Machine Learning for Healthcare: Introduction

David Sontag Clinical Machine Learning Group MIT

All materials available online

 http://people.csail.mit.edu/dsontag/courses/ mlhc_summer19/

Instructors

- David Sontag
 - Associate Professor in EECS (course 6) and part of CSAIL and IMES
 - PhD '10, then 5 years as professor at NYU
 - Leads clinical machine learning research group
- Steven Horng, MD (tomorrow)
 - Board certified in emergency medicine and clinical informatics
 - Research on AI/ML in emergency medicine

Students

- ~30 students from as far as Pakistan and Australia
- Introduce yourself!
 - Name?
 - Where do you live?
 - What is your profession?
 - Why did you register for this class?

The Problem

- Cost of health care expenditures in the US are over \$3 trillion, and rising
- Despite having some of the best clinicians in the world, chronic conditions are
 - Often diagnosed late
 - Often inappropriately managed
- Medical errors are pervasive

Outline for morning

- **1. Brief history of AI and ML in healthcare**
- 2. Why now?
- 3. Examples of how ML will transform healthcare
- 4. What is *unique* about ML in healthcare?

1970's: MYCIN expert system

- 1970's (Stanford): MYCIN expert system for identifying bacteria causing severe infections
- Proposed a good therapy in ~69% of cases. Better than infectious disease experts

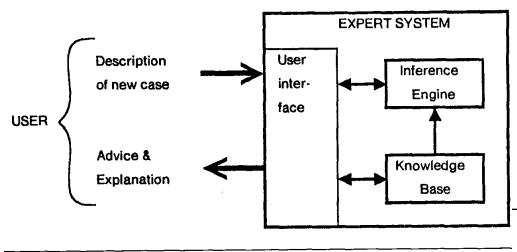


FIGURE 1-1 Major parts of an expert system. Arrows indicate information flow.

Dialogue interface

I am ready

** THIS IS A 26 YEAR OLD MALE PATIENT

My understanding is: The age of the patient is 26 The sex of the patient is male

** FIVE DAYS AGO, HE HAD RESPIRATORY-TRACT SYMPTOMS

What is his name?

** JO

My understanding is: The name of the patient is Jo Respiratory-tract is one of the symptoms that the patient had

** A COUPLE OF DAYS BEFORE THE ADMISSION, HE HAD A MALAISE

Please give me the date of admission

** MARCH 12, 1979

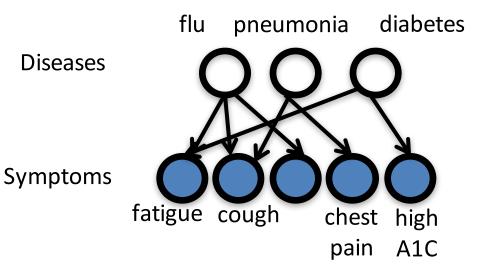
My understanding is:

The patient was admitted at the hospital 3 days ago Malaise is one of the symptoms that the patient had 5 days ago

FIGURE 33-1 Short sample dialogue. The physician's inputs appear in capital letters after the double asterisks.

1980's: INTERNIST-1/QMR model

- 1980's (Univ. of Pittsburgh): INTERNIST-1/Quick Medical Reference
- Diagnosis for internal medicine



Probabilistic model relating:

570 binary disease variables4,075 binary symptom variables45,470 directed edges

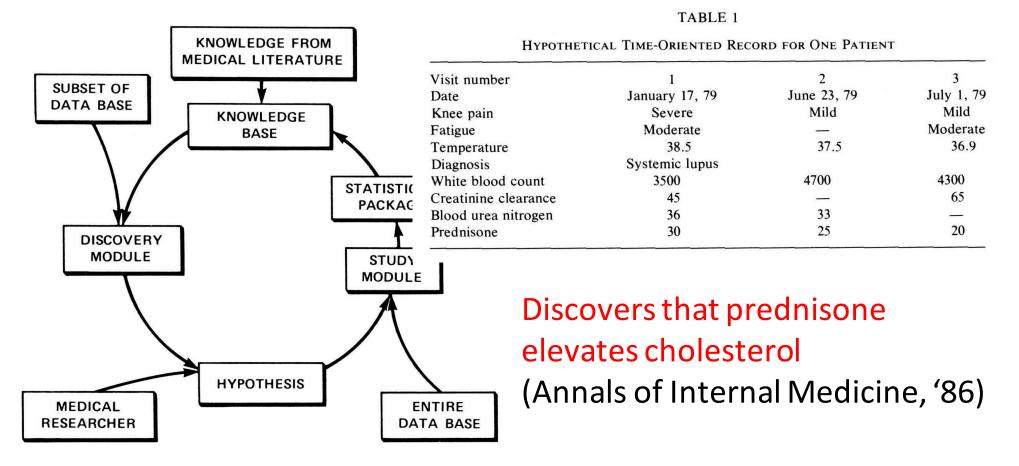
Elicited from doctors: **15 person-years of work**

Led to advances in ML & AI (Bayesian networks, approximate inference)

Problems: 1. Clinicians entered symptoms *manually*2. Difficult to maintain, difficult to generalize
[Miller et al., '86, Shwe et al., '91]

1980's: automating medical discovery

RX PROJECT: AUTOMATED KNOWLEDGE ACQUISITION



[Robert Blum, "Discovery, Confirmation and Incorporation of Causal Relationships from a Large Time-Oriented Clinical Data Base: The RX Project". Dept. of Computer Science, Stanford. 1981]

1990's: neural networks in medicine

- Neural networks with clinical data took off in 1990, with 88 new studies that year
- Small number of features (inputs)
- Data often collected by chart review

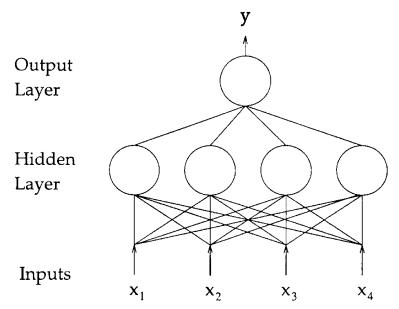


FIGURE 2. A multilayer perceptron. This is a two-layer perceptron with four inputs, four hidden units, and one output unit.

Problems: 1. Did not fit well into clinical workflow

- 2. Hard to get enough training data
- 3. Poor generalization to new places

[Penny & Frost, Neural Networks in Clinical Medicine. Med Decis Making, 1996]

	No. of Ex	amples				Accuracy§	
Subject	Training	Test	P†	Network	D‡	Neural	Other
Breast cancer ⁴	ancer ⁴ 57 20 60 9-15-2		0.6	80	75		
Vasculitis ²	404	403	73 8-5-1		8.0	94	
Myocardial infarction ⁶	351	331	89	89 20-10-10-1		97	84
Myocardial infarction ⁸	356	350	87			97	94
Low back pain ¹¹	100	100	25	50-48-2	0.2	90	90
Cancer outcome ¹³	5,169	3,102	_	54-40-1	1.4	0.779	0.776
Psychiatric length of stay ¹⁷	957	106	73	48-400-4	0.2	74	76
Intensive care outcome ²³	284	138	91	27-18-1	0.5	0.82	0.82
Skin tumor ²¹	150	100	80	18	<u> </u>	80	90
Evoked potentials ³⁵	100	67	52	14-4-3	3.8	77	77
Head injury47	500	500	50	6-3-3	20	66	77
Psychiatric outcome ⁵⁴	289	9 2	60	41-10-1	0.7	79	
Tumor classification55	53	6	38	8-9-3	1.4	99	88
Dementia ⁵⁷	75	18	19	80-10-7-7	0.6	61	
Pulmonary embolism59	607	606	69	50-4-1	2.9	0.82	0.83
Heart disease62	460	230	54	35-16-8-2	3	83	84
Thyroid function ⁶²	3,600	1,800	93	21-16-8-3	22	98	93
Breast cancer ⁶²	350	175	66	9-4-4-2	10	97	96
Diabetes ⁶²	384	192	65	8-4-4-2	12	77	75
Mycardial infarction ⁶³	2,856	1,429	56	291-1	9.8	85	
Hepatitis ⁶⁵	39	42	38	4-4-3	3.3	74	79
Psychiatric admission ⁷⁶	319	339	85	53-1-1	6.0	91	
Cardiac length of stay ⁸³	713	696	73	15-12-1	3.5	0.70	
Anti-cancer agents ⁸⁹	127	141	25	60-7-6	1.5	91	86
Ovarian cancer ⁹¹	75	98	_	6-6-2	2.6	84	81
Median value	350	175	71	20	2.8		

Table 1 • 25 Neural Network Studies in Medical Decision Making*

*For reference citations, see the reference list

[†]P = prior probability of most prevalent category.

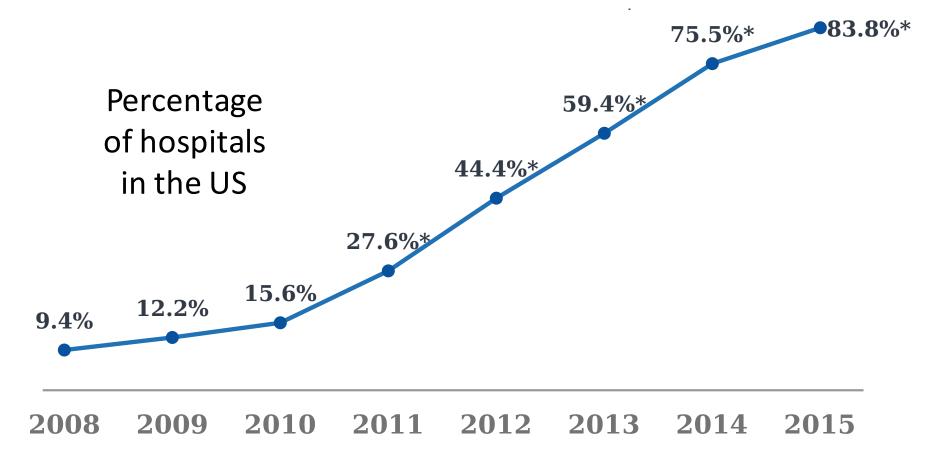
‡D = ratio of training examples to weights per output.

§A single integer in the accuracy column denotes percentage overall classification rate and a single real number between 0 and 1 indicates the AUROCC value. Neural = accuracy of neural net, Other = accuracy of best other method.

Outline for morning

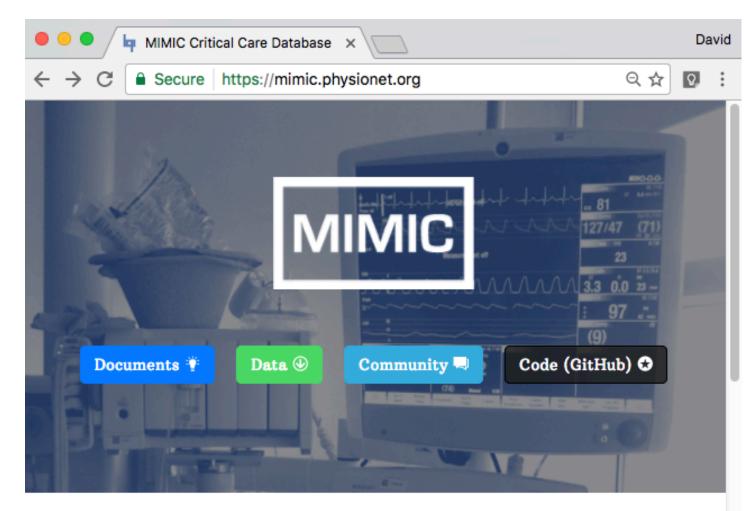
- 1. Brief history of AI and ML in healthcare
- 2. Why now?
- 3. Examples of how ML will transform healthcare
- 4. What is *unique* about ML in healthcare?

The Opportunity: Adoption of Electronic Health Records (EHR) has increased 9x in US since 2008



[Henry et al., ONC Data Brief, May 2016]

Large datasets



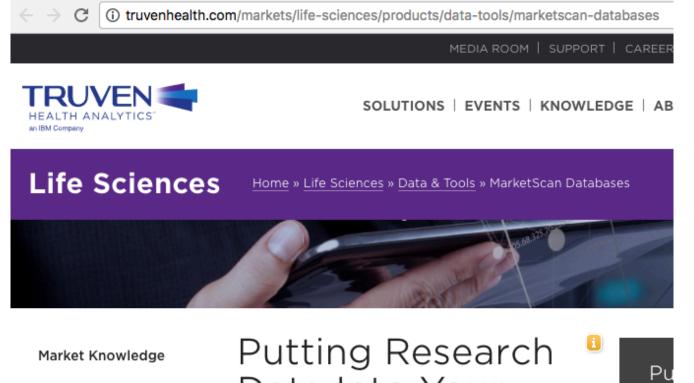
If you use MIMIC data or code in your work, please cite the following publication:

MIMIC-III, a freely accessible critical care database. Johnson AEW, Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, and Mark RG. Scientific Data (2016). DOI: 10.1038/sdata.2016.35. Available from: http://www.nature.com/articles/sdata201635 Massachusetts Institute of Technology Laboratory for Computational Physiology

De-identified health data from ~40K critical care patients

Demographics, vital signs, laboratory tests, medications, notes, ...

Large datasets



"Data on nearly 230 million unique patients since 1995"

Real World Evidence

Stakeholder Management

Data & Tools

MarketScan Databases

Treatment Pathways Inpatient/Outpatient View PULSE Heartbeat Profiler

Data Into Your Hands with the MarketScan Databases

\$\$\$

🖹 Mar Bibliog

The Family of MarketScan® Research Databases is :he largest of its kind in the industry, with data on nearly 230 million unique patients since 1995.

Large datasets

President Obama's initiative to create a 1 million person research cohort

Core data set:

- Baseline health exam
- Clinical data derived from electronic health records (EHRs)
- Healthcare claims
- Laboratory data

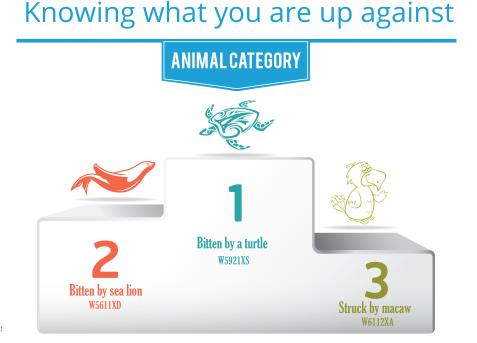
[Precision Medicine Initiative (PMI) working Group Report, Sept. 17 2015]

Diversity of digital health data

 Diagnosis codes: ICD-9 and ICD-10 (International Classification of Diseases)

ICD-9 codes 290–319: mental disorders ICD-9 codes 320–359: diseases of the nervous system ICD-9 codes 360–389: diseases of the sense organs ICD-9 codes 390–459: diseases of the circulatory system ICD-9 codes 460–519: diseases of the respiratory system ICD-9 codes 520–579: diseases of the digestive system ICD-9 codes 580–629: diseases of the genitourinary system ICD-9 codes 630–679: complications of pregnancy, childbirth,

[https://en.wikipedia.org/wiki/Lis t_of_ICD-9_codes]



THE MOST BIZARRE

ICD-10 CODES

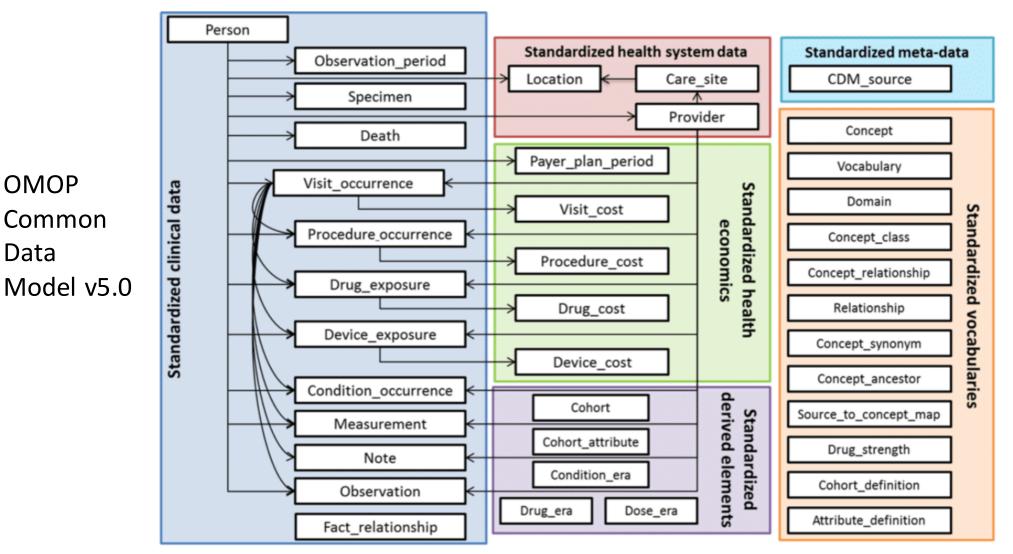
[https://blog.curemd.com/the-most-bizarreicd-10-codes-infographic/]

- Diagnosis codes: ICD-9 and ICD-10 (International Classification of Diseases)
- Laboratory tests: LOINC codes
- Pharmacy: National Drug Codes (NDCs)
- Unified Medical Language System (UMLS): millions of medical concepts

LOI From R	genstrief glucose				
	/5 🕨 🕨				
LOINC	LongName				
<u>27353-2</u>	Glucose mean value [Mass/volume] in Blood Estimated from glycated hemoglobin				
<u>2352-3</u>	Glucose in CSF/Glucose plas				
<u>49689-3</u>	Glucose tolerance [Interpretation] in Serum or Plasma Narrativepost 100 g glucose PO				
<u>49688-5</u>	1 Vial + 50 mL (NOC 0015-3475-11)				
72650-5	ation				

[http://oplinc.com/newsletter/index_May08.htm]

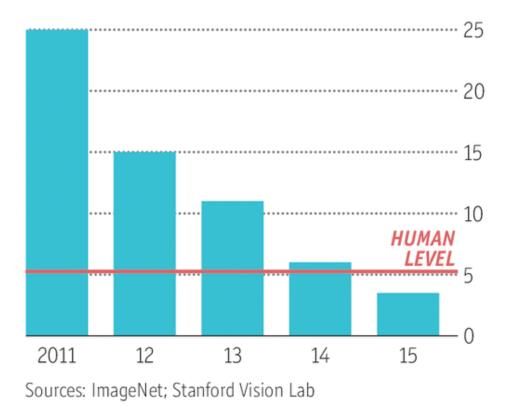
Implementer Support		Base Documentation, XML, JSON, REST API + Search, Data Types, Extensions						
	ientation, a	nd binding to e	xternal spe	cifications				
Support	Security & Privacy		Conformance		Terminology		Linked Dat	
Downloads, Common Use Cases, Testing Security, Consent Provenance AuditEvent				tatement, ValueSet,		c	RDF	
evel 3 Linking to real wor	ld concepts	in the healthca	ire system					
Administration		Patient, Practi	ctitioner, Device, Organization, Location, Healthcare Service					
evel 4 Record-keeping an	d Data Evcl	ange for the b	ealthcare n	TOCASS				
Clinical	Diagnos			Wedications		Workflow		
CarePlan, DetectedIssue, Specimer		rvation, Report, men, ingStudy,Genomics,etc		Order, Dispense, Administration, Statement, Immunization, etc.		Task, Appointment, Schedule, Referral, PlanDefinition, etc.		
Financial								
Pinancial								
Claim, Account, Coverag	e, Claim, El	igibilityRequest	, Explanatio	onOfBenefit, e	tc.			
		about the beat						
evel 5 Providing the abilit	y to reason	about the hear	incare proc	622				

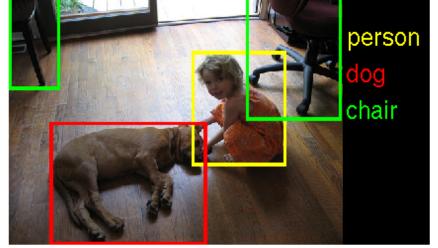


Breakthroughs in machine learning

Ever cleverer

Error rates on ImageNet Visual Recognition Challenge, %





Why now?

- Big data
- Algorithmic advances
- Open-source software

Economist.com

Breakthroughs in machine learning

- Major advances in ML & Al
 - Learning with high-dimensional features (e.g., l1regularization)
 - Semi-supervised and unsupervised learning
 - Modern deep learning techniques (e.g. convnets, variants of SGD)
- Democratization of machine learning
 - High quality open-source software, such as
 Python's scikit-learn, TensorFlow, Torch, Theano

Industry interest in ML & healthcare

IBM Watson for Oncology

Get oncologists the assistance they need to make more informed treatment decisions. Watson for Oncology analyzes a patient's mec information against a vast array of data and expertise to provide evidence-based treatment options.

Better heart health reimagined through artificial intelligence.

C Secure https://www.pathai.com

What we do

About us

Career

Pathologists

Who We Are

Bay Labs combines deep learning, a type of artificial intelligence, with cardiovascular imaging to help in the diagnosis and management of heart disease,

Pathology Evolved.

Partner with Us

Advanced learning toward faster, more accurate diagnosis of disease.

\$ Q

TOTAL VENTURE FUNDING

Source: Rock Health Funding Database

1: Shadowed portion shows projections for entire year of 2018, assuming current funding pace continues.

Note: Only includes U.S. deals >\$2M; data through June 30, 2018

OF DEALS

Industry interest in ML & healthcare

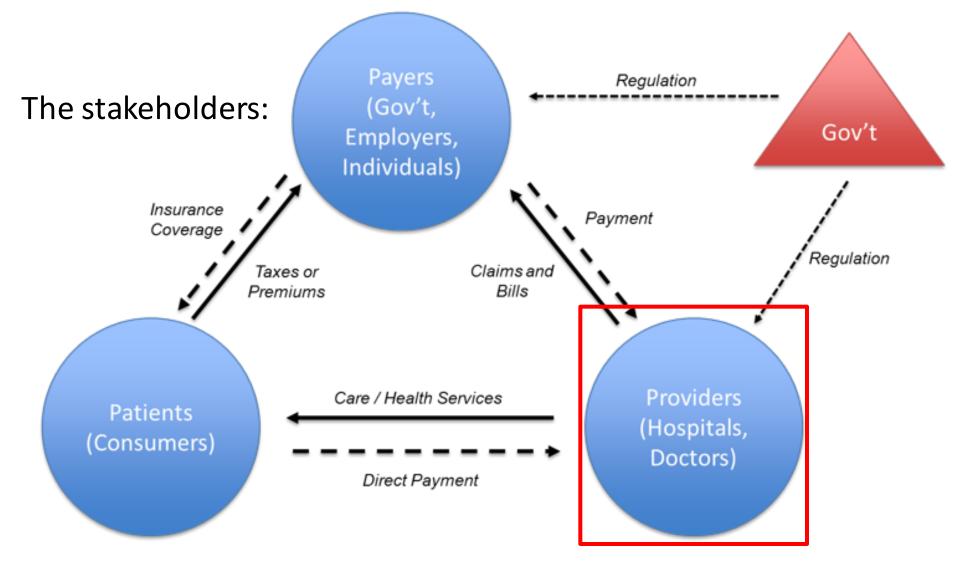
- Major acquisitions to get big data for ML:
 - Merge (\$1 billion purchase by IBM, 2015)
 medical imaging
 - Truven Health Analytics (\$2.6 billion purchase by IBM, 2016)
 health insurance claims
 - Flatiron Health (\$1.9 billion purchase by Roche, 2018)

electronic health records (oncology)

Outline for morning

- 1. Brief history of AI and ML in healthcare
- 2. Why now?
- 3. Examples of how ML will transform healthcare
- 4. What is *unique* about ML in healthcare?

ML will transform every aspect of healthcare



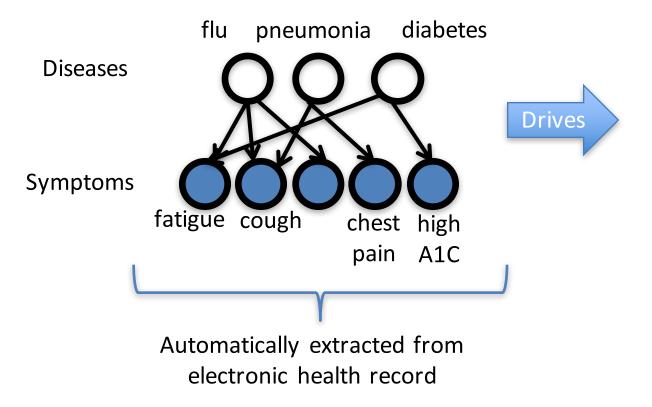
Source for figure:

http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

Emergency Department:

- Limited resources
- Time sensitive
- Critical decisions

Behind-the-scenes reasoning about the patient's conditions (current and future)

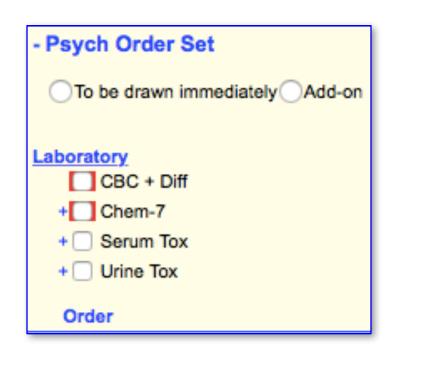


- Better triage
- Faster diagnosis
- Early detection of adverse events
- Prevent medical errors

Propagating best practices

The ED Dashboard decision support algorithms have determined that this patient may be eligible for the Atrius Cellulitis pathway. Please choose from the following options:
Enroll in pathway
Decline
You can include a comment for the reviewers: Mandatory if Declining
Below are links to the pathway and/or other supporting documents: Atrius Cellulitis Pathway

Anticipating the clinicians' needs



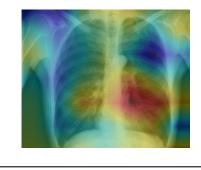
- Chest Pain Order Set
To be drawn immediately Add-on
Initial Place IV (saline lock); flush per protocol Continuous Cardiac monitoring Continuous Pulse oximetry
EKG (pick 1) Indication: Chest Pain Indication: Dyspnea
Laboratory CBC + Diff + Chem-7 Troponin
Aspirin (pick 1) Aspirin 324 mg PO chewed Aspirin 243 mg PO chewed Aspirin taken before arrival
Imaging XR Chest PA & Lateral

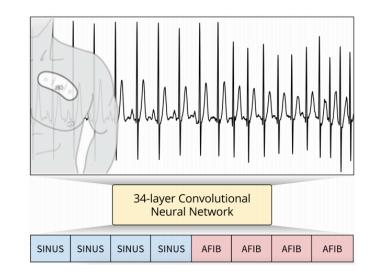
Reducing the need for specialist consults

Input Chest X-Ray Image

CheXNet 121-layer CNN

Output Pneumonia Positive (85%)

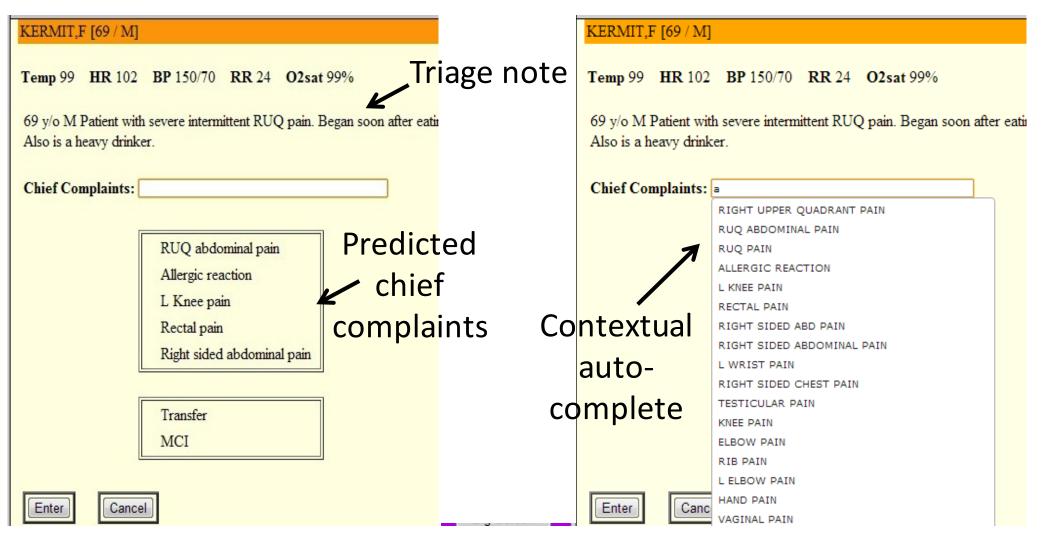




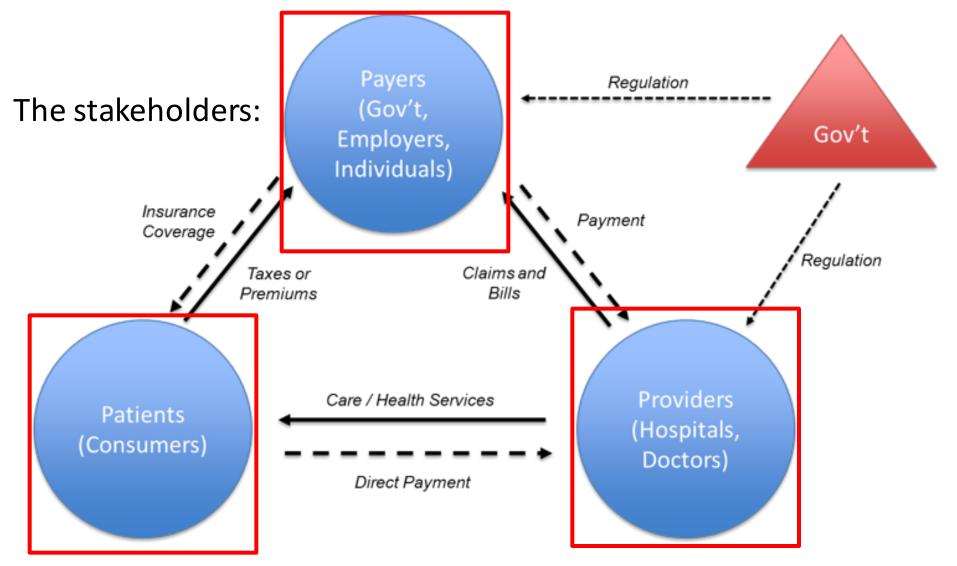
Arrhythmia?

Figure sources: Rajpurkar et al., arXiv:1711.05225'17 Rajpurkar et al., arXiv:1707.01836, '17

Automated documentation and billing



ML will transform every aspect of healthcare



Source for figure:

http://www.mahesh-vc.com/blog/understanding-whos-paying-for-what-in-the-healthcare-industry

Predicting a patient's future disease progression

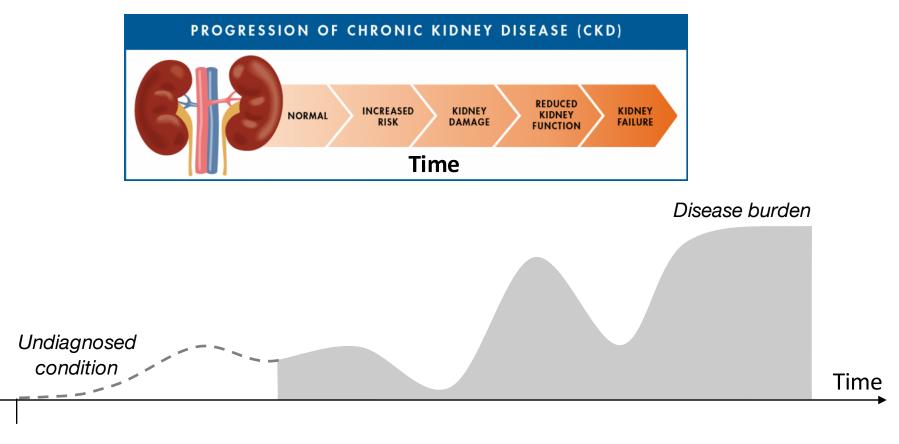
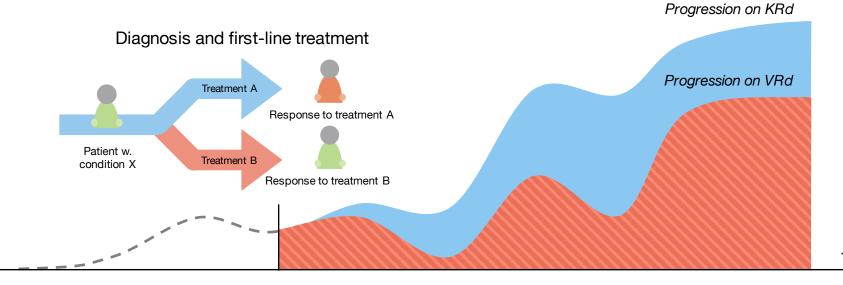


Figure credit: https://www.cdc.gov/kidneydisease/prevention-risk.html

- Predicting a patient's future disease progression
- Precision medicine

Choosing first line therapy in multiple myeloma

A) KRd: carfilzomib-lenalidomide-dexamethasone, B) VRd: bortezomib-lenalidomide-dexamethasone



Early diagnosis, e.g. of diabetes, Alzheimer's, cancer

Figure sources: NIH,

https://www.roche.com/research_and_development/what_we_are_working_on/oncology /liquid-biopsy.htm

• Continuous monitoring and coaching, e.g. for the elderly, diabetes, psychiatric disease

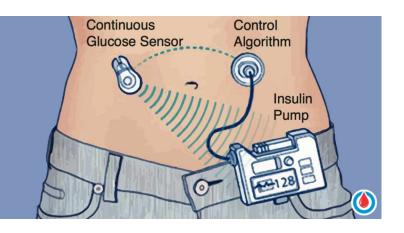


Figure source (left): http://www.emeraldforhome.com/

 Discovery of new disease subtypes; design of new drugs; better targeted clinical trials

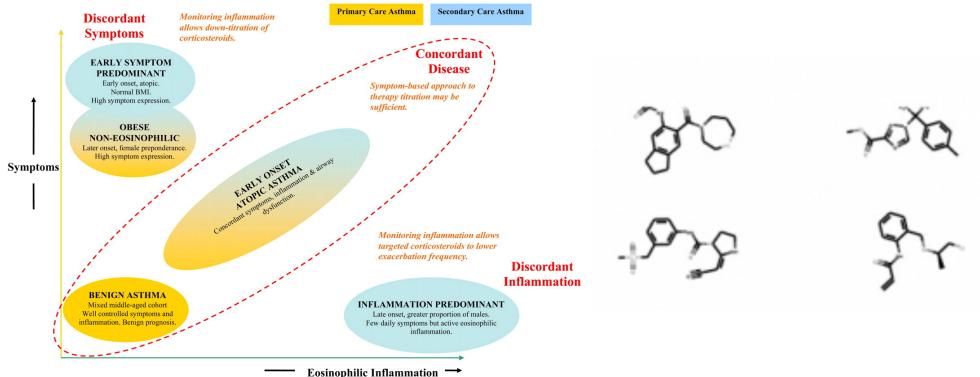


Figure sources: Haldar et al., Am J Respir Crit Care Med, 2008

http://news.mit.edu/2018/automating-molecule-design-speed-drug-development-0706

Outline for today's class

- 1. Brief history of AI and ML in healthcare
- 2. Why now?
- 3. Examples of how ML will transform healthcare
- 4. What is *unique* about ML in healthcare?

- Life or death decisions
 - Need robust algorithms
 - Checks and balances built into ML deployment
 - (Also arises in other applications of AI such as autonomous driving)
 - Need fair and accountable algorithms
- Many questions are about unsupervised learning
 - Discovering disease subtypes, or answering question such as "characterize the types of people that are highly likely to be readmitted to the hospital"?
- Many of the questions we want to answer are *causal*
 - Naïve use of supervised machine learning is insufficient

- Very little labeled data
 - **Recent breakthroughs in Al**

depended on lots of labeled data!

Ever cleverer

Error rates on ImageNet Visual Recognition Challenge, %

13

14

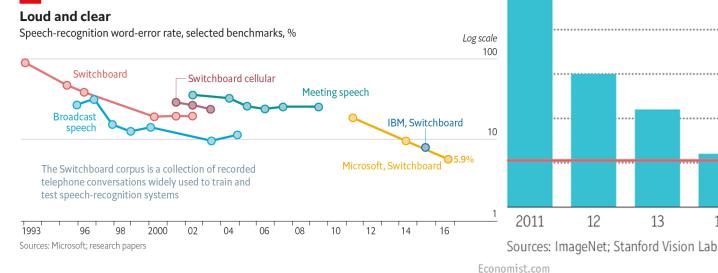
25

20

n

HUMAN LEVEL

15



• Very little labeled data

- Motivates semi-supervised learning algorithms

- Sometimes small numbers of samples (e.g., a rare disease)
 - Learn as much as possible from other data (e.g. healthy patients)
 - Model the problem carefully
- Lots of missing data, varying time intervals, censored labels

- Difficulty of de-identifying data
 - Need for data sharing agreements and sensitivity
- Difficulty of deploying ML
 - Commercial electronic health record software is difficult to modify
 - Data is often in silos; everyone recognizes need for interoperability, but slow progress
 - Careful testing and iteration is needed

Goals for these two days

- Intuition for working with healthcare data
- How to set up as machine learning problems
- Understand which learning algorithms are likely to be useful and when
- Appreciate subtleties in safely & robustly applying ML in healthcare