Hands on with MIMIC-III

ADOPTED FROM IRENE CHEN (MIT)

What is MIMIC-III?

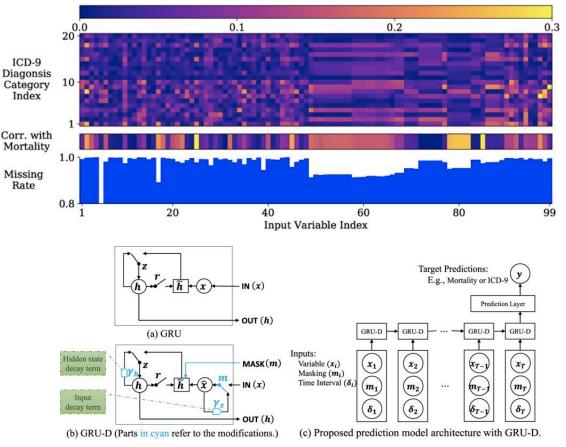
- Largest open dataset for clinical healthcare (for authorized researchers)
- Dataset of 26 tables (e.g. admissions, patients)
- Maintained by Roger Mark's lab at MIT

Today we'll get to know MIMIC better

- 1. Examples of recent academic papers (all from MIT!) using MIMIC-III data
- 2. Live coding to compute statistics from MIMIC-III
- 3. Walk through logistic regression

Recurrent Neural Networks for Multivariate Time Series with Missing Values

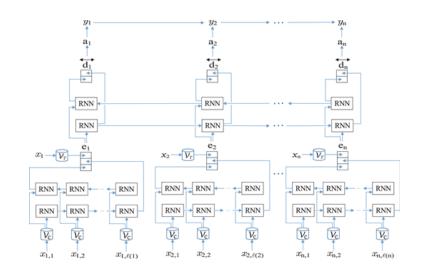
Che et al, 2018 (Nature Scientific Reports)



Absolute Values of Pearson Correlations between Variable Missing Rates and Labels (Mortality and ICD-9 Diagonsis Categories on MIMIC-III Dataset)

De-identification of patient notes with recurrent neural network

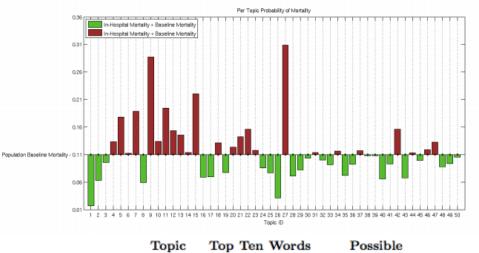
Dernoncourt et al, 2017 (JAMIA)



	i2b2			міміс		
Model	Precision	Recall	F1	Precision	Recall	F1
Nottingham	<u>99.000</u>	96.400	97.680	-	-	-
MIST	91.445	92.745	92.090	95.867	98.346	97.091
CRF	98.560	96.528	97.533	99.060	98.987	99.023
ANN	98.320	97.380	97.848	<u>99.208</u>	99.251	<u>99.229</u>
CRF + ANN	97.920	<u>97.835</u>	<u>97.877</u>	98.820	<u>99.398</u>	99.108

Unfolding Physiological State: Mortality Modeling in Intensive Care Units

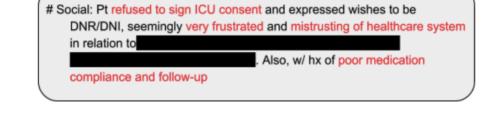
Ghassemi et al, 2014 (KDD)

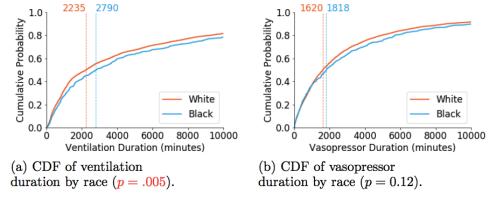


	Top	ic Top Ten words	Topic
In- hospital Mor- tality	27	name, family, neuro, care, noted, status, plan, stitle, dr, remains	Discussion of end- of-life care
	15	intubated, vent, ett, secre- tions, propofol, abg, respi- ratory, resp, care, sedated	Respiratory failure
	7	thick, secretions, vent, trach, resp, tf, tube, coarse, cont, suctioned	Respiratory infection
	5	liver, renal, hepatic, ascites, dialysis, failure, flow, transplant, portal, ultrasound	Renal Failure

Racial Disparities and Mistrust in End-of-Life Care

Boag et al, 2018 (MLHC)





Reproducibility in reed improducibility in reed improduced variation mortality prediction case study

Johnson et al, 2017 (MLHC)

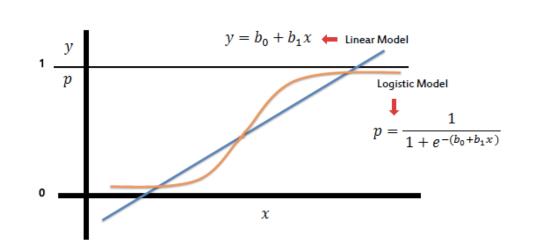
We reproduced datasets for 38 experiments corresponding to 28 published studies using MIMIC. In half of the experiments, the sample size we acquired was 25% greater or smaller than the sample size reported. The highest discrepancy was 11,767 patients. While accurate reproduction of each study cannot be guaranteed, we believe that these results highlight the need for more consistent reporting of model design and methodology to allow performance improvements to be compared. We discuss the challenges in reproducing the cohorts used in the studies, highlighting the importance of clearly reported methods (e.g. data cleansing, variable selection, cohort selection) and the need for open code and publicly available benchmarks.

Study	Window,	Inclusion criteria	
	W (hours)		
Caballero Barajas and	24	Age>18, Random fixed size subsample	
Akella (2015)			
Caballero Barajas and	48	Age>18, Random fixed size subsample	
Akella (2015)			
Caballero Barajas and	72	Age>18, Random fixed size subsample	
Akella (2015)			
Calvert et al. (2016b)	5*	Age>18, In MICU, >1 obs. for all fea-	
		tures, LOS \geq 17hr, ICD-9 codes indicat-	
		ing alcohol withdrawal	
Calvert et al. (2016a)	5*	Age>18, In MICU, >1 obs. for all fea-	
		tures, $500hr \ge LOS \ge 17hr$	
Celi et al. (2012)	72	ICD-9 code 584.9	
Celi et al. (2012)	24	ICD-9 code 430 or 852	
Che et al. (2016) (b)	48	PhysioNet 2012 Challenge dataset	
Ding et al. (2016)	48	PhysioNet 2012 Challenge dataset	
Ghassemi et al. (2014)	12	Age>18, >100 words across all notes	
Ghassemi et al. (2014)	24	Age>18, >100 words across all notes	
Ghassemi et al. (2015)	24	Age>18, >100 words across all notes, >6	
1	I	notes	

Live coding time!

Logistic regression refresher

- Powerful (and simple!) predictive model for binary outcomes
- To avoid overfitting, L1 or L2 regularization commonly used
- Maximum likelihood estimation -> sklearn has built in solver



Live Coding Rules

David controls keyboard and screen

• Each student gets to decide what to do next:

- Dictate line of code
- Google something (or Irene can directly tell them)
- Look up MIMIC documentation, e.g. <u>https://mimic.physionet.org/mimictables/admissions/</u>
 Say "pass"

• If three "pass"-es in a row, David gives the answer.