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Outline

1. Clinical	text
– Case	study:	Prediction	of	sepsis	(severe	infection)	

from	electronic	health	records
2. Physiological	time-series
– Case	study:	Monitoring	babies	in	neonatal	ICUs
– Case	study:	Detecting	atrial	fibrillation

3. Imaging
– Cardiology,	pathology,	radiology



Bulk	of	valuable	data	
is	in	narrative	text

Bulk of Valuable Data are 
in Narrative Text

Mr. Blind is a 79-year-old white white male with a history of diabetes mellitus, inferior 
myocardial infarction, who underwent open repair of his increased diverticulum 
November 13th at Sephsandpot Center. 

The patient developed hematemesis November 15th and was intubated for respiratory 
distress. He was transferred to the Valtawnprinceel Community Memorial Hospital for 
endoscopy and esophagoscopy on the 16th of November which showed a 2 cm linear 
tear of the esophagus at 30 to 32 cm. The patient’s hematocrit was stable and he was 
given no further intervention.

The patient attempted a gastrografin swallow on the 21st, but was unable to 
cooperate with probable aspiration. The patient also had been receiving generous 
intravenous hydration during the period for which he was NPO for his esophageal tear 
and intravenous Lasix for a question of pulmonary congestion.

On the morning of the 22nd the patient developed tachypnea with a chest X-ray 
showing a question of congestive heart failure. A medical consult was obtained at the 
Valtawnprinceel Community Memorial Hospital. The patient was given intravenous 
Lasix.
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orange=demographics
blue=patient condition, diseases, etc.
brown=procedures, tests
magenta=results of measurements
purple=time
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[Slide	credit:	Pete	Szolovits]



Clinical	notes	in	MIMICClinical Notes in MIMIC
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Nursing/other 822497

Radiology 522279

Nursing 223556

ECG 209051

Physician 141624

Discharge summary 59652

Echo 45794

Respiratory 31739

Nutrition 9418

General 8301

Rehab Services 5431

Social Work 2670

Case Management 967

Pharmacy 103

Consult 98

[Slide	credit:	Pete	Szolovits]



Lengths	of	different	note	typesLengths of different kinds of notes
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Nursing	note
   Hypotension (not Shock) 
   Assessment: 
   Pt remains on phenylephrine drip at   0.75 mcg/kg/min 
   Action: 
   No titration needed at this time 
   Response: 
   BP stable at > 100, MAP >65 
   Plan: 
   Wean Neo if tolerated 
   Wound infection 
   Assessment: 
   Anterior groin area open and oozing mod amts thin pink tinged serous 
   fluid 
   Pt stooling, with small amts stool on dsg and dangerously close to open 
   wound 
   Action: 
   Urology resident in to change dressing 
   Propofol increased to 100 mcg nad fentanyl 100 mcg given for comfort 
   during dsg change 
   Flexiseal inserted to help contain bowel movements 
   Stool sent for c diff. 
   Response: 
   Pt comfortable during proceedure 
   Plan: 
   Continue sedation as needed, increasing Propofol to 100 mcg for 
   sedation during dsg changes. 
   Keep wound area as clean as possible, check for incontinence of stool 
   as needed 
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A brief nursing note
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 Admission Date:  [**2198-7-16**]              Discharge Date:   [**2198-7-28**] 

Date of Birth:  [**2153-5-26**]             Sex:   F 

Service: SURGERY 

Allergies: 
No Known Allergies / Adverse Drug Reactions 

Attending:[**First Name3 (LF) 1234**] 
Chief Complaint: 
Leg pain, erythema and swelling secondary to infection of left 
femoral-poplital bypass 

Major Surgical or Invasive Procedure: 
1. Incision and drainage and pulse irrigation of left groin and 
left above-knee popliteal site incisions with xxploration of 
bypass graft ([**2198-7-16**]) 
2. Excision of entire left common femoral artery-to-above-knee 
popliteal artery bypass graft; Repair of common femoral artery 
and above-knee popliteal artery with harvested left arm cephalic 
vein ([**2198-7-18**]) 
3. I and D/washout of left groin with complex wound closure over 
2 drains 

History of Present Illness: 
Ms. [**Known lastname **] is a 45 y/o F who underwent a left fem-AK [**Doctor Last Name **] BPG with 
PTFE over one month ago on [**2198-6-11**].  She had been doing well 
postoperatively, and was seen in the clinic 6 days prior to 
presentation. At this time, she acutely developed 
nausea/vomiting, fevers, and progressive redness/swelling/pain 
of her left thigh 
directly at the surgical incision.  She has been unable to keep 
down food or liquids.  At the time, she denied any ischemic-type 
pain in her lower leg, and  denied any chest pain or shortness 
of breath. 

Discharge Summary



Example	NLP	pipeline	(cTAKEs)

(Slide	credit:	Nigam	Shah)



Outline

1. Clinical	text
– Case	study:	Prediction	of	sepsis	(severe	

infection)	from	electronic	health	records
2. Physiological	time-series
– Case	study:	Monitoring	babies	in	neonatal	ICUs
– Case	study:	Detecting	atrial	fibrillation

3. Imaging
– Cardiology,	pathology,	radiology



Early	identification	of	sepsis

• Sepsis	is	a	systemic	inflammatory	response	
secondary	to	infection

• Hospital	mortality	rate	reported	to	be	30-50%

• Estimated	751,000	cases/year	in	the	US,	with	a	
cost	of	care	of	$16.7	billion

• Reducing	the	time	to	administration	of	antibiotics	
by	one	hour	has	shown	to	reduce	mortality	from	
33.2%	to	19.5%



Early	Goal-Directed	Therapy	improves	
sepsis	outcomes
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antibiotic administration.10 Hemodynamic management 
involves intravenous access and administration of fluids 
and vasoactive medications. Goal-directed therapy 
provides a straightforward approach to hemodynamic 
management in septic patients.

The concept of goal-directed therapy for critically 
ill patients is not new. Several studies examined 
optimizing hemodynamic parameters in critically ill 
patients after admission to the ICU, but results were 
largely negative.11,12 With EGDT, the patients at 
high risk for cardiovascular collapse are recognized 
soon after hospital arrival, generally while still in 

the emergency department, and early therapeutic 
intervention is initiated to restore a balance between 
oxygen delivery and oxygen demand. 

In Rivers original article, 263 patients were enrolled, 
130 to the EGDT group and 133 to standard therapy.5 
Patients in the standard therapy group were treated at 
the clinicians’ discretion using a Society of Critical 
Care Medicine hemodynamic support guideline.13 
All patients in the EGDT group had a central venous 
catheter placed with the capability of continuously 
measuring a central venous oxygen saturation and 
central venous pressure (CVP). (Figure 1)
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Give	fluids

Maintain	blood	pressure

Maintain	oxygen
saturation

Administer
antibiotics



Sepsis	Triage	Criteria
Does	the	patient	have	any three of	the	following:

☐Temp	>	100.4	or	<	96.5	or	rigors
☐HR	>	90
☐RR	>	20
☐O2	Sat	<	90%
☐SBP	<	90
☐Suspected	Infection
☐Any	alteration	of	mental	status

☐Yes☐No
Never	used	by	sepsis	
alerts,	since	not	
explicitly	recorded



Predicting	infection	at	triage

• Use	data	from 230,936	patients	from 12/08	to	
2/13	at	tertiary academic teaching hospital

• 14%	have	positive	label	(infection	according	to	
ED	ICD9	discharge	diagnosis)

• Compare	use	of	only	structured	data versus	
also	using	unstructured	data	(text)

[Horng,	Sontag,	et	al.	“Creating	an	automated	 trigger	for	sepsis	 clinical	 decision	 support	at	
emergency	department	 triage	using	machine	learning”.	PLOS	ONE,	2017]



Table 2. Features used for the predictive models.

Vital Signs Patient Demographics Chief Complaint Nursing Assessment

Vitals Model X X

Chief Complaint Model X X X

Bag of Words Model X X X X

Topic Model X X X X

https://doi.org/10.1371/journal.pone.0174708.t002

Fig 1. Pipeline for natural language processing and prediction. Our algorithm first takes as input a triage note and processes it by
applying tokenization followed by bigram and negation detection, the latter using a customized version of the NegEx tool [14]. The
processed text is then transformed into a set of features. The Bag-of-Words features count how many times each word in our vocabulary
appears in the processed note, and the Topic model features (derived using the Mallet [17] tool) measure how much certain topics are
represented in the note. A Support Vector Machine (SVM) is then trained on these sets of features to determine whether the patient presents
an infection, using the SVMperf software [15].

https://doi.org/10.1371/journal.pone.0174708.g001

Automated trigger for sepsis decision support using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0174708 April 6, 2017 6 / 16



Example	 Triage	Notes:

FOOT	INFECTION.	“Pt	here	from	___	
hosp.with ?osteomyelitis.	Footis pink	
swollen	and	warm	to	the	touch	on	the	
right	foot.	Denies	fevers	at	home.	hx of	
multiple	infections	after	a	mvc ankle	break	
in	___”

CHEST	PAIN. “presents	with	left	sided	
chest	pain	intermittant described	as	gas	
pain	today	pain	reoccured during	episode	
of	stress,	developed	fluttering	in	left	chest	
with	left	arm	pain.	Denies	n/v/d	or
dyspnea”

Text	is	much	more	valuable	than	structured	data

Area	under	 the	curve	 (AUC)	of
.86	versus	 .67



Using all available data, including free text, presents an opportunity to improve the perfor-
mance of these decision support triggers [6,19,26].

Our research sought to determine the incremental benefit of utilizing free text in addition
to vital signs to trigger sepsis clinical decision support. Even utilizing the small amount of free
text found in chief complaints resulted in an improvement in AUC of the linear models from
0.67 (95% CI 0.65–0.69) to 0.83 (95% CI 0.81–0.84). Adding even more free text, using either a
Bag of Words model or a Topic model continued to increase the AUC to 0.86 (95% CI 0.85–
0.87) and 0.85 (95% CI 0.84–0.86), respectively. Specifically, we found that the free text in tri-
age notes is particularly valuable for obtaining a broader context of the reason for the patient’s
ED visit. In some cases this can help rule out the possibility of the patient having sepsis, such
as in the following triage note:

“cantonese speaking with numness right arm blurred vision dizziness lack of focus SOB since8
am. tongue midline. no facial droop. same sxs as strok in 08.”

The symptoms described in this triage note suggest that the patient is likely suffering from a
stroke, not a severe infection. In other cases, the text can provide evidence toward the patient
having an infection, such as in the following triage note,

“89 yo f s/p esophageal hernia repair w/? g-tube placement now w/ c/o's n&v. family reports
pt's appetite is decreased, no BM x3d. generally not feeling well, had a bad day.”

Table 8. SVM model learned using bag-of-words.

Weight Word

0.98 cellulitis

0.80 uti

0.79 redness_swelling

0.78 sore_throat

0.77 abscess

0.73 diverticulitis

0.72 abscess

0.70 dysuria

0.66 st

0.65 erythema

0.20 swelling

-0.29 swelling_neg

-0.35 pancreatic

-0.36 eye

-0.36 bleed

-0.37 etoh

-0.37 epistaxis

-0.38 pancreatitis

-0.39 injury

-0.57 mvc

Most positive (indicative of infection) and negative (suggesting no infection) words used by the model built by

machine learning using the bag-of-words model on triage notes.

https://doi.org/10.1371/journal.pone.0174708.t008

Automated trigger for sepsis decision support using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0174708 April 6, 2017 12 / 16



Alternative	– topic	model
Latent Dirichlet allocation (LDA)

Topic models are powerful tools for exploring large data sets and for
making inferences about the content of documents
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Many applications in information retrieval, document summarization,
and classification

Complexity+of+Inference+in+Latent+Dirichlet+Alloca6on+
David+Sontag,+Daniel+Roy+
(NYU,+Cambridge)+

W66+
Topic+models+are+powerful+tools+for+exploring+large+data+sets+and+for+making+
inferences+about+the+content+of+documents+

Documents+ Topics+
poli6cs+.0100+

president+.0095+
obama+.0090+

washington+.0085+
religion+.0060+

Almost+all+uses+of+topic+models+(e.g.,+for+unsupervised+learning,+informa6on+
retrieval,+classifica6on)+require+probabilis)c+inference:+

New+document+ What+is+this+document+about?+

Words+w1,+…,+wN+ ✓Distribu6on+of+topics+

�t =
�

p(w | z = t)
�

…+

religion+.0500+
hindu+.0092+

judiasm+.0080+
ethics+.0075+

buddhism+.0016+

sports+.0105+
baseball+.0100+
soccer+.0055+

basketball+.0050+
football+.0045+

…+ …+

weather+ .50+
finance+ .49+
sports+ .01+

LDA is one of the simplest and most widely used topic models

David Sontag (MIT) Machine Learning Lecture 17, Nov. 9, 2017 9 / 33

Unsupervised	
learning

Dimensionality	
reduction



Alternative	– topic	model

• First,	learn	a	topic	model	over	all	triage	notes
• Then,	learn	predictive	model	on	the	topics	
instead	of	the	words	themselves

• Disadvantage:
– Bit	worse predictive	performance	compared	to	
bag-of-words	model	(Test	AUC	of	0.85)

• Advantages:
– Easier	to	interpret,	may	transfer	better



Latent	Dirichlet allocation
• Generative	model	for	documents	(patient’s	triage	text)
• Assume	there	are	T	topics	(for	us,	T=500),	and	the	

variable	zi denotes	the	assignment	of	a	topic	to	the	i’th
word

• Generative	model	for	single	patient’s	triage	text:
– (				is	a	distribution	over	the	T	topics)	
– For	each	word	i,

(choose	a	topic	for	i’th word)
(sample	a	word)

• We	learn	the	distributions	Pr(w |	z =	t)	and	the	“priors”	

✓ ⇠ Dir(↵) ✓

zi ⇠ Multinomial(�)
wi � Pr(w | z = zi)

↵t

[Blei,	Ng,	Jordan.	Latent	Dirichlet allocation.	Journal	of	Machine	 Learning	Research,	2003]



which is consistent with a patient having a surgical-site infection. Looking at the vital signs
alone would give significant less information in cases like these.

The linear SVM models shown in Tables 7 and 8 make sense clinically: the most positive
weighted words include “cellulitis”, “sore throat”, and “abscess”, all words indicative of an
infection, and the most negative words include “laceration”, “etoh” (ethanol, for drunken-
ness), and “mvc” (motor vehicle crash), other reasons for why a patient may come to an
emergency department. Moreover, the learning algorithm’s ability to automatically discover
the predictive utility of synonyms and misspellings of words, such as “abcess” (misspelling of
“abscess”) and “st” (abbreviation of “sore throat”) demonstrate the advantage and simplicity
of using machine learning with clinical big data. Many of the discovered topics shown in
Table 9 correspond to well-known reasons for why a patient may come to an emergency
department, such as bike accidents, sports injuries, drunkenness, cellulitis, and sore throat.
We see that the support vector machine is able to distinguish infection topics from non-
infection topics.

We had expected that using a machine learning algorithm that modeled non-linear interac-
tions between the features might improve our methods ability to predict infection. Indeed,
using random forests, an ensemble of decision trees, improves AUC from 0.67 to 0.70 when
only considering the continuous-valued demographics and vital signs. However, random for-
ests did not improve prediction accuracy once the free text from the chief complaints and tri-
age note were added to the feature set, even when used together with the topic model which
would seem to be well suited for such an approach. Given the simplicity, interpretability, and

Table 9. SVM model learned using topics.

Weight Topic (described by most frequent words)

11.00 redness, cellulitis, left, leg, swelling, area, rle, arm, lle, increased, erythema

8.38 abcess, buttock, area, drainage, axilla, groin, painful, thigh, left, hx, abcesses, red, boil

8.15 cellulitis, abx, pt, iv, infection, po, keflex, antibiotics, leg, treated, started, yesterday

7.13 red, swollen, touch, warm, painful, area, left, infection, swelling, tender, slightly, hot

6.65 abscess, left, area, fevers_neg, axilla, cyst, size, i&d, lesion, lump, swelling, mass, thigh

6.60 pna, pneumonia, cxr, wbc, dec_num, transfer, rll, anon_1140, rehab, fever, lll, recent

6.40 sore_throat, throat, st, voice, secretions, swallowing, pain, swallow, difficulty_swallowing

5.90 uti, pt, cipro, abx, dx, started, treated, recent, bactrim, fever, c/o, recently, infection

5.69 pna, cough, sob, pneumonia, cxr, recent, dx, abx, fever, r/o, fevers, bronchitis, recently, tb

5.64 dysuria, hematuria, uti, c/o, urination, pain_neg, burning, denies, frequency, urgency,

2.12 wound, check, eval, pt, abcess, wick, i&d, abscess, drained, removal, returns, fevers_neg

-1.80 pain, ankle, weight, bearing, left, foot, swelling, knee, wt, injury, bear, unable_bear

-3.44 struck, bike, car, ped, accident, bicycle, loc_neg, pain, riding, hit, bicyclist, pt, fell, c/o

-3.59 numbness, arm, left, tingling, facial, hand, leg, weakness, side, sided, c/o, today, resolved

-3.63 epistaxis, bleeding, nose, pt, bleed, pressure, bleeding_neg, blood, on_coumadin, stopped

-3.64 status_post_mvc, mvc, car, restrained_driver, loc_neg, passenger, neck, driver, front, side

-3.89 fall, status_post_fall, fell, ladder, feet, pain, landed, ft, 10, loc_neg, back, approx, foot, steps

-3.90 gi, bleed, status_post, colonoscopy, endoscopy, procedure, today, esophageal, upper, scope

-4.26 playing, injury, ball, soccer, pt, game, football, hit, hockey, player, struck, baseball, loc_neg

-4.29 mvc, trauma, gsw, basic, mcc, 21, status_post_mvc, transfer, rollover, rm, room, stabbing

-4.91 etoh, found, vomiting, apparently, drunk, drinking, denies, friends, trauma_neg, triage,

-5.18 watching, tv, sitting, sudden_onset, movie, television, smoked, couch, pt, pot, 5pm, theater

Most positive (indicative of infection) and negative (suggesting no infection) topics from the model built by

machine learning using features derived from the topic model on triage notes.

https://doi.org/10.1371/journal.pone.0174708.t009

Automated trigger for sepsis decision support using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0174708 April 6, 2017 13 / 16
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Less	 likely



Evaluating	model	calibration
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probability of infection
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Predicting	
infection	in	the	ER



Figure 2.8: Additive change in AUC from baseline for phenotype extraction as a function
of the features used. The baseline phenotype extraction uses only features from Age, Sex
and Triage vitals and its value is indicated for each phenotype on the y-axis label. Blue
bars indicate structured data while red bars indicate free-text data. Hatched lines represent
a combination of features. A star is placed below the single feature that has the highest
performance. From left to right, the classifiers use:
Med Medication history (prior to visit)
Pyx Medication dispensing record (during visit)
Lab Laboratory values
Strct All Structured data (Med + Pyx + Labs)
Tri Triage Nursing Text
MD Physician Comments
Txt All Text (Tri + MD)
All All features (Structured + Text).

50

[Halpern,	Horng,	Choi,	Sontag,	JAMIA	‘16]

Value	of	data	
types	across	

prediction	tasks
Figure 2.8: Additive change in AUC from baseline for phenotype extraction as a function
of the features used. The baseline phenotype extraction uses only features from Age, Sex
and Triage vitals and its value is indicated for each phenotype on the y-axis label. Blue
bars indicate structured data while red bars indicate free-text data. Hatched lines represent
a combination of features. A star is placed below the single feature that has the highest
performance. From left to right, the classifiers use:
Med Medication history (prior to visit)
Pyx Medication dispensing record (during visit)
Lab Laboratory values
Strct All Structured data (Med + Pyx + Labs)
Tri Triage Nursing Text
MD Physician Comments
Txt All Text (Tri + MD)
All All features (Structured + Text).
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Outline

1. Clinical	text
– Case	study:	Prediction	of	sepsis	(severe	infection)	

from	electronic	health	records
2. Physiological	time-series
– Case	study:	Monitoring	babies	in	neonatal	ICUs
– Case	study:	Detecting	atrial	fibrillation

3. Imaging
– Cardiology,	pathology,	radiology



Physiological	time-series

(Quinn	et	al.,	TPAMI	2008)

6

the quantity not being observed. We can effectively calculate these
on the fly, by checking at each step in the inference routine for
the presence of a zero in each measurement. When this occurs,
the corresponding column of C

(i) is set to zero for all i.
We can also exploit the knowledge that the factor settings in

a given application might tend to change slowly relative to the
frequency of the measurements. Within the factorial model, it
is possible to constrain the transitions so that only one factor
can change its setting at each time step. Using the Gaussian
sum approximation, this speeds up inference from order O(K2

)

per time step to O(K log K). We use this approximation in the
experiments described in section VI.

V. APPLICATION TO NEONATAL CONDITION MONITORING

We now turn our attention to the application of monitoring
the condition of a premature baby receiving intensive care.
Babies born three or four months prematurely in their first week
post partum are kept in a closely regulated environment, with
measurements of the heart rate, blood pressure, temperature and
so on taken every second. An experienced clinician can make
inferences about a baby’s condition based on these signals, though
this task is complicated by the fact that the observations depend
not just on the state of a baby’s physiology but also on the
operation of the monitoring equipment. There is observation noise
due to inaccuracies in the probes, and some operations can cause
the measurements to become corrupted with artifact.

Much of the time babies can be expected to be in a “normal”
state, where a degree of homeostasis is maintained and mea-
surements are stable. In specific situations, characteristic patterns
can appear which indicate particular conditions or pathologies.
Some patterns are common and can be easily recognised, whereas
at other times there might be periods of unusual physiological
variation to which it is difficult to attribute a cause.

In this section, we first review previous work in intensive
care unit (ICU) monitoring, then summarise the measurement
channels which are to be analysed in this particular application.
Constructing the model involves a combination of learning and
domain knowledge. We first characterise the normal dynamics of
the measurements, and then learn factor dynamics one by one to
obtain the full factorial model.

A. Relation to previous work on ICU monitoring

We briefly review some relevant work in the specific area of
intensive care unit monitoring. This work broadly fits into two
categories. One approach is based on using domain knowledge
to formulate high-level representations of particular patterns or
situations, then to find suitable abstractions of the data in order
to apply some matching rules. In this type of work, the goal is to
describe what is happening, and sometimes to suggest what to do
next; an interpretation is put on the data. Different schemes for
heuristic description of patterns have been used, see for example
[30]–[32].

By contrast, another body of work is based on making infer-
ences of a statistical nature from monitoring data using time series
analysis techniques. The goal in this case is to use the method-
ology of time series analysis to obtain informative descriptions
of the data, which offer insight into the underlying processes.
Notably, a switching linear dynamical system was used in [9] in
order to identify statistically significant changes in liver function.

Fig. 4. Probes used to collect vital signs data from an infant in intensive care.
1) Three-lead ECG, 2) arterial line (connected to blood pressure transducer),
3) pulse oximeter, 4) core temperature probe (underneath shoulder blades), 5)
peripheral temperature probe, 6) transcutaneous probe.

Parametric models such as AR processes have been used to
identify significant changes (e.g. level changes or slope changes)
in physiological dynamics [33], [34]. Other work in this category
has looked at finding segmentations of physiological monitoring
data, e.g. finding segments which are approximately linear [35],
[36].

The first of these bodies of work uses expert knowledge, but
captures it using a series of ad-hoc frameworks. The second uses
established statistical techniques, but in general without incorpo-
rating the same level of expert insight and interpretation. The
work described in this paper is motivated by the idea that these
two approaches are not mutually exclusive, and uses extensive
knowledge engineering within a principled (probabilistic) time
series analysis framework.

B. Measurement channels

We now briefly describe the observations which are to be used
in this application. A number of probes, illustrated in Figure
4, continuously collect physiological data from each baby. The
resulting data channels are listed in Table I. Heart rate is obtained
either from the ECG unit or blood pressure sensor. The latter
also derives systolic and diastolic blood pressure measurements
(the arterial pressure when the heart is contracting and relax-
ing, respectively). A transcutaneous probe, sited on the chest,
measures the partial pressures of oxygen (TcPO

2

) and carbon
dioxide (TcPCO

2

) in the blood1. A pulse oximeter, attached to
the foot, measures the saturation of oxygen in arterial blood—
a related but different quantity to transcutaneous O

2

. The core
temperature and peripheral temperature are measured by two
probes, one of which is placed under the baby’s back (or under
the chest if the baby is prone) and the other attached to a foot. In
addition, environmental measurements (ambient temperature and
humidity) are collected directly from the incubator. The probes
used to collect these measurements are illustrated in Figure 4.
All these measurements are taken once per second. All the data
channels are applied without preprocessing to the model, with
the exception of incubator humidity. It is necessary to apply a
form of smoothing to this data channel because of measurement
quantisation; the measurements change gradually relative to the
measurement accuracy in this case, resulting in a “stepped” signal
which causes problems during learning and inference.

1Various gases are dissolved in the bloodstream, and the partial pressure
is used to quantify the amount of each. It is the amount of pressure that a
particular gas would exert on a container if it was present without the other
gases.
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TABLE I
PHYSIOLOGICAL MEASUREMENT CHANNELS

Channel name Label

Core body temperature (�C) Core temp.
Diastolic blood pressure (mmHg) Dia. Bp

Heart rate (bpm) HR
Peripheral body temperature (�C) Periph. temp.
Saturation of oxygen in pulse (%) SpO2
Systolic blood pressure (mmHg) Sys. Bp

Transcutaneous partial pressure of CO2 (kPa) TcPCO2
Transcutaneous partial pressure of O2 (kPa) TcPO2

C. Learning normal dynamics

In training the FSLDS model for this application, we first learn
the “normal” dynamics for a baby. Much of the time, infants in
intensive care are in a stable condition. Because infants with a low
gestational age are usually asleep and motionless, there tends to be
low variability in their vital signs when in a stable condition. The
physiological systems underlying the observation channels are
too complicated to model explicitly, being governed by complex
interactions between a number of different sub-systems including
the central nervous system. Instead, the approach adopted here
is to try to find relatively simple models that are statistically
compelling.

The approach used here for fitting linear Gaussian state-space
models to each observation channel is first illustrated with heart
rate observations, which are generally the least stable and most
difficult to model of the observed channels. We then go on to
show how this approach is adapted to model the other observed
channels. Our resulting joint model is univariate in each observa-
tion channel, so that A and Q have a block diagonal structure.
This makes it easy to add or remove channels from the overall
model, and to specify the dependence of the state and channel
dynamics on various factors.

1) Normal heart rate dynamics: Looking at examples of
normal heart rate dynamics as in the top left and right panels
of Figure 5, it can be observed first of all that the measurements
tend to fluctuate around a slowly drifting baseline. This motivates
the use of a model with two hidden components: the signal xt, and
the baseline bt. These components are therefore used to represent
the true heart rate, without observation noise. The dynamics can
be formulated using autoregressive (AR) processes, such that an
AR(p

1

) signal varies around an AR(p
2

) baseline, as given by the
following equations:

xt � bt ⇠ N

 p1
X

k=1

↵k(xt�k � bt�k), ⌘
1

!

, (11)

bt ⇠ N

 p2
X

k=1

�kbt�k, ⌘
2

!

, (12)

where ⌘
1

, ⌘
2

are noise variances. For example, an AR(2) signal
with AR(2) baseline has the following state-space representation:

xt =

2

6

6

4

xt

xt�1

bt

bt�1

3

7

7

5

, A =

2
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6

4
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2
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2
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, (13)
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Fig. 5. In these two examples, HR measurements (in the top left and top
right panels) are varying quickly within normal ranges. The estimates of the
underlying signal (bottom left and bottom right panels) are split into a smooth
baseline process and zero-mean high frequency component.

Q =

2

6

6

4

⌘
1

+ ⌘
2

0 0 0

0 0 0 0

0 0 ⌘
2

0

0 0 0 0

3

7

7

5

, C = [1 0 0 0] . (14)

It is straightforward to adjust this construction for different values
of p

1

and p
2

. The measurements are therefore generally taken
to be made up of a baseline with low frequency components
and a signal with high frequency components. We begin training
this model with a heuristic initialisation, in which we take
sequences of training data and remove high frequency components
by applying a symmetric 300-point moving average filter. The
resulting signal is taken to be the low frequency baseline. The
residual between the original sequences and the moving-averaged
sequences are taken to contain both stationary high frequency
hemodynamics as well as measurement noise. These two signals
can be analysed according to standard methods and modelled as
AR or integrated AR processes (specific cases of autoregressive
integrated moving average (ARIMA) processes [37]) of arbitrary
order. Heart rate sequences were found to be well modelled by
an AR(2) signal varying around an ARIMA(1,1,0) baseline. An
ARIMA model is a compelling choice for the baseline, because
with a low noise term it produces a smooth drift2. Having found
this initial setting of the model parameters, EM updates are then
applied [17]. This has been found to be particularly useful for
refining the estimates of the noise terms Q and R.

Examples of the heart rate model being applied as a Kalman
filter to heart rate sequences are shown in Figure 5. The top panels
show sequences of noisy heart rate observations, and the lower
panel shows estimates of the high frequency and low frequency
components of the heart rate.

2) Other channels : Most of the remaining observation chan-
nels are modelled according to the same principle. Heart rate,

2The ARIMA(1,1,0) model has the form (Xt � �Xt�1) = ↵1(Xt�1 �
�Xt�2) + Zt where � = 1 and Zt ⇠ N(0, �2

Z). This can be expressed in
un-differenced form as a non-stationary AR(2) model. In our implementation
we set � = 0.999 and with |↵1| < 1 we obtain a stable AR(2) process, which
helps to avoid problems with numerical instability. This slight damping makes
the baseline mean-reverting, so that the resulting signal is stationary. This has
desirable convergence properties for dropout modelling.

(Quinn	et	al.,	TPAMI	2008)



Measurements	confounded	by	
interventions	&	measurement	errors

(Quinn	et	al.,	TPAMI	2008)
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Fig. 6. Inferred distributions of switch settings for two situations involving recalibration of the transcutaneous probe. BS denotes a blood sample, TR denotes
a recalibration, and TD denotes a core temperature probe disconnection. In panel (a) the recalibration is preceeded by a dropout, followed by a blood sample.
Diastolic BP is shown as a dashed line which lies below the systolic BP plot. Transcutaneous readings drop out at around t = 1200 before the recalibration.
In panel (b), the solid line shows the core temperature and the dashed line shows incubator temperature. A core temperature probe disconnection is identified
correctly, as well as the recalibration. Temperature measurements can occasionally drop below the incubator temperature if the probe is near to the portals;
this is accounted for in the model by the system noise term Q.
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Fig. 7. Inferred distributions of switch settings for two further situations in which there are effects due to multiple known factors. In panel (a) there are
incidences of bradycardia, after which the incubator is entered. There is disturbance of heart rate during the period of handling, which is correctly taken to
be associated with the handling and not an example of spontaneous bradycardia. In panel (b), bradycardia and blood samples are correctly inferred. During
the blood sample, heart rate measurements (supplied by the blood pressure sensor) are interrupted.
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Outline

1. Clinical	text
– Case	study:	Prediction	of	sepsis	(severe	infection)	

from	electronic	health	records
2. Physiological	time-series
– Case	study:	Monitoring	babies	in	neonatal	ICUs
– Case	study:	Detecting	atrial	fibrillation

3. Imaging
– Cardiology,	pathology,	radiology



Predicting	morbidity	in	preterm	
newborns

Saria	et	al.,
Science	Translational	
Medicine	 2010



Can	we	predict	major	complications?

• Preterm	neonates	34	weeks	gestational	age	or	less	
and	<2000	g	in	weight	

• Goal:	estimate	probability	infant	would	have	high	
morbidity	(HM),	using	data	in	first	3	hours	of	life
– Includes	death,	sepsis,	hemorrhage,	pulmonary	
hypertension,	acute	hemodynamic	instability,	and	
retinopathy	of	prematurity

– Outcomes	can	manifest	days	or	weeks	later
• A	benefit	of	using	only	first	3	hours	is	that	data	not	
typically	confounded	by	medical	intervention
– Models	may	generalize	better	across	NICUs



Figure	from:	http://www.medicinehack.com/2010/05/apgar-scoring.html



Goal	of	study

• “Electronic”	Apgar	score
• Better	inform	decisions	regarding
– Aggressive	use	of	intensive	care
– Need	for	transport	to	tertiary	centers
– Resource	allocation	(currently	$26	billion	per	year	
in	US	spent	because	of	preterm	birth)



Machine	learning	setup

• Binary	classification
• Features:
– Mean	heart	rate	(+	base	and	residual	variability);	mean	
respiratory	rate	(+base	and	residual	variability);	mean	
oxygen	saturation	and	cumulative	hypoxia	time

– Gestational	age	and	birth	weight	

• 138	preterm	neonates	(35	with	HM	complications)
• Leave-one-out	cross-validation	– no	need	for	nested	
cross-validation	since	no	hyperparameter tuning

HM	=	high	morbidity
LM	=	low	morbidity



Deriving	the	features:	variability

thereby removing the need for end-user expertise. When integrated
into a bedsidemonitor, the algorithmwould indicate the statistical like-
lihood that an individual patient is at high risk of major morbidities,
allowing real-time use of the PhysiScore calculation. This method of
deployment would effectively provide an automated electronic Apgar
score, with significantly higher predictive accuracy regarding neonatal
morbidity.

The PhysiScore’s ability to assess physiologic disturbances before it
can be confounded by medical intervention makes it particularly de-
scriptive of initial patient acuity; thus, it is particularly well suited as a
tool for quality assessment betweenNICUs. Identification of a patient’s
future risk of developing HM complications may be particularly useful
for decision-making in primary nurseries to make more informed de-
cisions regarding aggressive use of intensive care, need for transport to

higher levels of care, and resource allocation. Such economic, social, and
medical advantages should be evaluated in a large-scale clinical trial.

Technical considerations
Although we have a relatively small sample size, analysis methods ap-
propriate to small sample sizes (15) were used, and ROC curves were
made only for morbidities seen in >10% of our population. Ourmodel,
with its automatic factormodeling and selection, requires essentially no
parameter tuning, which greatly helps to prevent overfitting in small
samples.

In addition, our sample is from a single tertiary care center and was
limited to patients born in our institution to ensure that continuous
physiological data were available for the first hours of life. Validation
in other settings will be required.

Detection of IVH remains elusive in
the field of neonatal medicine. Previous
work reported that fractal analysis of
the original newborn heartbeat may be
an early indicator of IVH (14), but yielded
no better sensitivity than PhysiScore. It is
possible that the underlying pathophys-
iology of IVH is variable (16), particularly
in infants in whom severe IVH is the only
morbidity. Although IVH is usually asso-
ciatedwith cardiopulmonary instability, re-
cent literature suggests that there may be
genetic predisposition to isolated IVH, po-
tentially limiting the role of antecedentphys-
iological signals before large hemorrhages
(17). Thus, it is possible that the small num-
ber of infants with isolated IVH that were
not identified as high risk by PhysiScore
represents a distinct subpopulation.

Advanced computational techniques
in modern medical settings
The use of computer-based techniques to
integrate and interpret patterns in patient
data to automate morbidity prediction
has the potential to improvemedical care.
The current U.S. governmental mandate
to improve electronic health record use and
gain economic benefit from using digital
data (18) facilitates the use of computer-
based tools. Flexible Bayesian modeling
with almost no tunable parameters allows
our approach to be easily applied to a range
of different prediction tasks, allowing use
of the highly informative but underused
data obtaineddaily for thousands of acutely
ill patients.

MATERIALS AND METHODS

Ethics statement
All work was performed under protocol
8312 approved by Stanford’s Panel on

Fig. 4. Processing signal subcomponents. Differing heart rate variability in two neonates matched for
gestational age (29 weeks) and weight (1.15 ± 0.5 kg). Original and base signals are used to compute the
residual signal. Differences in variability can be appreciated between the neonate predicted to have HM
(right) versus LM (left) by PhysiScore.

Fig. 5. Distribution of residual heart rate variability (HRvarS) in all infants. Learned parametric distributions
overlaid on the data distributions for HRvarS displayed for the HM versus LM categorization.
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(Saria	et	al.,	Science	Translational	Medicine	 2010)

LM	(low	morbidity) HM	(high	morbidity)



• L2-regularized	logistic	regression	used	to	learn	predict	
whether	baby	will	be	“high	morbidity”	(HM):

• Non-linear	transformation	applied	to	the	features:
– Estimate	Pr(vi |	C)	for	each	class	of	patient	C={HM	or	LM})	using	

parametric	models:	exponential,	Weibull,	lognormal,	gamma
– Use	 log	odds	ratio	of	observed	 value	as	feature	 if	observed,	 0	if	the	

value	is	missing:

– No	need	to	do	imputation	with	this	approach!
– Also	use	missingness indicators	given	that	it	is	often	informative

Prediction	using	probabilistic	model

acute hemodynamic instability. Long-term morbidity was defined by
moderate or severe bronchopulmonary dysplasia (BPD), retinopathy
of prematurity (ROP) stage 2 or greater, intraventricular hemorrhage
(IVH) grade 3 or 4, and necrotizing enterocolitis (NEC) on the basis of
the strong association of these complications with adverse neurode-
velopmental outcome. Deathwas also included in the long-termmorbid-
ity group. Most infants in the HM category had short- and long-term
complications affecting multiple organ systems. Infants with only com-
mon problems of prematurity such asmild respiratory distress syndrome
(RDS) and patent ductus arteriosus (PDA) without major complications
were classified as LM.

Probabilistic score for illness severity
We developed a method to estimate the probability that an infant
would be in the HM category on the basis of physiological signals
recorded in the first 3 hours of life plus gestational age and birthweight.
This time period was selected for analysis because it is less likely to be
confounded by medical interventions and provides prediction early
enough in the infant’s life to be useful for planning therapeutic strategy.

First, we processed the physiological signals (heart rate, respiratory
rate, and oxygen saturation) that were recorded for all infants for the
first 3 hours after birth. Mean values plus baseline and residual varia-
bility signals (capturing both short- and long-termvariability) were cal-
culated for heart and respiratory rates.Mean oxygen saturation and the
ratio of hypoxia (oxygen saturation <85%) to normoxia over the 3-hour
span were calculated.

We then defined the probability for illness severity with a logistic
function that aggregated individual risk features as

PðHMjv1,v2,:::,vnÞ ¼ 1þ exp bþ w0*cþ ∑
n

i¼1
wi*f ðviÞ

! "! "−1

ð1Þ

wherenwas the number of risk factors and c= logP(HM)/P(LM)was the
a priori log odds ratio. The ith characteristic, vi (physiological parameter,
gestational age, orweight)was used to derive a numerical risk feature f(vi)
via nonlinear Bayesian modeling (detailed in Materials and Methods).
The score parameters b and w were learned from the training data for
use in prospective risk prediction. The parameterwi represents theweight
of the contribution of the ith characteristic to the computed probability
score, with higher weight characteristics having a greater effect.

PhysiScore is a probability score that ranges from 0 to 1, with higher
scores indicating higher morbidity. PhysiScore is calculated by inte-
grating the following 10 patient characteristics into Eq. 1: mean heart
rate, base and residual variability; mean respiratory rate, base and
residual variability; mean oxygen saturation and cumulative hypoxia
time; gestational age and birth weight. Each of these patient character-
istics carries a specific learned weight, as denoted by w in Eq. 1. Plotting

Table 2. Performance summary with AUCs.

Apgar SNAP-II SNAPPE-II CRIB PhysiScore

Predicting high morbidity 0.6978 0.8298 0.8795 0.8509 0.9151

Infection 0.7412 0.8428 0.9087 0.8956 0.9733

Cardiopulmonary 0.7198 0.8592 0.9336 0.9139 0.9828

Table 1. Baseline and disease characteristics of the study cohort. SGA,
small for gestational age; NOS, not otherwise specified.

Category

Subjects (N) 138

Birth weight (g) 1367 ± 440

Gestational age (weeks) 29.8 ± 3

Gender, female 68

Apgar score at 5 min 7 ± 3

SGA (≤5th percentile) 7

Multiple gestation

Total 46

Twins 20

Triplets 6

Respiratory distress syndrome 112

Pneumothorax 10

Bronchopulmonary dysplasia

Total 29

NOS* 2

Mild 12

Moderate 5

Severe 10

Pulmonary hemorrhage 2

Pulmonary hypertension 3

Acute hemodynamic instability 11

Retinopathy of prematurity (ROP)†

Total 25

Stage I 9

Stage II 12

Stage III 4

Intraventricular hemorrhage (IVH)‡

Total 34

Grade 1 19

Grade 2 7

Grade 3 3

Grade 4 5

Posthemorrhagic hydrocephalus 6

Culture-positive sepsis 11

Necrotizing enterocolitis

Total 8

Stage 1 2

Stage 2 4

Stage 3 2

Expired 4

*Infants with oxygen requirement at 28 days for whom oxygen requirement was not known at 36
weeks aftermenstrual age. †ROP is counted by themost severe stage in either eye during the
hospitalization. ‡IVH is counted by the most severe grade in either cerebral hemisphere by
Papile classification.
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f(vi) = log

Pr(vi | HM)

Pr(vi | LM)



Prediction	using	probabilistic	model

thereby removing the need for end-user expertise. When integrated
into a bedsidemonitor, the algorithmwould indicate the statistical like-
lihood that an individual patient is at high risk of major morbidities,
allowing real-time use of the PhysiScore calculation. This method of
deployment would effectively provide an automated electronic Apgar
score, with significantly higher predictive accuracy regarding neonatal
morbidity.

The PhysiScore’s ability to assess physiologic disturbances before it
can be confounded by medical intervention makes it particularly de-
scriptive of initial patient acuity; thus, it is particularly well suited as a
tool for quality assessment betweenNICUs. Identification of a patient’s
future risk of developing HM complications may be particularly useful
for decision-making in primary nurseries to make more informed de-
cisions regarding aggressive use of intensive care, need for transport to

higher levels of care, and resource allocation. Such economic, social, and
medical advantages should be evaluated in a large-scale clinical trial.

Technical considerations
Although we have a relatively small sample size, analysis methods ap-
propriate to small sample sizes (15) were used, and ROC curves were
made only for morbidities seen in >10% of our population. Ourmodel,
with its automatic factormodeling and selection, requires essentially no
parameter tuning, which greatly helps to prevent overfitting in small
samples.

In addition, our sample is from a single tertiary care center and was
limited to patients born in our institution to ensure that continuous
physiological data were available for the first hours of life. Validation
in other settings will be required.

Detection of IVH remains elusive in
the field of neonatal medicine. Previous
work reported that fractal analysis of
the original newborn heartbeat may be
an early indicator of IVH (14), but yielded
no better sensitivity than PhysiScore. It is
possible that the underlying pathophys-
iology of IVH is variable (16), particularly
in infants in whom severe IVH is the only
morbidity. Although IVH is usually asso-
ciatedwith cardiopulmonary instability, re-
cent literature suggests that there may be
genetic predisposition to isolated IVH, po-
tentially limiting the role of antecedentphys-
iological signals before large hemorrhages
(17). Thus, it is possible that the small num-
ber of infants with isolated IVH that were
not identified as high risk by PhysiScore
represents a distinct subpopulation.

Advanced computational techniques
in modern medical settings
The use of computer-based techniques to
integrate and interpret patterns in patient
data to automate morbidity prediction
has the potential to improvemedical care.
The current U.S. governmental mandate
to improve electronic health record use and
gain economic benefit from using digital
data (18) facilitates the use of computer-
based tools. Flexible Bayesian modeling
with almost no tunable parameters allows
our approach to be easily applied to a range
of different prediction tasks, allowing use
of the highly informative but underused
data obtaineddaily for thousands of acutely
ill patients.

MATERIALS AND METHODS

Ethics statement
All work was performed under protocol
8312 approved by Stanford’s Panel on

Fig. 4. Processing signal subcomponents. Differing heart rate variability in two neonates matched for
gestational age (29 weeks) and weight (1.15 ± 0.5 kg). Original and base signals are used to compute the
residual signal. Differences in variability can be appreciated between the neonate predicted to have HM
(right) versus LM (left) by PhysiScore.

Fig. 5. Distribution of residual heart rate variability (HRvarS) in all infants. Learned parametric distributions
overlaid on the data distributions for HRvarS displayed for the HM versus LM categorization.
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Distribution	 of	heart	rate	
variability	for	patients	with	HM	

(high	morbidity)

Distribution	 of	heart	rate	
variability	for	patients	with	LM	

(low	morbidity)

Maximum	likelihood	fit	
of	a	log-Normal	
distribution



Mean	heart	rate

Short-term	variability	of	heart	rate

Long-term	variability	of	heart	rate

Mean	respiratory	rate

Short-term	variability	of
respiratory	rate

Long-term	variability	of
respiratory	rate

Mean	oxygen	saturation

%	of	time	spent	below	85%	oxygen
saturation

blood pressure, lowest core body temperature, lowest serum pH,
multiple seizures, urine output, and FiO2/PaO2 ratio); these were re-
tained in SNAP-II. SNAPPE-II is calculated with the same data as
SNAP-II, along with the 5-min Apgar score, small for gestational
age status, and birth weight. The additional variables present in
SNAPPE-II were found to be independent risk factors for mortality
(5). None of these scores, however, discriminate morbidity risk as well
as PhysiScore, which integrates a small set of continuous physiolog-
ical measures calculated directly from standard vital sign monitors.

An intriguing aspect of our findings is that PhysiScore provides
high-accuracy predictions about morbidity risk from limited initial
data (only 3 hours), even when such outcomes manifest days or weeks
later (for example, BPD or NEC). PhysiScore gives positive weight to
loss of short-term heart rate variability, much in the way that fetal heart
rate monitoring uses loss of short-term heart rate variability to predict

fetal distress and guide deliverymanagement (13). PhysiScore addition-
ally identifies short-term respiratory variability as having high predic-
tive value, suggesting that further exploration of this factor in other
settings might be warranted. Although the precise source of variability
loss—either pre- or postnatally—is unknown, autonomic dysregula-
tion likely plays a role.Whether short-term variability loss causes mor-
bidity or is simply a marker of illness is not clear at this point.

Unlike fetal heart ratemonitoring or heart rate spectral analysis (14)
in the neonate, our approach usesmultiple physiological parameters to
improve accuracy and provide long-term predictions that extend be-
yond acute risk. Unlike biomarkers, such predictions are made with
data that are already being collected in NICUs. Patient oxygenation,
heart rate, and respiratory rate can be automatically processed to
compute a score, and a predetermined sensitivity/specificity threshold
can be used to make morbidity predictions to guide clinical actions,

Fig. 3. The significance of different physiological parameters in predict-
ing high morbidity. (A) The learned weight (wi in Eq. 1) for each phys-
iological parameter incorporated in PhysiScore; error bars indicate

variation in the weight over the different folds of the cross-validation.
(B) The nonlinear function associating the parameter with the risk of
high versus low morbidity.
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the receiver operating characteristic (ROC) curve (Fig. 1A) and associated
area under the curve (AUC) values (Table 2) shows that PhysiScore ex-
hibits good discriminative ability for prediction of morbidity andmor-
tality risk and compares it to other risk assessment tools. Specifically,
PhysiScore was compared to the Apgar score, long used as an indicator
for the base physiological state of the newborn (11), as well as to exten-
sively validated neonatal scoring systems that require invasive labora-
tory measurements [Score for Neonatal Acute Physiology-II (SNAP-II)
(5), SNAP Perinatal Extension-II (SNAPPE-II) (5), and Clinical Risk
Index for Babies (CRIB) (6)]. For making predictions with the Apgar
score, we constructed a model as in Eq. 1 using the 1- and 5-min Apgar
scores as the only two inputs; this combinedmodel outperformed either
of the twoApgar scoreswhenused in isolation. PhysiScore (AUC0.9197)
performed well across the entire range of the ROC curve and signif-
icantly better (P < 0.003) (12) than all four of the other comparison
scores (Table 2). PhysiScore’s largest performance gain occurred in
the high-sensitivity/specificity region of the ROC curve. Setting a user-
defined threshold based on desired sensitivity and specificity allows

optimization for individual settings. For example, in our neonatal in-
tensive care unit (NICU), a threshold of 0.5 achieves a sensitivity of
86% at a specificity of 95% for HM, as seen in Fig. 1A (inset). Alter-
nately, the use of a lower threshold would improve sensitivity at the
expense of specificity.

We added the values obtained from laboratory tests to determine the
magnitude of their contribution to risk prediction beyond the PhysiScore
alone (Fig. 1B), incorporating parameters included in standard risk
prediction scores (for example, SNAPPE-II): white blood cell count,
band neutrophils, hematocrit, platelet count, and initial blood gasmea-
surement of PaO2 (partial pressure of oxygen, arterial), PaCO2 (partial
pressure of carbon dioxide, arterial), and pH (if available at <3 hours of
age). No additional discriminatory powerwas achieved, suggesting that
laboratory information is largely redundant with the patient’s physio-
logical characteristics.

To further assess the performance of PhysiScore, we analyzed predic-
tion performance for infants in major morbidity categories. Specifically,
we extracted two categories: infection (NEC, culture-positive sepsis, uri-

Fig. 1. (A) ROC curves demonstrating PhysiScore’s performance in predicting high morbidity as it relates to conventional scoring systems. (B)
PhysiScore’s performance with laboratory studies. (C) Predictions for infants with infection-related complications. (D) Predictions for infants with
major cardiopulmonary complications.
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blood pressure, lowest core body temperature, lowest serum pH,
multiple seizures, urine output, and FiO2/PaO2 ratio); these were re-
tained in SNAP-II. SNAPPE-II is calculated with the same data as
SNAP-II, along with the 5-min Apgar score, small for gestational
age status, and birth weight. The additional variables present in
SNAPPE-II were found to be independent risk factors for mortality
(5). None of these scores, however, discriminate morbidity risk as well
as PhysiScore, which integrates a small set of continuous physiolog-
ical measures calculated directly from standard vital sign monitors.

An intriguing aspect of our findings is that PhysiScore provides
high-accuracy predictions about morbidity risk from limited initial
data (only 3 hours), even when such outcomes manifest days or weeks
later (for example, BPD or NEC). PhysiScore gives positive weight to
loss of short-term heart rate variability, much in the way that fetal heart
rate monitoring uses loss of short-term heart rate variability to predict

fetal distress and guide deliverymanagement (13). PhysiScore addition-
ally identifies short-term respiratory variability as having high predic-
tive value, suggesting that further exploration of this factor in other
settings might be warranted. Although the precise source of variability
loss—either pre- or postnatally—is unknown, autonomic dysregula-
tion likely plays a role.Whether short-term variability loss causes mor-
bidity or is simply a marker of illness is not clear at this point.

Unlike fetal heart ratemonitoring or heart rate spectral analysis (14)
in the neonate, our approach usesmultiple physiological parameters to
improve accuracy and provide long-term predictions that extend be-
yond acute risk. Unlike biomarkers, such predictions are made with
data that are already being collected in NICUs. Patient oxygenation,
heart rate, and respiratory rate can be automatically processed to
compute a score, and a predetermined sensitivity/specificity threshold
can be used to make morbidity predictions to guide clinical actions,

Fig. 3. The significance of different physiological parameters in predict-
ing high morbidity. (A) The learned weight (wi in Eq. 1) for each phys-
iological parameter incorporated in PhysiScore; error bars indicate

variation in the weight over the different folds of the cross-validation.
(B) The nonlinear function associating the parameter with the risk of
high versus low morbidity.
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Detecting	atrial	fibrillation
The AliveCor ECG Device

● 3 generations of a single-channel (LA-RA lead I 
equivalent) ECG

● Transmitted to smartphone or tablet into the 
microphone (over the air) which digitizes at 44.1 
kHz and 24-bit resolution with software 
demodulation in real-time. 

● Frequency modulated with a carrier frequency of 
19 kHz and a 200 Hz/mV modulation index. 

● Stored as 300 Hz, 16-bit data with bandwidth 
0.5-40 Hz  with +/- 5 mV dynamic range. 

AliveCore ECG	
device
ECG	=	electrocardiogram



What	type	of	heart	rhythm?
Normal	rhythm

AF	rhythm

Other	 rhythm

Noisy	recording

Classify short ECG data into:

[Clifford,	Liu,	Moody,	Mark.	PhysioNet Computing	 in	Cardiology	Challenge	 2017]



 

Abstract—ECG Feature Extraction plays a significant role in 
diagnosing most of the cardiac diseases. One cardiac cycle in an 
ECG signal consists of the P-QRS-T waves. This feature 
extraction scheme determines the amplitudes and intervals in the 
ECG signal for subsequent analysis. The amplitudes and 
intervals value of P-QRS-T segment determines the functioning 
of heart of every human. Recently, numerous research and 
techniques have been developed for analyzing the ECG signal. 
The proposed schemes were mostly based on Fuzzy Logic 
Methods, Artificial Neural Networks (ANN), Genetic Algorithm 
(GA), Support Vector Machines (SVM), and other Signal 
Analysis techniques. All these techniques and algorithms have 
their advantages and limitations. This proposed paper discusses 
various techniques and transformations proposed earlier in 
literature for extracting feature from an ECG signal. In addition 
this paper also provides a comparative study of various methods 
proposed by researchers in extracting the feature from ECG 
signal. 
 

Keywords—Artificial Neural Networks (ANN), Cardiac Cycle, 
ECG signal, Feature Extraction, Fuzzy Logic, Genetic Algorithm 
(GA), and Support Vector Machines (SVM). 

I. INTRODUCTION 
The investigation of the ECG has been extensively used for 

diagnosing many cardiac diseases. The ECG is a realistic 
record of the direction and magnitude of the electrical 
commotion that is generated by depolarization and re-
polarization of the atria and ventricles. One cardiac cycle in an 
ECG signal consists of the P-QRS-T waves. Figure 1 shows a 
sample ECG signal. The majority of the clinically useful 
information in the ECG is originated in the intervals and 
amplitudes defined by its features (characteristic wave peaks 
and time durations). The improvement of precise and rapid 
methods for automatic ECG feature extraction is of chief 
importance, particularly for the examination of long 
recordings [1]. 

The ECG feature extraction system provides fundamental 
features (amplitudes and intervals) to be used in subsequent 
automatic analysis. In recent times, a number of techniques 
have been proposed to detect these features [2] [3] [4]. The 
previously proposed method of ECG signal analysis was based 
on time domain method. But this is not always adequate to 
study all the features of ECG signals. Therefore the frequency 
representation of a signal is required. The deviations in the 
normal electrical patterns indicate various cardiac disorders. 
Cardiac cells, in the normal state are electrically polarized [5]. 

 

ECG is essentially responsible for patient monitoring and 
diagnosis. The extracted feature from the ECG signal plays a 
vital in diagnosing the cardiac disease. The development of 
accurate and quick methods for automatic ECG feature 
extraction is of major importance. Therefore it is necessary 
that the feature extraction system performs accurately. The 
purpose of feature extraction is to find as few properties as 
possible within ECG signal that would allow successful 
abnormality detection and efficient prognosis.  

 
 

Figure.1 A Sample ECG Signal showing P-QRS-T Wave 
 

In recent year, several research and algorithm have been 
developed for the exertion of analyzing and classifying the 
ECG signal. The classifying method which have been 
proposed during the last decade and under evaluation includes 
digital signal analysis, Fuzzy Logic methods, Artificial Neural 
Network, Hidden Markov Model, Genetic Algorithm, Support 
Vector Machines, Self-Organizing Map, Bayesian and other 
method with each approach exhibiting its own advantages and 
disadvantages. This paper provides an over view on various 
techniques and transformations used for extracting the feature 
from ECG signal. In addition the future enhancement gives a 
general idea for improvement and development of the feature 
extraction techniques.  

 
The remainder of this paper is structured as follows. Section 

2 discusses the related work that was earlier proposed in 
literature for ECG feature extraction. Section 3 gives a general 
idea of further improvements of the earlier approaches in ECG 

ECG Feature Extraction Techniques - A Survey 
Approach 
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the actual detection in order to attenuate
other signal components and artifacts, such
as P-wave, T-wave, baseline drift, and
incoupling noise. Whereas the attenuation
of the P- and T-wave as well as baseline
drift requires high-pass filtering, the sup-
pression of incoupling noise is usually ac-
complished by a low-pass filter. The
combination of low and high pass means
effectively the application of a bandpass
filter, in this case with cut-off frequencies
at about 10 Hz and 25 Hz.

In many algorithms, high- and low-pass
filtering are carried out separately. Some
algorithms, such as [3, 7, 33, 38, 45, 78,
83], use only the high-pass filter part. The
filtered signals are then used for the gener-
ation of a feature signal in which the occur-
rence of a QRS complex is detected by
comparing the feature against fixed or
adaptive thresholds. Almost all algorithms
use additional decision rules for the reduc-
tion of false-positive detections.

Derivative-Based Algorithms
The high-pass filter is often, in particu-

lar in the older algorithms, realized as a
differentiator. This points out the usage of
the characteristic steep slope of the QRS
complex for its detection. Difference
equations of possible differentiator filters
are [3, 7, 33, 38, 45, 78, 83]

y n x n x n1 1 1( ) ( ) ( )= + − − (1)

y n x n x n

x n x n
1 2 2 1

1 2 2

( ) ( ) ( )

( ) ( )

= + + +
− − − − (2)

y n x n x n1 1( ) ( ) ( )= − − (3)
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⎨
⎩

Θ
Θ Θ (5)

and Θ is an amplitude threshold deter-
mined from the measured ECG signal
x n( ). In most cases, the differentiator from
Eq. (1) is used. Some algorithms also
compute the second derivative. It can be
estimated by [3, 7]

y n x n x n x n2 2 2 2( ) ( ) ( ) ( )= + − + − . (6)

Typical features z n( ) of such algo-
rithms are the differentiated signal itself
[33, 38, 78]

z n y n( ) ( )= 1 , (7)

a linear combination of the magnitudes of
the first and the second derivative [7]

z n y n y n( ) . | ( )| . | ( )|= +13 111 2 , (8)

or a linear combination of the smoothed
first derivative magnitude and the magni-
tude of the second derivative [3]

z n y n y n( ) ~ ( ) | ( )|= +1 2 (9)

where ~ ( ) { . , . , . }*| ( )|y n y n1 10 25 0 5 0 25= and
*denotes the linear convolution operator.

The detection of a QRS complex is ac-
complished by comparing the feature
against a threshold. Usually the threshold
levels are computed signal dependent
such that an adaption to changing signal
characteristics is possible. For the feature
in Eq. (7), the threshold [33, 38, 78]

Θx x= ⋅0 3 0 4. . max[ ]K (10)

is proposed, where the maximum is deter-
mined online or from the current signal
segment. Most QRS detectors use this or a
similar method to determine the threshold.

The peak detection logic is frequently
completed by further decision rules that
are applied in order to reduce the number
of false-positive detections. Such rules
usually put heuristically found constraints
on the timing and the sign of the features
or introduce secondary thresholds to ex-
clude non-QRS segments of the ECG with

QRS-like feature values [3, 7, 33, 38, 45,
78, 81, 103].

Algorithms Based on Digital Filters
Algorithms based on more sophisti-

cated digital filters were published in [12,
26, 29, 30, 41, 55, 65, 67, 81, 83, 85, 101,
106, 107, 123].

In [83] an algorithm is proposed where
the ECG is filtered in parallel by two dif-
ferent low-pass filters with different
cut-off frequencies. The difference be-
tween the filter outputs is effectively the
bandpass filtered ECG y n1( ), which is af-
terwards further processed by

y n y n y n k
k m

m

2 1 1
2

2

( ) ( ) ( )= +
⎡
⎣⎢

⎤
⎦⎥= −

∑ .
(11)

This nonlinear operation leads to a rel-
ative suppression of small values and a
slight smoothing of the peaks. The feature
signal z n( ) is formed out of y n2( ) by putt-
ing additional sign constraints on the out-
put signal of the low pass with the higher
cut-off frequency. The threshold is com-
puted adaptively by Θ = max[ ( )] /z n 8.

In [106] and [107] the MOBD (multi-
plication of backward difference) algo-
rithm is proposed. It is essentially an
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2. Common structure of the QRS detectors.
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AND-combination of adjacent magnitude
values of the derivative. The MOBD of
the order N is then defined by

z n x n k x n k
k

N

( ) | ( ) ( )|= − − − −
=

−

∏
0

1

1 .
(12)

In order to avoid a high feature signal
during noisy segments, an additional sign
consistency constraint is imposed; i.e.,

z n

x n k x n k

( )

[ ( )] [ ( )],

=
− ≠ − −

0

1if sign sign
(13)

where k N= −0 1 2, , ,K . A proposed value
for the order of MOBD is N = 4 [107].
The threshold Θ is set to the feature maxi-
mum zmax after the refractory period and
then halved whenever a fixed time period
is elapsed. The threshold is bounded by a
lower limit that is also adaptive.

The algorithms described in [41] and
[85] use basically the same preprocessor.
The ECG is bandpass filtered and after-

wards differentiated. The feature signal z n( )
is computed by squaring and averaging the
output of the differentiator. The bandpass
and differentiator use filter coefficients that
are particularly suited for an implementa-
tion on fixed-point processors with a short
word length. For the peak detection, a vari-
able v is introduced that contains the value
of the most recent feature maximum. Peaks
in the feature signal are detected by compar-
ing the feature againstv. If the feature drops
below v 2 a peak is detected. Then the cur-
rent value of v is taken as the peak height
andv is reset to the current value of the fea-
ture signal; i.e., v z n= ( ). The principle of
the peak detection is shown in Fig. 3. The
fiducial mark is set to the location of the
largest peak in the bandpass-filtered signal
in an interval from 225 ms to 125 ms pre-
ceding a peak detection. The fiducial mark
and the height of the peak are put into an
event vector that is further processed by the
decision stage. In the decision stage, a QRS
peak level LP and a noise level LN are esti-
mated recursively by

L n L n AP P P P P( ) ( ) ( )= ⋅ − + − ⋅λ λ1 1

(14)

L n L n AN N N N P( ) ( ) ( )= ⋅ − + − ⋅λ λ1 1 ,

(15)

where λN and λP are forgetting factors
(e.g., λ ≈ 0 98. ) and AP is the peak ampli-
tude. Depending on whether a peak is
classified as QRS complex or as a noise
peak, either the QRS peak level LP or the
noise level LN is updated using Eq. (14) or
Eq. (15), respectively. Eventually, the de-
tection threshold is determined from

Θ = + ⋅ −L L LN P Nτ ( ), (16)

where the positive threshold coefficient
τ <1 is a design parameter.

In [67] the feature signal z n( ) is com-
puted in a way similar to [41] and [85] but
using different filters. In contrast to [41]
and [85], the feature signal is divided into
segments of 15 points. The maximum of
each segment is compared to an adaptive
noise level and an adaptive peak level esti-
mate and classified depending on the dis-
tance to each of the estimates. The fiducial
point of the QRS complex is set to the loca-
tion within the QRS segment where the
maximum of the ECG and a zero crossing
in its first derivative occur at the same time.

Although [26] describes an ECG
waveform detection by neural networks,
the QRS detection is accomplished using
a feature extractor based on digital filter-
ing. The feature signal z n( ) is generated by
filtering the ECG with two different
bandpass filters and afterwards multiply-
ing the filter outputs w n( ) and f n( ); i.e.,

z n w n f n( ) ( ) ( )= ⋅ . (17)

This procedure is based on the assump-
tion that a QRS complex is characterized
by simultaneously occurring frequency
components within the passbands of the
two bandpass filters. The multiplication
operation performs the AND-combina-
tion. That is, only if both filter outputs are
high then the feature is high and indicates
a QRS complex. The location of the maxi-
mum amplitude in the feature is taken as
the location of the R-wave.

The use of recursive and nonrecursive
median filters, i.e.
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is proposed, for example, in [123]. The
median operator applied to a vector
x = [ , , ]x xN1 K means sorting the ele-
ments of the vector according to their val-
ues and then taking the midpoint
y N= xsorted ( / )2 as the filter output. In
[123] a combination of two median filters
and one smoothing filter is used to form a
bandpass filter. The additional signal pro-
cessing steps are similar to [41, 85].

Generalized digital filters for ECG
processing with the transfer function

H z z z K LK L( ) ( )( ) ,= − + >− −1 1 01

(20)
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physionet.org/physiobank/database/mitdb). The atrial fibrilla- 
tion database contains 300 atrial fibrillation episodes, sampled at 
250 Hz for 10 h from Holter tapes of  25 subjects. The onset/end 
of atrial fibrillation was annotated by trained observers. The 
timing of each QRS complex was determined by an automatic 
detector. 

The contents of  the MIT-BIH atrial fibrillation database are 
summarised in Table 1. The MIT-BIH arrhythmia database 
includes two categories (the 100 series and the 200 series) and 
contains 48 subjects: The 100 series consists of  23 subjects, 
and the 200 series consists of  25 subjects. The 100 series 
includes normal sinus rhythm, paced rhythm, bigeminy, 
trigeminy and supraventricular tachycardia, but it does not 
have atrial fibrillation. The 200 series includes eight atrial 
fibrillation subjects out of 25. The 200 series also includes 
atrial bigeminy, atrial flutter, supraventricular tachyarrhythmia 
ventricular flutter and ventricular tachycardia. More detailed 
information about the MIT-BIH arrhythmia database can be 
found at http://www.physionet.org/physiobank/database/ 
html/mitdbdir/tables.htm. In the preliminary work (TATENO 
and GLASS, 2000), we used only eight atrial fibrillation subjects 
from the 200 series as test data. Here, we use all the subjects of  
the 200 series and the 100 series. 

Fig. 1 shows a typical time series of RR intervals from a 
patient with atrial fibrillation. The solid line represents the 
duration of atrial fibrillation. This line is set to atrial fibrillation 
when atrial fibrillation occurs; otherwise, it is set to N, which 
signifies a rhythm that is not atrial fibrillation. At the onset of  
atrial fibrillation, the rhythm dramatically changes and becomes 
irregular, with large fluctuations. In paroxysmal atrial fibrilla- 
tion, there is sudden starting and stopping of atrial fibrillation, as 
indicated in Fig. 1. 

ARR is defined as being the difference between two succes- 
sive RR intervals. We prepared standard density histograms as a 
template for atrial fibrillation detection from the MIT-BIH atrial 
fibrillation database. Blocks of  50 successive beats were con- 
sidered during atrial fibrillation in all subjects in the MIT-BIH 
atrial fibrillation database. Each block falls into one of 16 

Table 1 Profile o f  MIT-BIH atrial qbrillation database 

Hours Episodes Beats 

Atrial fibrillation 91.59 299 510293 
Atrial flutter 1.27 13 10640 
Other 156.12 309 700626 

Total 248.98 621 1221559 

different classes, identified by the mean value: 350-399ms, 
400-449 ms, 450-499 ms etc. 

2.1 C V  test 

The coefficient of variation is the standard deviation of the RR 
intervals divided by the mean RR interval. The coefficient of  
variation of ARR is defined to be the standard deviation of the 
ARR intervals divided by the mean RR interval. (As the ARR 
histograms are symmetrical and the mean value in each of the 
ARR histograms is approximately 0, it is not useful to divide the 
standard deviation of the ARR intervals by the mean ARR 
interval.) As the coefficients of  variation of both the RR and 
the ARR intervals are approximately constant during atrial 
fibrillation, we should be able to use the coefficients of  variation 
to detect atrial fibrillation. 

The coefficients of  variation of the RR and ARR intervals in a 
test record are compared with the standard coefficients of  
variation to detect atrial fibrillation. The standard density histo- 
grams give us the standard coefficients of  variation. To test for 
atrial fibrillation, we consider the 100 beat segment centred on 
each beat in the record and obtain the coefficient of  variation of 
the segment. We define an acceptable range of the coefficient of  
variation R~. i f  the coefficient of  variation of the test record is 
within the standard coefficient of  variation -4-R~ %, the rhythm 
is labelled as atrial fibrillation. We call this the CV test. 

2.2 Kolmogorov-Smirnov test 

We compare the N~e v (= 20, 50, 100,200) beat segment 
centred on each beat in the record. For each beat, we determine 
the density histogram of the RR and ARR intervals and compare 
these with the standard density histograms. The differences 
between the density histograms in a given patient and the 
standard histograms are evaluated using the Kolmogorov- 
Smirnov test (see P~ESS et al. (1992), Section 14.3). Fig. 2 
shows an example of  cumulative probability distributions of  the 
standard histogram and a test histogram. 

In the Kolmogorov-Smirnov test, the greatest distance D 
between the cumulative probability distributions is measured. In 
other words, we assess whether two given distributions are 
different from each other. The Kolmogorov-Smirnov test 
returns ap-value as follows: 

o o  • 

p =  Q(2)= 2 Z ( - 1 ) J  2j222 

j = l  

where 2 = ( d ~ e  + 0.12 + 0 . 1 1 / d ~ e  ) * D. N e = N t N 2 / ( N t +  
N2). N t is the number of data points in the standard distribution. 
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Fig. 1 Time series showing RR intervals from subject 202 from 
MIT-BIH arrhythmia database. ( ) Assessment o f  atrial 
fibrillation (AF) or non-atrial fibrillation (N) as reported in 
database 

Fig. 2 
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Medical & Biological Engineering & Computing 2001, Vol. 39 665 [Tateno	&	Glass,	Automatic	detection	of	atrial	fibrillation	using	the	coefficient	of	variation	and	density	
histograms	of	RR	and	ΔRR	intervals.	MBEC,	2001]
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A sequence of heart-beat intervals (R-R wave intervals) is automatically trans-
formed into a  three-symbol  Markov chain sequence.  For  convenience the symbols
used may be thought of as S-R-L for short, regular, and long heart-beat intervals,
respectively. The probabihty  that the observed sequence was generated by each of a
set  of  prototype models  character is t ic  of  different  cardiac disorders  is  computed.
That prototype corresponding to the largest probability of observed sequence gener-
ation is designated as the disorder. This procedure is the equivalent of Kullback’s
classification by the minimization of directed divergence procedure.

In a p~Iimina~  experiment p~marily using data  sequences  of  100 hear t -beat
intervals ,  35 dif ferent  known cases  were  automat ical ly  c lass i f ied into  s ix  cardiac
disorders without error. The disorders considered were atrial obviation,  APC  and
VPC,  b igeminy,  s inus  tachycardia  wi th  occas ional  b igeminy.  s inus  tachycardia ,
and ventricular tachycardia.

An automatic procedure to classify cardiac arrhythmjas using a Markov chain
interpretation of heart-beat interval data is reported. A sequence of heart-beat
intervals (R-R wave intervaIs)  is automatically transformed into a three-symbol
Markov chain sequence.’ For convenience the symbols used may be thought of
as S-R-L for short, regular and long heart-beat intervals, respectively. A measure
of the probability  that the observed sequence was generated by each of a set of
prototypic models characteristic of different cardiac disorders is computed. That
prototype corresponding to the largest probability of observed sequence genera-

* The work was supported in part by grant $5  ROl  HE 11022-03 SGYA, “Arrhythmia Recog-
nition After Cardiac Surgery,” National Heart Institute, National Institutes of Health. Computa-
t ions were performed at  the ACME facil i ty of  the Stanford Unive~ity  Medical  Center.

t Wil l  Gersch is  on leave f rom Purdue Univers i ty ,  Center  of  Appl ied  Storhastics,  School  of
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1 Accomplished by a computing algorithm that operates on the derivative of the EKG data to

select the onset of successive QRS  compiexes.
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Abstract 

Artificial neural network8 (ANN#) were used a8 pat- 
tern detectors to  detect atrial fibrillation (AF) in the 
MIT-BIH Arrhythmia Database. ECG data war repre- 
rented uring generalized interval tranrition matrices, an 
in Markov model AF detectors[l]. A training file war 
developed, uring there transition matricer, for a back- 
propagation ANN. Thir file conrirted of approzimately 
15 minuter each of AF and non-AF data. The ANN 
was ruccerfully trained uring thir data. Three rtandard 
databases were ured to  test network performance. Port- 
processing of the ANN output yielded an AF renaitivity 
of 92.86% and an AF positive predictive accuracy of 
92.34%. 

1 Introduction 

Cardiac arrhythmias may be classified using both mor- 
phology analysis, which classifies beats by shape, and 
timing analysis, which classifies beats by their arrival 
rates. Timing analysis is used to classify a subset of 
rhythms that includes premature beats, rapid heart 
rate, slow heart rate, and more generally, beats with ir- 
regular arrival times. Atrial fibrillation (AF) is a heart 
rhythm which is usually characterized by beats with 
normal morphology and with irregular arrival times. 
AF detection is most often based upon timing analy- 
sis. 

Atrial fibrillation detection is important because it is 
a common arrhythmia which often indicates underlying 
heart disease. AF can also complicate automated de- 
tection of other arrhythmias. This happens because it 
becomes impossible to define the prematurity of a beat 
in relation to its surrounding beats in AF. Because of 
this, atrial fibrillation detectors are usually included 
in automated arrhythmia analyzers. AF detection is 
difficult, however, because beat intervals in AF form 
no recognizable pattern, unlike other cardiac arrhyth- 
mias. Attempts have been made to detect AF based 

on R-R interval sequences using a variety of statistical 
methods [I] but there is room for improvement in these 
techniques. 

Pattern classifiers exist in many forms, and artificial 
neural networks ( ANNs) represent an important sub- 
set of these classifiers. ANNs are attractive for solving 
pattern recognition problems because few assumptions 
about the underlying data need to be made. The task 
of the operator of an ANN is to separate the data into 
subsets. The network wil l  be able classify these sub- 
sets according to type as long as they are distinct. Neu- 
ral network training requires appropriate training data, 
pre-processing and post-processing algorithms, an a p  
propriate network topology, and a training algorithm, 
as well as evaluation databases. This document will 
present the design and evaluation of a technique which 
detects AF in the presence of other cardiac arrhythmias 
using a backpropagation artificial neural network. 

2 Databases 

Three databases were used throughout this study. 
The first consisted of a subset of the MIT-BIH ECG 
database, summarized in table 1, which was used as a 
development database. A subset of this database was 
used for training of the ANN. The second database, 
used as an evaluation database and summarized in 
table 2, has been collected from Holter recordings 
specifically to test R-R interval-basedAF detectors. 
This database, called the MIT-BIH Atrial Fibrilla- 
tion/Flutter Database [2] contains 25 ten-hour records, 
each from a unique subject, and including over 300 
episodes of AF. The database consists of two anno- 
tation files for each recording - one containing QRS 
complex arrival times (for R-R interval measurements) 
and the other containing accurate rhythm change an- 
notations. In this database, beat labels indicate the 
time, but not the type, of each beat so the quantities 
of APBs, PVCs, Normal beats, and other beats are un- 
known. The third database was the AHA Database for 

17 3 
0-81 86-’U85-X/92 $3.00 Q 1992 IEEE 

Proceedings	 Computers	 in	Cardiology	(1991)



Winning	approach
• Training	data	in	2017	Physionet challenge:	~8500	ECGs
• Best	algorithms	use	a	combination	of	expert-derived	
features	and	machine	learning

[Teijeiro,	Garcia,	Castro,	Felix.	arXiv:1802.05998,	2018]
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Table 1: Set of features used to train the global classifier

tSR: Proportion of the record length interpreted as
a regular rhythm (Normal rhythm, tachycardia or
bradycardia).

t1b: Number of milliseconds from the beginning of the
record to the first interpreted heartbeat.

tOR: Number of milliseconds interpreted as a non-regular
rhythm.

longTch: Longest period of time with heart rate over
100bpm.

RR: Median RR interval of regular rhythms. RRd_std: Standard deviation of the instant RR variation.
RRd: Median Absolute Deviation (MAD) of the RR
interval in regular rhythms.

MRRd: Max. absolute variation of the RR interval in
regular rhythms.

RR_MIrr: Max. RR irregularity measure. RR_Irr: Median RR irregularity measure.
PNN{10,50,100}: Global PNNx measures. o_PNN50: PNN50 of non-regular rhythms.
mRR: Min. RR interval of regular rhythms. o_mRR: Min. RR interval of non-regular rhythms.
n_nP: Proportion of heartbeats with detected P-wave
inside regular rhythms.

n_aT: Median of the amplitude of the T waves inside
regular rhythms.

n_PR: Median PR duration inside regular rhythms. Psmooth: Median of the ratio between the standard
deviation and the mean value of P-waves’ derivative
signal.

Pdistd: MAD of the measure given by the P wave
delineation method.

MPdist: Max. of the measure given by the P wave
delineation method.

prof: Profile of the full signal. pw_profd: MAD of pw_prof.
xcorr: Median of the maximum cross-correlation
between QRS complexes interpreted in regular rhythms.

o_xcorr: Median of the maximum cross-correlation
between QRS complexes interpreted in non-regular
rhythms.

PRd: Global MAD of the PR durations. QT: Median of the corrected QT measure.
TP: Median of the prevailing frequency in the TP
intervals.

TPfreq: Median of the frequency entropy in the TP
intervals.

pw_prof: Profile measure of the signal in the P-wave area. nT: Proportion of QRS complexes with detected T waves.
n_Txcorr: Median of the maximum cross-correlation
between T-waves inside regular rhythms.

n_Pxcorr: Median of the maximum cross-correlation
between P-waves inside regular rhythms.

baseline: Profile of the baseline in regular rhythms. o_baseline: Profile of the baseline in non-regular
rhythms.

wQRS: Proportion of wide QRS complexes (duration
longer than 110ms).

wQRS_xc: Median of the maximum cross-correlation
between wide QRS complexes.

wQRS_prof: Median of the signal profile in the 300ms
before each wide QRS complex.

w_PR: Proportion of heartbeats with long PR interval
(longer than 210 ms).

x_xc: Median of the maximum cross-correlation between
ectopic beats.

x_rrel: Median of the ratio between the previous and
next RR intervals for each ectopic beat.

such an algorithm. Probably, the most labor-intensive task of our proposal was the
elucidation of the expert criteria underlying the training and test sets, and the ensuing
data relabeling to make these criteria as consistent as possible along the dataset.

Certainly, the most difficult class to define an appropriate discrimination knowledge
is the O class, inasmuch as the only provided information (the class name) is excessively
vague and it may include a range of pathophysiological processes showing very different
morphologies and rhythms. Hence, since this class is opposed to atrial fibrillation and
normal sinus rhythm, one expert may consider that only rhythm alterations should be
included in this class, while another expert may contemplate any event that is out of
normality, such as conduction delays or chamber enlargements, among others.

Thanks to the physiological meaning of the features provided by the interpretation,
it has been possible to throw light on some well-known ECG alterations that seem to
be considered as O representatives in the training set. A simple but valuable tool is the
per-class distribution of each feature. Figure 4 shows the distributions of three features

[Teijeiro,	Garcia,	Castro,	Felix.	arXiv:1802.05998,	2018]



Not	enough	data	for	deep	learning?	
Wrong	architectures?

“However,	the	fact	that	a	standard	random	
forest	with	well	chosen	features	performed	as	
well	as	more	complex	approaches,	indicates	
that	perhaps	a	set	of	8,528	training	patterns	
was	not	enough	to	give	the	more	complex	
approaches	an	advantage.	With	so	many	
parameters	and	hyperparameters to	tune,	the	
search	space	can	be	enormous	and	significant	
overtraining	was	seen…”

[Clifford	et	al.	AF	Classification	 from	a	Short	Single	Lead	ECG	Recording:	the	
PhysioNet/Computing	 in	Cardiology	Challenge,	 Computing	 in	Cardiology	2017]



[Rajpurkar et	al.,	arXiv:1707.01836,	2017;	Nature Medicine ‘19]



Differences	with	previous	work

• Sensor	is	a	Zio	patch	– conceivably	much	less	
noisy:

• ~90K	ECG	records	annotated	(from	~50K	patients)
• Identify	12	heart	arrhythmias,	sinus	rhythm	and	
noise	for	a	total	of	14	output	classes



Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks
Appendix

Train + Val Test
Class Description Example Patients Patients

AFIB Atrial Fibrilla-
tion 4638 44

AFL Atrial Flutter 3805 20

AVB TYPE2
Second degree
AV Block Type
2 (Mobitz II)

1905 28

BIGEMINY Ventricular
Bigeminy 2855 22

CHB Complete Heart
Block 843 26

EAR Ectopic Atrial
Rhythm 2623 22

IVR Idioventricular
Rhythm 1962 34



Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks

Train + Val Test
Class Description Example Patients Patients

JUNCTIONAL Junctional
Rhythm 2030 36

NOISE Noise 9940 41

SINUS Sinus Rhythm 22156 215

SVT Supraventricular
Tachycardia 6301 34

TRIGEMINY Ventricular
Trigeminy 2864 21

VT Ventricular
Tachycardia 4827 17

WENCKEBACH Wenckebach
(Mobitz I) 2051 29

Table 2. A list of all of the rhythm types which the model classifies. For each rhythm we give the label name, a more descriptive name
and an example chosen from the training set. We also give the total number of patients with each rhythm for both the training and test
sets.
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Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks

to-end on a single-lead ECG signal sampled at 200Hz and
a sequence of annotations for every second of the ECG
as supervision. To make the optimization of such a deep
model tractable, we use residual connections and batch-
normalization (He et al., 2016b; Ioffe & Szegedy, 2015).
The depth increases both the non-linearity of the compu-
tation as well as the size of the context window for each
classification decision.

We construct a dataset 500 times larger than other datasets
of its kind (Moody & Mark, 2001; Goldberger et al., 2000).
One of the most popular previous datasets, the MIT-BIH
corpus contains ECG recordings from 47 unique patients.
In contrast, we collect and annotate a dataset of about
30,000 unique patients from a pool of nearly 300,000 pa-
tients who have used the Zio Patch monitor1 (Turakhia
et al., 2013). We intentionally select patients exhibiting ab-
normal rhythms in order to make the class balance of the
dataset more even and thus the likelihood of observing un-
usual heart-activity high.

We test our model against board-certified cardiologists. A
committee of three cardiologists serve as gold-standard an-
notators for the 336 examples in the test set. Our model
exceeds the individual expert performance on both recall
(sensitivity), and precision (positive predictive value) on
this test set.

2. Model
Problem Formulation

The ECG arrhythmia detection task is a sequence-to-
sequence task which takes as input an ECG signal X =

[x1, ..xk], and outputs a sequence of labels r = [r1, ...rn],

such that each ri can take on one of m different rhythm
classes. Each output label corresponds to a segment of the
input. Together the output labels cover the full sequence.

For a single example in the training set, we optimize the
cross-entropy objective function

L(X, r) =

1

n

nX

i=1

log p(R = ri | X)

where p(·) is the probability the network assigns to the i-th
output taking on the value ri.

Model Architecture and Training

We use a convolutional neural network for the sequence-to-
sequence learning task. The high-level architecture of the
network is shown in Figure 2. The network takes as input
a time-series of raw ECG signal, and outputs a sequence
of label predictions. The 30 second long ECG signal is

1iRhythm Technologies, San Francisco, California
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Figure 2. The architecture of the network. The first and last layer
are special-cased due to the pre-activation residual blocks. Over-
all, the network contains 33 layers of convolution followed by a
fully-connected layer and a softmax.

sampled at 200Hz, and the model outputs a new prediction
once every second. We arrive at an architecture which is 33
layers of convolution followed by a fully connected layer
and a softmax.

In order to make the optimization of such a network
tractable, we employ shortcut connections in a similar man-
ner to those found in the Residual Network architecture (He
et al., 2015b). The shortcut connections between neural-
network layers optimize training by allowing information
to propagate well in very deep neural networks. Before
the input is fed into the network, it is normalized using a

Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks

Train + Val Test
Class Description Example Patients Patients

JUNCTIONAL Junctional
Rhythm 2030 36

NOISE Noise 9940 41

SINUS Sinus Rhythm 22156 215

SVT Supraventricular
Tachycardia 6301 34

TRIGEMINY Ventricular
Trigeminy 2864 21

VT Ventricular
Tachycardia 4827 17

WENCKEBACH Wenckebach
(Mobitz I) 2051 29

Table 2. A list of all of the rhythm types which the model classifies. For each rhythm we give the label name, a more descriptive name
and an example chosen from the training set. We also give the total number of patients with each rhythm for both the training and test
sets.

Input

[Rajpurkar et	al.,	arXiv:1707.01836,	2017;	Nature Medicine ‘19] Output

• 1-D	signal	sampled	at	200Hz,	
labeled	at	1	sec	intervals

• 34	layers
• Shortcut	connections	(ala	
residual	networks)	with	max-
pooling

• Subsampled	every	other	layer	
(28 in	total)



Example	of	1D	convolution
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Train + Val Test
Class Description Example Patients Patients

JUNCTIONAL Junctional
Rhythm 2030 36

NOISE Noise 9940 41

SINUS Sinus Rhythm 22156 215

SVT Supraventricular
Tachycardia 6301 34

TRIGEMINY Ventricular
Trigeminy 2864 21

VT Ventricular
Tachycardia 4827 17

WENCKEBACH Wenckebach
(Mobitz I) 2051 29

Table 2. A list of all of the rhythm types which the model classifies. For each rhythm we give the label name, a more descriptive name
and an example chosen from the training set. We also give the total number of patients with each rhythm for both the training and test
sets.

Input

2 3 1Filter

Output3 4 5 3 4 5 3

=	<1,0,1>*<2,3,1>	=	1*2	+	0*3	+	1*1	=	3.

?
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Seq Set

Model Cardiol. Model Cardiol.

Class-level F1 Score

AFIB 0.604 0.515 0.667 0.544
AFL 0.687 0.635 0.679 0.646
AVB TYPE2 0.689 0.535 0.656 0.529
BIGEMINY 0.897 0.837 0.870 0.849
CHB 0.843 0.701 0.852 0.685
EAR 0.519 0.476 0.571 0.529
IVR 0.761 0.632 0.774 0.720
JUNCTIONAL 0.670 0.684 0.783 0.674
NOISE 0.823 0.768 0.704 0.689
SINUS 0.879 0.847 0.939 0.907
SVT 0.477 0.449 0.658 0.556
TRIGEMINY 0.908 0.843 0.870 0.816
VT 0.506 0.566 0.694 0.769
WENCKEBACH 0.709 0.593 0.806 0.736

Aggregate Results

Precision (PPV) 0.800 0.723 0.809 0.763
Recall (Sensitivity) 0.784 0.724 0.827 0.744
F1 0.776 0.719 0.809 0.751

Table 1. The top part of the table gives a class-level comparison of
the expert to the model F1 score for both the Sequence and the Set
metrics. The bottom part of the table shows aggregate results over
the full test set for precision, recall and F1 for both the Sequence
and Set metrics.

ical, requiring immediate attention (Dubin, 1996).

Table 2 in the Appendix also shows the number of unique
patients in the training (including validation) set and test
set for each rhythm type.

4. Results
Evaluation Metrics

We use two metrics to measure model accuracy, using the
cardiologist committee annotations as the ground truth.

Sequence Level Accuracy (F1): We measure the aver-
age overlap between the prediction and the ground truth
sequence labels. For every record, a model is required to
make a prediction approximately once per second (every
256 samples). These predictions are compared against the
ground truth annotation.

Set Level Accuracy (F1): Instead of treating the labels for
a record as a sequence, we consider the set of unique ar-
rhythmias present in each 30 second record as the ground
truth annotation. Set Level Accuracy, unlike Sequence
Level Accuracy, does not penalize for time-misalignment
within a record. We report the F1 score between the unique
class labels from the ground truth and those from the model
prediction.

In both the Sequence and the Set case, we compute the
F1 score for each class separately. We then compute the
overall F1 (and precision and recall) as the class-frequency
weighted mean.

Model vs. Cardiologist Performance

We assess the cardiologist performance on the test set. Re-
call that each of the records in the test set has a ground
truth label from a committee of three cardiologists as well
as individual labels from a disjoint set of 6 other cardiolo-
gists. To assess cardiologist performance for each class, we
take the average of all the individual cardiologist F1 scores
using the group label as the ground truth annotation.

Table 1 shows the breakdown of both cardiologist and
model scores across the different rhythm classes. The
model outperforms the average cardiologist performance
on most rhythms, noticeably outperforming the cardiolo-
gists in the AV Block set of arrhythmias which includes
Mobitz I (Wenckebach), Mobitz II (AVB Type2) and com-
plete heart block (CHB). This is especially useful given
the severity of Mobitz II and complete heart block and the
importance of distinguishing these two from Wenckebach
which is usually considered benign.

Table 1 also compares the aggregate precision, recall and
F1 for both model and cardiologist compared to the ground
truth annotations. The aggregate scores for the cardiolo-
gist are computed by taking the mean of the individual car-
diologist scores. The model outperforms the cardiologist
average in both precision and recall.

5. Analysis
The model outperforms the average cardiologist score on
both the sequence and the set F1 metrics. Figure 4 shows
a confusion matrix of the model predictions on the test set.
Many arrhythmias are confused with the sinus rhythm. We
expect that part of this is due to the sometimes ambiguous
location of the exact onset and offset of the arrhythmia in
the ECG record.

Often the mistakes made by the model are understand-
able. For example, confusing Wenckebach and AVB Type2
makes sense given that the two rhythms in general have
very similar ECG morphologies. Similarly, Supraventric-
ular Tachycardia (SVT) and Atrial Fibrillation (AFIB) are
often confused with Atrial Flutter (AFL) which is under-
standable given that they are all atrial arrhythmias. We also
note that Idioventricular Rhythm (IVR) is sometimes mis-
taken as Ventricular Tachycardia (VT), which again makes
sense given that the two only differ in heart-rate and are
difficult to distinguish close to the 100 beats per minute de-
lineation.
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Figure 4. A confusion matrix for the model predictions on the test
set. Many of the mistakes the model makes are not surprising.
For example, confusing second degree AV Block (Type 2) with
Wenckebach makes sense given the often similar expression of
the two arrhythmias in the ECG record.

One of the most common confusions is between Ectopic
Atrial Rhythm (EAR) and sinus rhythm. The main distin-
guishing criteria for this rhythm is an irregular P wave. This
can be subtle to detect especially when the P wave has a
small amplitude or when noise is present in the signal.

6. Related Work
Automatic high-accuracy methods for R-peak extraction
have existed at least since the mid 1980’s (Pan & Tomp-
kins, 1985). Current algorithms for R-peak extraction tend
to use wavelet transformations to compute features from
the raw ECG followed by finely-tuned threshold based clas-
sifiers (Li et al., 1995; Martı́nez et al., 2004). Because ac-
curate estimates of heart rate and heart rate variability can
be extracted from R-peak features, feature-engineered al-
gorithms are often used for coarse-grained heart rhythm
classification, including detecting tachycardias (fast heart
rate), bradycardias (slow heart rate), and irregular rhythms.
However, such features alone are not sufficient to distin-
guish between most heart arrhythmias since features based
on the atrial activity of the heart as well as other features
pertaining to the QRS morphology are needed.

Much work has been done to automate the extraction of
other features from the ECG. For example, beat classifica-
tion is a common sub-problem of heart-arrhythmia classifi-
cation. Drawing inspiration from automatic speech recog-
nition, Hidden Markov models with Gaussian observation
probability distributions have been applied to the task of

beat detection (Coast et al., 1990). Artificial neural net-
works have also been used for the task of beat detection
(Melo et al., 2000). While these models have achieved
high-accuracy for some beat types, they are not yet suffi-
cient for high-accuracy heart arrhythmia classification and
segmentation. For example, (Artis et al., 1991) train a
neural network to distinguish between Atrial Fibrillation
and Sinus Rhythm on the MIT-BIH dataset. While the
network can distinguish between these two classes with
high-accuracy, it does not generalize to noisier single-lead
recordings or classify among the full range of 15 rhythms
available in MIT-BIH. This is in part due to insufficient
training data, and because the model also discards critical
information in the feature extraction stage.

The most common dataset used to design and evaluate ECG
algorithms is the MIT-BIH arrhythmia database (Moody
& Mark, 2001) which consists of 48 half-hour strips of
ECG data. Other commonly used datasets include the
MIT-BIH Atrial Fibrillation dataset (Moody & Mark, 1983)
and the QT dataset (Laguna et al., 1997). While useful
benchmarks for R-peak extraction and beat-level annota-
tions, these datasets are too small for fine-grained arrhyth-
mia classification. The number of unique patients is in the
single digit hundreds or fewer for these benchmarks. A
recently released dataset captured from the AliveCor ECG
monitor contains about 7000 records (Clifford et al., 2017).
These records only have annotations for Atrial Fibrillation;
all other arrhythmias are grouped into a single bucket. The
dataset we develop contains 29,163 unique patients and 14

classes with hundreds of unique examples for the rarest ar-
rhythmias.

Machine learning models based on deep neural networks
have consistently been able to approach and often exceed
human agreement rates when large annotated datasets are
available (Amodei et al., 2016; Xiong et al., 2016; He et al.,
2015c). These approaches have also proven to be effective
in healthcare applications, particularly in medical imaging
where pretrained ImageNet models can be applied (Esteva
et al., 2017; Gulshan et al., 2016). We draw on work in au-
tomatic speech recognition for processing time-series with
deep convolutional neural networks and recurrent neural
networks (Hannun et al., 2014; Sainath et al., 2013), and
techniques in deep learning to make the optimization of
these models tractable (He et al., 2016b;c; Ioffe & Szegedy,
2015).

7. Conclusion
We develop a model which exceeds the cardiologist perfor-
mance in detecting a wide range of heart arrhythmias from
single-lead ECG records. Key to the performance of the
model is a large annotated dataset and a very deep convolu-
tional network which can map a sequence of ECG samples



Summary	so	far

• We	are	nearly	always	in	realm	of	“not	enough	
data”

• Modeling	and	incorporating	prior	knowledge	
is	critical	to	good	performance

• Design	principles
– Derive	features	using	existing	clinical	knowledge
– Start	from	the	simplest	possible	model
– Share	statistical	strength	across	tasks



Outline

1. Clinical	text
– Case	study:	Prediction	of	sepsis	(severe	infection)	

from	electronic	health	records
2. Physiological	time-series
– Case	study:	Monitoring	babies	in	neonatal	ICUs
– Case	study:	Detecting	atrial	fibrillation

3. Imaging
– Cardiology,	pathology,	radiology



Image	classification
Input: Output:

label

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Krizhevsky,	Sutskever,	Hinton.	“ImageNet	Classification	with	Deep	
Convolutional	Neural	Networks”,	NIPS	‘12



Low	hanging	fruit:	applying	image	
classification	to	medicineImage classification:  an obvious task to mimic

1. Many simple disease recognition tasks exist in medicine - and can be 
carried out by an experienced radiologist in 2 minutes or less
1. e.g. lung cancer or not
2. pneumonia or not
3. breast cancer or not
4. fluid around the heart or not

2. Many of the first successes in medical image classification have 
involved situations with very large data sets, already labeled in the 
context of routine clinical care
1. Chest x-rays
2. Mammograms

3. Barriers to data export and sharing have limited the size of many 
other data sets

[Slide	credit:	Rahul	Deo,	BWH]



The	structure	of	the	heartThe structure of the heart

4 chambers: RA, RV, LA, LV
4 valves: TV, PV, MR, AV
2 circulations in series: 
pulmonary and systemic

[Slide	credit:	Rahul	Deo,	BWH]



Decisions	(sometimes)	guided	by	
imaging

Cardiac decisions are often (but not always) guided 
by inputs from imaging

Disease Decision Inputs
Heart failure Decision to implant a 

defibrillator to prevent 
sudden death

Symptoms + 
ejection fraction of 

the heart <35%

Coronary artery 
disease

Angioplasty and 
stenting of a coronary 

artery

Symptoms + 
stenosis > 70% 

Aortic stenosis Valve replacement Symptoms + 
valve area + 

enlargement of the 
heart

Atrial fibrillation Decision to start 
anticoagulation to 

prevent stroke

Age, sex, other 
diagnoses

Myocardial 
infarction

Decision to start 
aspirin and a statin to 
prevent a future heart 

attack

A risk model 
based on age, sex, 
lab values, blood 

pressure, diabetes

1. Information content of 
imaging can be very high … 
but decisions are based on 
historical patient populations 
followed through time with 
the relevant disease

2. Risk model and decision 
analysis is dictated by what 
data are available for these 
historical populations

3. Imaging is available for 
patient populations for 
which it is a part of the 
accepted management plan 
… but is unlikely to be found 
for other diseases given cost

[Slide	credit:	Rahul	Deo,	BWH]



Echocardiography	view	classificationView Classification - Our Take

Zhang … Deo, arXiv, 2017
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Echocardiography	segmentation
Segmentation using Convolutional Neural 

Networks

For all views, only 100-200 manually traced images were used for training

Ronneberger et al, 2015

We segment every frame of every video

Image CNNGround
Truth

Image CNNGround
Truth

[Slide	credit:	Rahul	Deo,	BWH]



Echocardiography	automated	
measurements

Deriving “Real World” Measurements:  
Comparisons to Thousands of Studies from the 
UCSF Clinical Echo Laboratory

We can make all of the common measurements for B-mode echo.

Metric Number of Echo 
Studies Used for 

Comparison

Median Value (IQR) Absolute Deviation - % of Manual 
(Automated vs. Manual Measurement)

50 75 95

Left atrial volume 4800 52.6 (40.0-71.0) 16.1 29.3 66.2

Left ventricular diastolic volume 8457 92.1 (71.8-119.1) 17.2 30.5 68.0

Left ventricular systolic volume 8427 33.2 (24.1-46.8) 26 47 108

Left ventricular mass 5952 148.0 (117.3-159.9) 15.1 27.6 61

Left ventricular ejection fraction 6407 64.8 (58.3-59.41) 9.7 17.2 39.9

Global longitudinal strain 418 19.0 (17.0-21.0) 7.5 13.6 30.8

Global longitudinal strain (Johns 
Hopkins PKD study)

110 18.0 (16.0-20.0) 9.0 17.1 39.4

[Slide	credit:	Rahul	Deo,	BWH]



Pathology

Proprietary & Confidential

TCGA:https://portal.gdc.cancer.gov

[Slide	credit:	Andy	Beck,	PathAI]



Pathologists	aren’t	consistent	–
opportunity	to	increase	reliability

Proprietary & Confidential

Discordance among pathologists is common in 
interpretation of breast biopsies

Pathologist Interpretation

Credit: Elmore et al. 
(JAMA 2015)

• Pathologists in individual practice setting

• Overall concordance rate of 75% on breast biopsies.

• Inter-observer concordance rate of only 48% for a 
diagnosis of atypia.

• Intra-observer concordance is only 79% overall and 
53% for atypical lesions

Ref: Jackson SL … Elmore JG. Ann Surg Oncol. 2017 May;24(5):1234-1241.  

[Slide	credit:	Andy	Beck,	PathAI]



Again,	we	can	apply	image	
classification	approaches

Proprietary & Confidential

Approach

• Standard image classification approach needs a twist for WSIs: 
sampling

Ptumor(I)

[Slide	credit:	Andy	Beck,	PathAI]



Deep	learning	model	outperforms	
human	pathologists	in	the	diagnosis	of	

metastatic	cancer

Proprietary & Confidential

Deep learning model outperforms human pathologists 
in the diagnosis of metastatic cancer

1 n=12

Error Rate (1-AUC)

Deep learning model 0.65%

2 Small tumors

Pathologists on micro-metastasis2 23 – 42%

Pathologists in clinical practice1 13 – 26%

Pathologists in competition 3.5%

References: Wang, Khosla, … Beck  (2016) https://arxiv.org/abs/1606.05718 Camelyon16 (JAMA, 2017)

Proprietary & Confidential

Deep learning model outperforms human pathologists 
in the diagnosis of metastatic cancer

1 n=12

Error Rate (1-AUC)

Deep learning model 0.65%

2 Small tumors

Pathologists on micro-metastasis2 23 – 42%

Pathologists in clinical practice1 13 – 26%

Pathologists in competition 3.5%

References: Wang, Khosla, … Beck  (2016) https://arxiv.org/abs/1606.05718 Camelyon16 (JAMA, 2017)

[Slide	credit:	Andy	Beck,	PathAI]



Breast	cancer	screeningBreast Cancer: Most Frequent Cancer in Women 
Worldwide

Every Year: 
• Of 3.8 billion women in 

the world, > 2 million 
diagnosed with breast 
cancer each year 

• > 40,000 deaths in the 
US alone 

• > 600,000 deaths in the 
world
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Classical	risk	scores
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Classical Risk Models
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Family History

Prior Breast Procedure

 Parity

Risk

AUC: 0.631Breast Density

AUC: 0.607 without Density



Using	image	classification	to	predict	
breast	density
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Triaging	mammograms

6 Patients

Triaging Mammograms
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1. Routine Screening

3. Biopsy

4. Diagnosis
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…
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Triaging	mammograms	– estimated	to	
reduce	mammograms	needing	to	be	

ready	by	20%

[Slide	credit:	Adam	Yala,	MIT]

Analysis: Simulating Impact 

Setting Sensitivity (95% CI) Specificity (95% CI) % Mammograms Read (95% CI)

Original Interpreting 
Radiologist

90.6% (86.7, 94.8) 93.0% (92.7, 93.3) 100% (100, 100)

Original Interpreting 
Radiologist + Triage

90.1% (86.1, 94.5) 93.7% (93.0, 94.4) 80.7% (80.0, 81.5)


