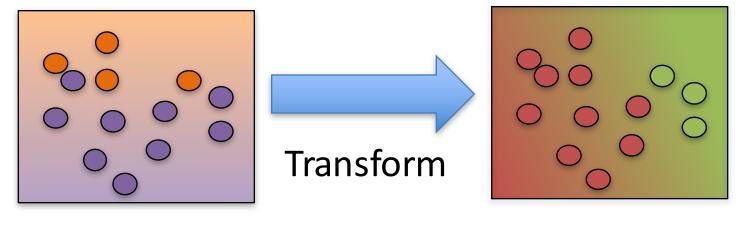
- Rather than provide gold-standard labels, construct a simple rule that can catch <u>some</u> <u>positive cases</u>. Low sensitivity here is ok!
- Examples:

Clin. state var	Possible Anchor
Diabetic	gsn:016313 (insulin) in Medications
Cardiac	ICD9:428.X (heart failure) in Diagnoses
Nursing home	"from nursing home" in text
Social work	"social work consulted" in text

Learning with Anchors



- Identify anchors
- Learn to predict the anchors (anchor as pseudo-labels)
- Account for the difference between anchors and labels



Predict anchor

Predict label

- Unobserved variable: Y, Observation: A
- A is an **anchor** for Y if conditioning on A=1 gives uniform samples from the set of *positive cases*.

- Unobserved variable: Y, Observation: A
- A is an **anchor** for Y if conditioning on A=1 gives uniform samples from the set of *positive cases*.
- Alternative formulation two necessary conditions:

 $P(Y=1|A=1)=1 \quad \text{and} \quad A\perp \mathcal{X}|Y$

Positive condition

Conditional independence

 \mathcal{X} represents all *other* observations.

- Unobserved variable: Y, Observation: A
- A is an **anchor** for Y if conditioning on A=1 gives uniform samples from the set of *positive cases*.
- Alternative formulation two necessary conditions:

$$P(Y = 1 | A = 1) = 1 \quad \text{AND} \quad A \perp \mathcal{X} | Y$$
Positive condition

e.g. If patient is taking *insulin*, the patient is surely **diabetic**.

$$\mathcal{X}_{\text{repre}} \text{ Regimentation of the maximum strength of the maximum stren$$

- Unobserved variable: Y, Observation: A
- A is an **anchor** for Y if conditioning on A=1 gives uniform samples from the set of *positive cases*.
- Theorem [Elkan & Noto 2008]:

In the above setting, a function to predict A can be transformed to predict Y

Can also use more recent advances on *learning with noisy labels* (e.g., Natarajan et al., NIPS '13)

Learning with anchors

Input: anchor A

unlabeled patients

Output: prediction rule

- 1. Learn a calibrated classifier (e.g. logistic regression) to predict: $\Pr(A = 1 \mid \mathcal{X})$
- Using a validate set, let P be the patients with A=1. Compute:

$$C = \frac{1}{|\mathcal{P}|} \sum_{k \in \mathcal{P}} \Pr(A = 1 \mid \mathcal{X}^{(k)})$$

3. For a previously unseen patient *t*, predict:

$$\frac{1}{C} \Pr(A = 1 | \mathcal{X}^{(t)}) \quad \text{if } A^{(t)} = 0$$

$$1 \quad \text{if } A^{(t)} = 1$$

[Elkan & Noto 2008]

Learning

Learn to predict A from the other variables.

Calibration

C is the average model prediction for patients with anchors.

Transformation

If no anchor present, according to a scaled version of the anchor-prediction model.

Outline for today's class

- 1. Case study for risk stratification: Early detection of Type 2 diabetes
- 2. Framing as supervised learning problem
- 3. Deriving labels
- 4. Evaluating risk stratification algorithms
- 5. Non-stationarity

What are the Discovered Risk Factors?

• 769 variables have non-zero weight

Top History of Disease	Odds Ratio
Impaired Fasting Glucose (Code 790.21)	4.17 (3.87 4.49)
Abnormal Glucose NEC (790.29)	4.07 (3.76 4.41)
Hypertension (401)	3.28 (3.17 3.39)
Obstructive Sleep Apnea (327.23)	2.98 (2.78 3.20)
Obesity (278)	2.88 (2.75 3.02)
Abnormal Blood Chemistry (790.6)	2.49 (2.36 2.62)
Hyperlipidemia (272.4)	2.45 (2.37 2.53)
Shortness Of Breath (786.05)	2.09 (1.99 2.19)
Esophageal Reflux (530.81)	1.85 (1.78 1.93)

Diabetes

1-year gap

What are the Discovered Risk Factors?

• 769 variables have non-zero weight

Top History of Diseas		
Impaired Fasting Glucose (Code	Pituitary dwarfism (253.3),	
Abnormal Glucose NEC (790.29)	Hepatomegaly(789.1), Chronic Hepatitis C (070.54), Hepatitis (573.3), Calcaneal	
Hypertension (401)	Spur(726.73), Thyrotoxicosis without	
Obstructive Sleep Apnea (327.23)	mention of goiter(242.90), Sinoatrial Node	
Obesity (278)	dysfunction(427.81), Acute frontal sinusitis	
Abnormal Blood Chemistry (790.6	(461.1), Hypertrophic and atrophic	
Hyperlipidemia (272.4)	conditions of skin(701.9), Irregular	
Shortness Of Breath (786.05)	menstruation(626.4),	
Esophageal Reflux (530.81)	(1.99 2.19) 1.85 (1.78 1.93)	

Diabetes

1-year gap

What are the Discovered Risk Factors?

• 769 variables have non-zero weight

Top Lab Factors	Odds Ratio
Hemoglobin A1c /Hemoglobin.Total (High - past 2 years)	5.75 (5.42 6.10)
Glucose (High- Past 6 months)	4.05 (3.89 4.21)
Cholesterol.In VLDL (Increasing - Past 2 years)	3.88 (3.53 4.27)
Potassium (Low - Entire History)	2.58 (2.24 2.98)
Cholesterol.Total/Cholesterol.In HDL (High - Entire History)	2.29 (2.19 2.40)
Erythrocyte mean corpuscular hemoglobin concentration -(Low - Entire History)	2.25 (1.92 2.64)
Eosinophils (High - Entire History)	2.11 (1.82 2.44)
Glomerular filtration rate/1.73 sq M.Predicted (Low -Entire History)	2.07 (1.92 2.24)
Alanine aminotransferase (High Entire History)	2.04 (1.89 2.19)

Diabetes

1-year gap

What are the Discovered Risk Factors?

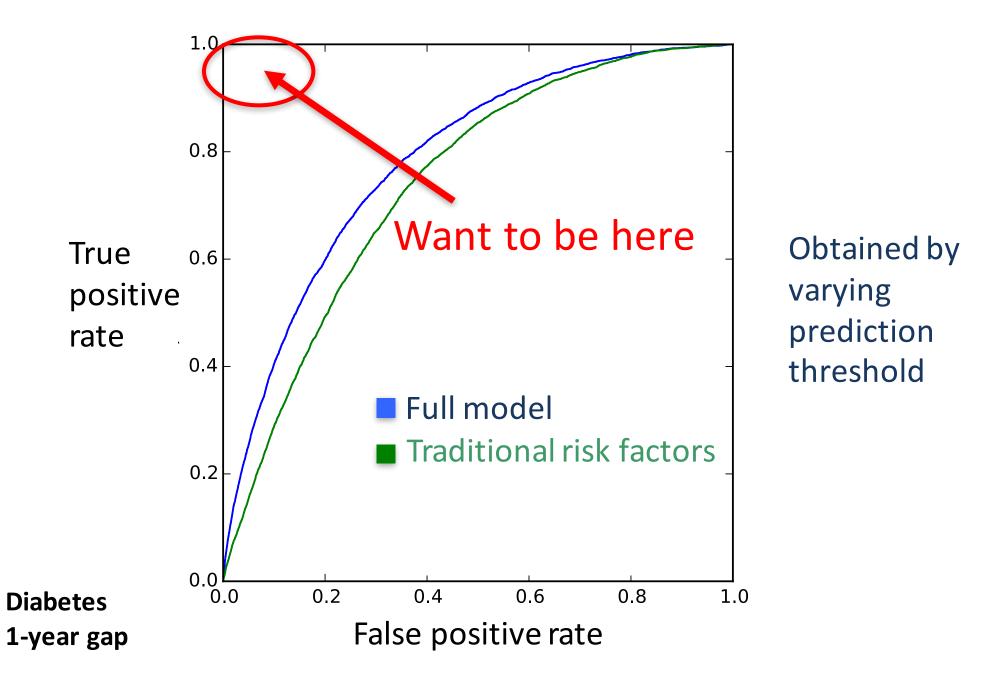
• 769 variables have non-zero weight

Top Lab Factors		
Hemoglobin A1c /Hemoglobin.Total (High		
Glucose (High- Past 6 months)	Albumin/Globulin (Increasing -Entire	
Cholesterol.In VLDL (Increasing - Past 2	history), Urea nitrogen/Creatinine -(high - Entire History), Specific gravity (Increasing)	
Potassium (Low - Entire History)	Past 2 years), Bilirubin (high -Past 2 years),	
Cholesterol.Total/Cholesterol.In HDL (Hig		
Erythrocyte mean corpuscular hemoglobir History)		_
Eosinophils (High - Entire History)	2.11 (1.82 2.44)	_
Glomerular filtration rate/1.73 sq M.Predic	2 07	_
Alanine aminotransferase (High Entire H	2.04	_

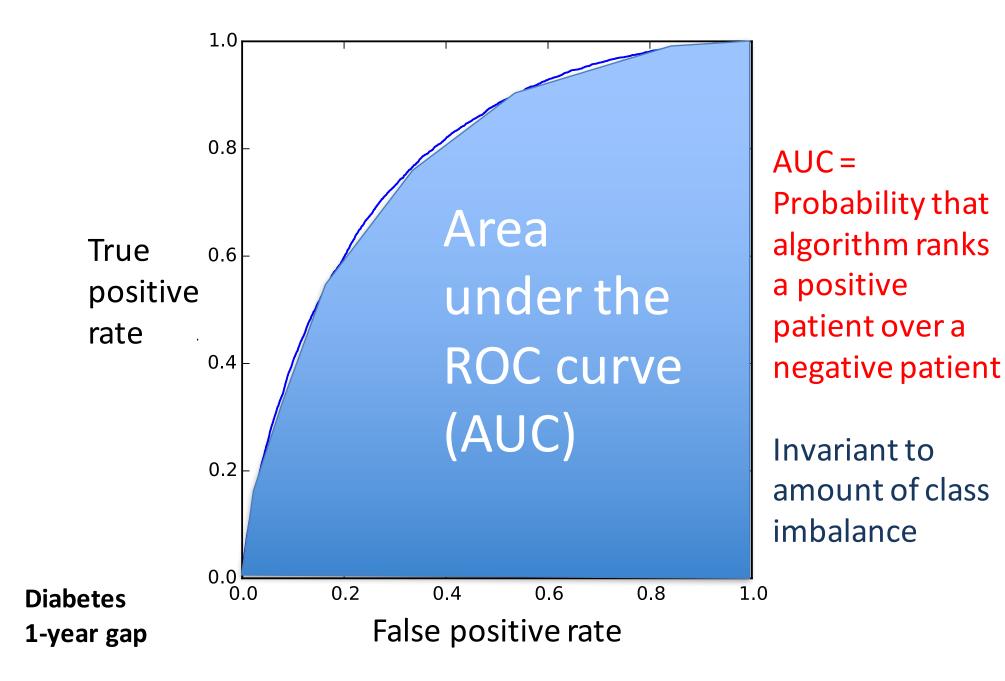
Diabetes

1-year gap

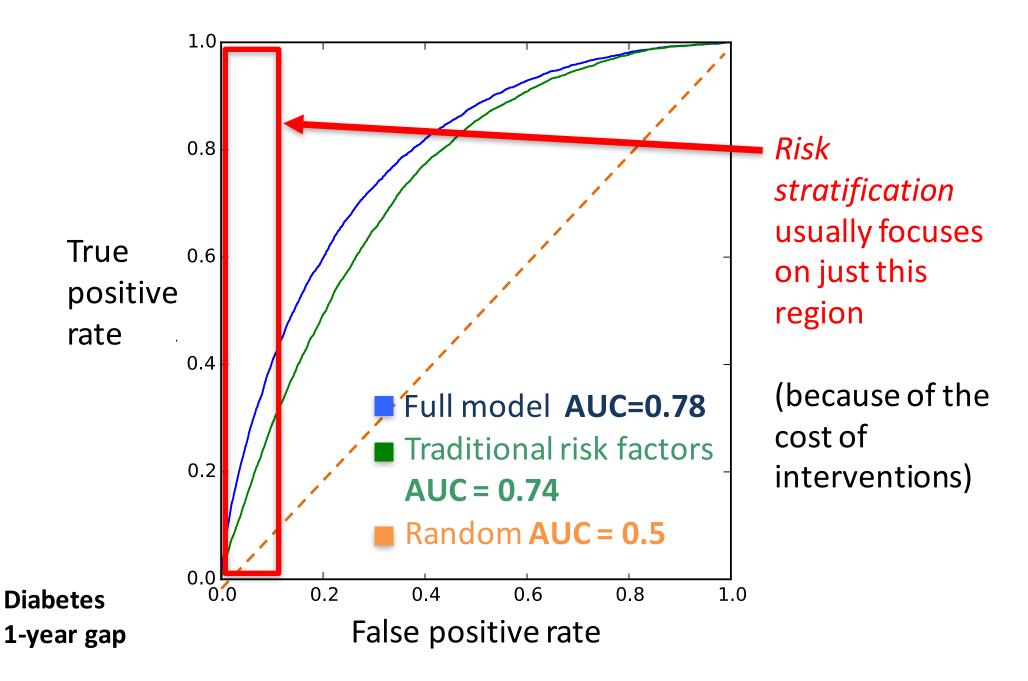
Receiver-operator characteristic curve



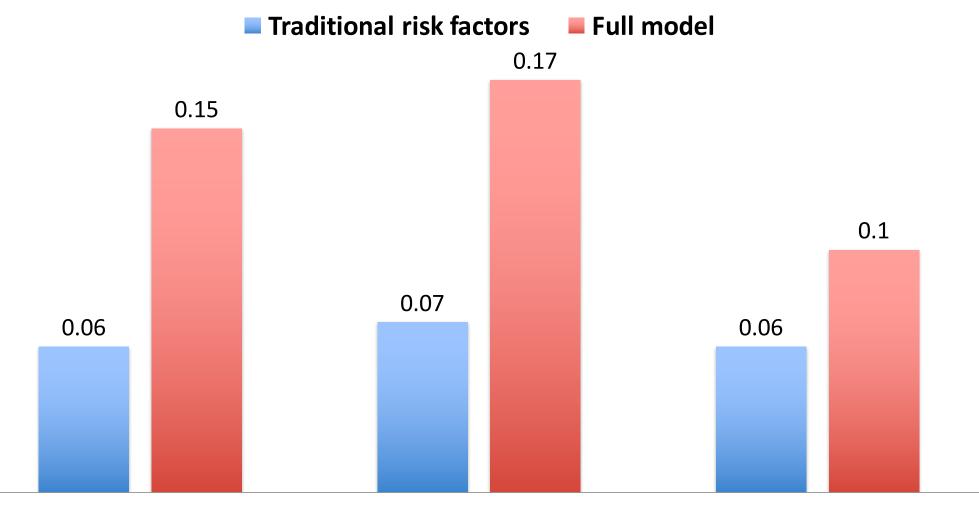
Receiver-operator characteristic curve



Receiver-operator characteristic curve



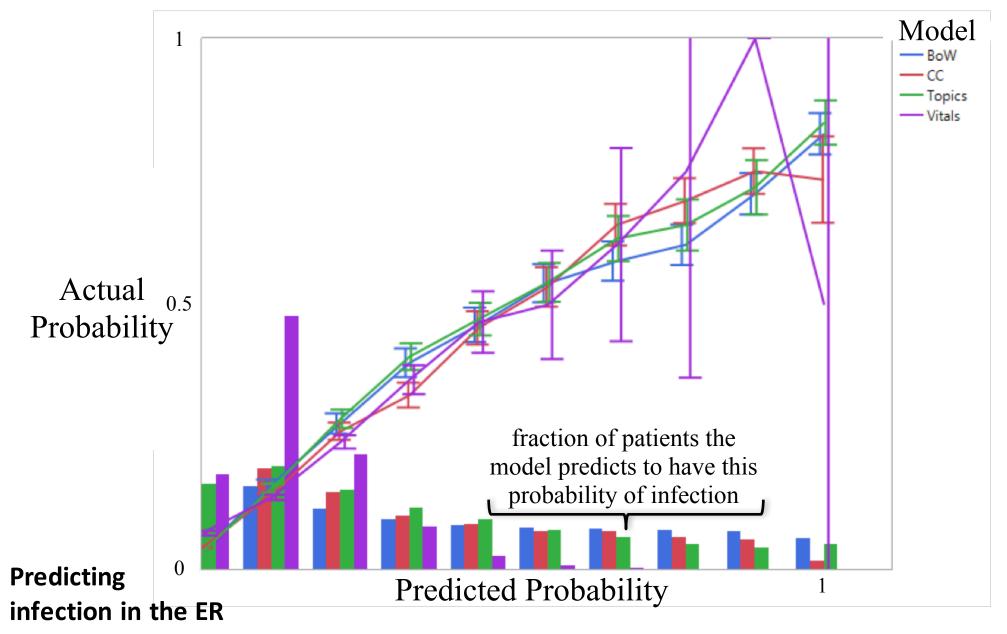
Positive predictive value (PPV)



Top 100 PredictionsTop 1000 PredictionsTop 10000 Predictions

Diabetes 1-year gap

Calibration (note: different dataset)



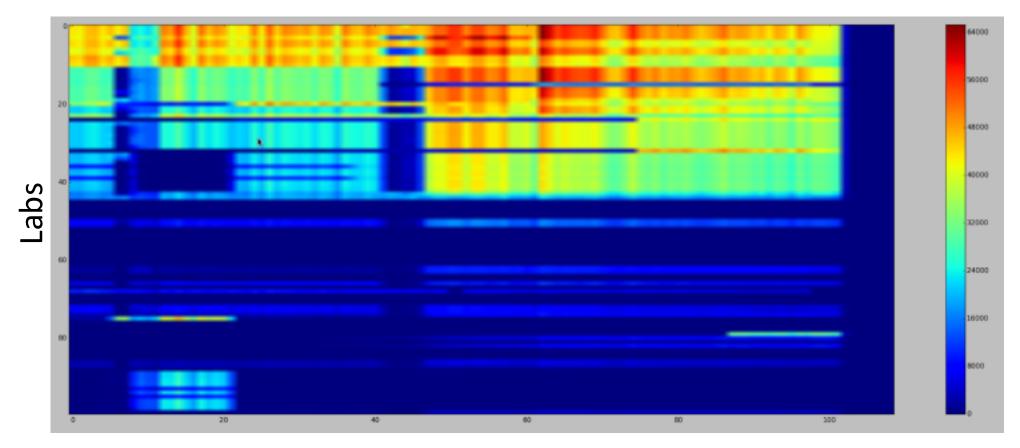
Outline for today's class

- 1. Case study for risk stratification: Early detection of Type 2 diabetes
- 2. Framing as supervised learning problem
- 3. Deriving labels
- 4. Evaluating risk stratification algorithms
- 5. Non-stationarity

Major challenge: non-stationarity

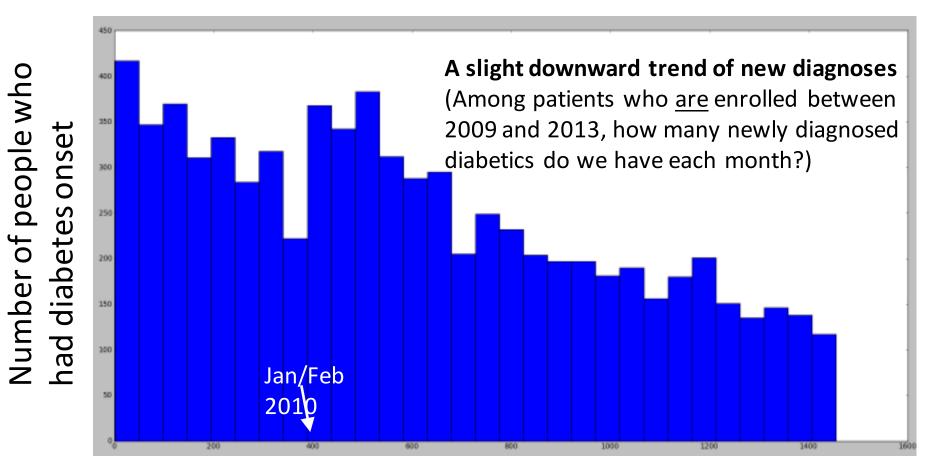
- ICD10 rolled out in 2015: predictive models learned using ICD9 features are no longer useful!
- Logistical issues => some features may not be available!
- Prevalence and significance of features may change over time
- Automatically derived labels may change meaning

Top 100 lab measurements over time



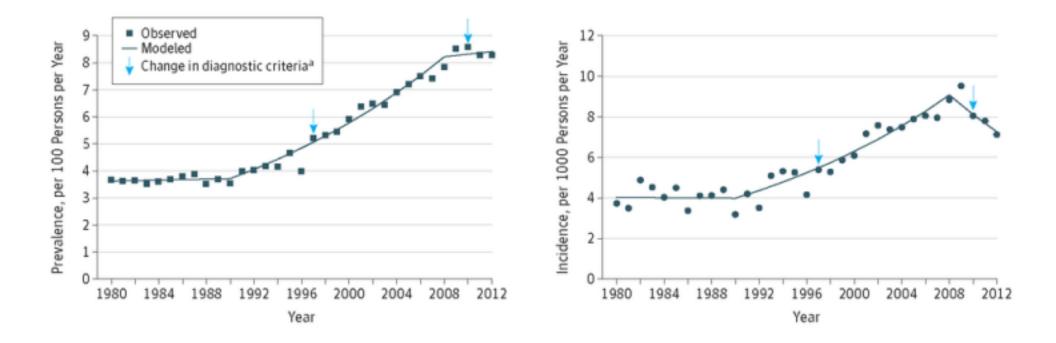
Time (in months, from 1/2005 up to 1/2014)

Diabetes Onset after 2009



Months, after 2009/01/01

Diabetes Onset after 2009



Geiss LS, Wang J, Cheng YJ, et al. Prevalence and Incidence Trends for Diagnosed Diabetes Among Adults Aged 20 to 79 Years, United States, 1980-2012.*JAMA*. 2014;312(12):1218-1226.

External validity

- Motivates multi-institution evaluations
- Good practice is to let the test data be from a future year