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Interpretability

• Global	interpretability	– understand	model	as	a	
whole
–Will	it	work	prospectively	as	intended?
–What	data	was	most	useful?

• Local	interpretability	– understand	predictions	
for	individual	patients
– Build	trust	in	predictions;	recognize	errors
– Provide	guidance	to	decision	makers	who	may	have	
additional	information



CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning

(a) Patient with multifocal com-
munity acquired pneumonia. The
model correctly detects the airspace
disease in the left lower and right up-
per lobes to arrive at the pneumonia
diagnosis.

(b) Patient with a left lung nodule.
The model identifies the left lower
lobe lung nodule and correctly clas-
sifies the pathology.

(c) Patient with primary lung ma-
lignancy and two large masses, one
in the left lower lobe and one in
the right upper lobe adjacent to the
mediastinum. The model correctly
identifies both masses in the X-ray.

(d) Patient with a right-sided pneu-
mothroax and chest tube. The
model detects the abnormal lung
to correctly predict the presence of
pneumothorax (collapsed lung).

(e) Patient with a large right pleural
e↵usion (fluid in the pleural space).
The model correctly labels the e↵u-
sion and focuses on the right lower
chest.

(f) Patient with congestive heart
failure and cardiomegaly (enlarged
heart). The model correctly identi-
fies the enlarged cardiac silhouette.

Figure 3. CheXNet localizes pathologies it identifies using Class Activation Maps, which highlight the areas of the X-ray
that are most important for making a particular pathology classification. The captions for each image are provided by
one of the practicing radiologists.

We identify the most important features used by the
model in its prediction of the pathology c by upscal-
ing the map Mc to the dimensions of the image and
overlaying the image.

Figure 3 shows several examples of CAMs on the pneu-
monia detection task as well as the 14-class pathology
classification task.

7. Related Work

Recent advancements in deep learning and large
datasets have enabled algorithms to surpass the per-
formance of medical professionals in a wide variety of
medical imaging tasks, including diabetic retinopathy

detection (Gulshan et al., 2016), skin cancer classifica-
tion (Esteva et al., 2017), arrhythmia detection (Ra-
jpurkar et al., 2017), and hemorrhage identification
(Grewal et al., 2017).

Automated diagnosis from chest radiographs has re-
ceived increasing attention with algorithms for pul-
monary tuberculosis classification (Lakhani & Sun-
daram, 2017) and lung nodule detection (Huang et al.,
2017). Islam et al. (2017) studied the performance
of various convolutional architectures on di↵erent ab-
normalities using the publicly available OpenI dataset
(Demner-Fushman et al., 2015). Wang et al. (2017)
released ChestX-ray-14, an order of magnitude larger
than previous datasets of its kind, and also bench-
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Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio

camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.
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Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
loss
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/k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy
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[Szegedy et	al.,	“Intriguing	properties	 of	neural	networks”,	ICLR	2014]
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the original training set all the time. We used weight decay, but no dropout for this network. For
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is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
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the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
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can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.
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Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
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the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
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Figure 1: Characteristic results of adversarial manipulation. Each clean image represents the natural
image to which the model assigns the highest probability for the given diagnosis. The percentage
displayed on the bottom left of each image represents the probability that the model assigns that
image of being diseased. Green = Model is correct on that image. Red = Model is incorrect.

Florida dermatologist from [56] could sidestep an insurance company’s image-based fraud detector
and continue to defraud the system in perpetuity.

Adversarial examples in radiology. Thoracic radiology images (typically CT scans, which is a 3D
application of X-Ray technology) are also often used to measure tumor burden, a common secondary
endpoint of cancer therapy response[51]. To foster more rapid and more universally standardized
clinical trials, the FDA might consider requiring that trial endpoints, such as tumor burden in chest
imaging, be evaluated by a deep learning system such as the one from Section 4. By applying
undetectable adversarial perturbations to the images, a company running a trial could effectively
guarantee a positive trial result with respect to this endpoint, even if images are subsequently released
to the public for inspection. In addition, chest X-rays provide a common screening test for dozens of
diseases, and a positive chest X-ray result is often used to justify more heavily reimbursed procedures
such as biopsies, CT or MR imaging, or surgical resection. As such, one could imagine many
scenarios arising around chest X-rays that are directly analogous to the melanoma detection situation
described above.

Adversarial examples in ophthalmology. As described in Section 3, providers and pharmaceutical
companies are not the only organizations that could be incentivized to employ adversarial manipula-
tion. Often, the entities who pay for healthcare (such as private or public insurers) wish to curtail the
utilization rates of certain procedures to reduce costs. However, there are often guidelines from gov-
ernment agencies (such as the Centers for Medicare and Medicaid Services) that specify diagnostic
criteria which if present dictate that certain procedures must be covered. One such criterion could be
that any patient with a confirmed diabetic retinopathy diagnosis from a deep learning system such as
the one from Section 4 must have the resulting vitrectomy surgery covered by their insurer. Even
though the insurer has no ability to control the policy, they could still control the rate of surgeries
by applying adversarial noise to mildly positive images, reducing the number procedures. On the
other end of the spectrum, an ophthalmologist could affix a universal adversarial patch to the lens of

7

[Finlayson	et	al.,	“Adversarial	Attacks	Against	Medical	 Deep	Learning	Systems”,	
Arxiv 1804.05296,	2018]
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these hospitalizations, 6549 (13.9%) carried a diagnosis of heart
failure in any position and 1214 (2.6%) carried a principal di-
agnosis of heart failure (Table 1).

The inclusion of heart failure on the problem list (algo-
rithm 1) was associated with a sensitivity of 0.52 and a PPV of
0.96 for identification of heart failure based on the discharge
diagnosis code criterion standard in the validation set (Table 2).
Heart failure on the problem list had a sensitivity of 0.40 and
a PPV of 0.96 in the validation set using the criterion stan-
dard of sampling with physician medical record review. Algo-
rithm 2, defined as the presence of heart failure on the prob-
lem list, an inpatient loop diuretic, or a BNP level of 500 pg/mL
or higher, was associated with sensitivities of 0.84 and 0.77
and PPVs of 0.58 and 0.64 compared with discharge diagno-
sis and physician review criterion standards in the validation
set, respectively.

The third algorithm, in which heart failure was classified
using logistic regression, included 30 structured data ele-
ments in the model. Variables that had an association with heart
failure included heart failure on the problem list, any prior di-
agnosis of heart failure, inpatient diuretics, outpatient heart
failure β-blocker use, and high BNP level (eTable 1 in the Supple-
ment). This algorithm had an AUC of 0.953 in validation, a sen-
sitivity of 0.76, and a PPV of 0.8 (Table 2 and Figure 1). In vali-
dation using the physician review criterion standard, the
algorithm had a sensitivity of 0.68 with a PPV of 0.90 (Table 2).

The fourth algorithm, which used a machine-learning ap-
proach on free text, included 1118 elements in the final model.
The top prognostic factors in the algorithm were all clinically
relevant and included the terms chf, hf, nyha, failure, conges-
tive, and Lasix (eTable 2 in the Supplement). This model had
an AUC of 0.969 in validation and a sensitivity of 0.84 with a
PPV of 0.80 in the validation set using the discharge diagno-
sis criterion standard.

The fifth algorithm used a machine-learning approach to
identify 947 unstructured and structured data elements in the
final model. The top prognostic factor for this model was heart
failure in the problem list, followed by mention of chf and hf
in free text (eTable 3 in the Supplement). This algorithm had
an AUC of 0.974. The algorithm had a sensitivity of 0.86 with
a PPV of 0.80 using the discharge diagnosis and a sensitivity
of 0.83 with a PPV of 0.90 using the physician review.

Of 1631 hospitalizations for a principal or secondary diag-
nosis of heart failure in the validation set, 195 (12.0%) did not
have a prior echocardiogram. Of these hospitalizations, 66
(33.8%) had heart failure listed on the problem list (algorithm
1). Algorithm 3 increased the number of these patients iden-
tified as having heart failure by 34, whereas algorithms 2, 4,
and 5 increased the number of patients identified by between
69 and 74 over algorithm 1 (Figure 2). The PPV for identifica-
tion of heart failure among patients without an echocardio-
gram was 0.92, 0.30, 0.71, 0.71, and 0.67 for algorithms
1 through 5, respectively. Among 430 hospitalizations for a di-
agnosis of heart failure and a known EF of 40% or less, pa-
tients in 109 hospitalizations (25.3%) were not discharged with
an ACE inhibitor or ARB, whereas 91 (21.2%) were not dis-
charged with an evidence-based β-blocker. With the use of the
problem list alone, heart failure was classified in 76 heart fail-

Table 1. Characteristics of 47 119 Hospitalized Patients

Characteristic Findinga

Age, mean (SE), y 60.9 (18.15)

Female 23 952 (50.8)

Black/African American race 5258 (11.2)

Hispanic/Latino ethnicity 3667 (7.8)

Medicaid 8303 (17.6)

Heart failure in problem list 3630 (7.7)

Prior diagnosis of any heart failure 2985 (6.3)

Prior diagnosis of primary heart failure 615 (1.3)

Prior echocardiography 15 938 (33.8)

Loop diuretics

Inpatient 6837 (14.5)

Outpatient 6427 (13.6)

ACE inhibitors or ARB

Inpatient 13 166 (27.9)

Outpatient 14 797 (31.4)

β-Blockers

Inpatient 19 748 (41.9)

Outpatient 14 870 (31.6)

Heart failure with β-blockers

Inpatient 6310 (13.4)

Outpatient 8644 (18.4)

Blood pressure, mean (SE), mm Hg

Systolic 123.3 (18.3)

Diastolic 67.8 (12.8)

Creatinine, mean (SE), mg/dL 1.01 (1.1)

Sodium, mean (SE), mEq/L 138.4 (3.7)

BNP, pg/mL

<500 1721 (23.4)

500-999 878 (12.0)

1000-4999 2498 (34.0)

5000-9999 931 (12.7)

10 000-19 999 652 (8.9)

≥20 000 667 (9.1)

Blood pressure

Any systolic 46 982 (99.7)

Any diastolic 46 982 (99.7)

Any creatinine 46 598 (98.9)

Any sodium 46 613 (98.9)

Any BNP 7347 (15.6)

Problem list

Acute MI 952 (2.0)

Atherosclerosis 6147 (13.0)

Final discharge diagnosis of heart failure

Any diagnosis 6549 (13.9)

Principal diagnosis 1214 (2.6)

Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin receptor
blocker; BNP, brain natriuretic peptide; MI, myocardial infarction.
SI conversion factors: to convert creatinine to micromoles per liter, multiply by
88.4; sodium to millimoles per liter, multiply by 1; and BNP to nanograms per
liter, multiply by 1.
a Data are presented as number (percentage) of hospitalized patients unless

otherwise indicated.
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these hospitalizations, 6549 (13.9%) carried a diagnosis of heart
failure in any position and 1214 (2.6%) carried a principal di-
agnosis of heart failure (Table 1).

The inclusion of heart failure on the problem list (algo-
rithm 1) was associated with a sensitivity of 0.52 and a PPV of
0.96 for identification of heart failure based on the discharge
diagnosis code criterion standard in the validation set (Table 2).
Heart failure on the problem list had a sensitivity of 0.40 and
a PPV of 0.96 in the validation set using the criterion stan-
dard of sampling with physician medical record review. Algo-
rithm 2, defined as the presence of heart failure on the prob-
lem list, an inpatient loop diuretic, or a BNP level of 500 pg/mL
or higher, was associated with sensitivities of 0.84 and 0.77
and PPVs of 0.58 and 0.64 compared with discharge diagno-
sis and physician review criterion standards in the validation
set, respectively.

The third algorithm, in which heart failure was classified
using logistic regression, included 30 structured data ele-
ments in the model. Variables that had an association with heart
failure included heart failure on the problem list, any prior di-
agnosis of heart failure, inpatient diuretics, outpatient heart
failure β-blocker use, and high BNP level (eTable 1 in the Supple-
ment). This algorithm had an AUC of 0.953 in validation, a sen-
sitivity of 0.76, and a PPV of 0.8 (Table 2 and Figure 1). In vali-
dation using the physician review criterion standard, the
algorithm had a sensitivity of 0.68 with a PPV of 0.90 (Table 2).

The fourth algorithm, which used a machine-learning ap-
proach on free text, included 1118 elements in the final model.
The top prognostic factors in the algorithm were all clinically
relevant and included the terms chf, hf, nyha, failure, conges-
tive, and Lasix (eTable 2 in the Supplement). This model had
an AUC of 0.969 in validation and a sensitivity of 0.84 with a
PPV of 0.80 in the validation set using the discharge diagno-
sis criterion standard.

The fifth algorithm used a machine-learning approach to
identify 947 unstructured and structured data elements in the
final model. The top prognostic factor for this model was heart
failure in the problem list, followed by mention of chf and hf
in free text (eTable 3 in the Supplement). This algorithm had
an AUC of 0.974. The algorithm had a sensitivity of 0.86 with
a PPV of 0.80 using the discharge diagnosis and a sensitivity
of 0.83 with a PPV of 0.90 using the physician review.

Of 1631 hospitalizations for a principal or secondary diag-
nosis of heart failure in the validation set, 195 (12.0%) did not
have a prior echocardiogram. Of these hospitalizations, 66
(33.8%) had heart failure listed on the problem list (algorithm
1). Algorithm 3 increased the number of these patients iden-
tified as having heart failure by 34, whereas algorithms 2, 4,
and 5 increased the number of patients identified by between
69 and 74 over algorithm 1 (Figure 2). The PPV for identifica-
tion of heart failure among patients without an echocardio-
gram was 0.92, 0.30, 0.71, 0.71, and 0.67 for algorithms
1 through 5, respectively. Among 430 hospitalizations for a di-
agnosis of heart failure and a known EF of 40% or less, pa-
tients in 109 hospitalizations (25.3%) were not discharged with
an ACE inhibitor or ARB, whereas 91 (21.2%) were not dis-
charged with an evidence-based β-blocker. With the use of the
problem list alone, heart failure was classified in 76 heart fail-

Table 1. Characteristics of 47 119 Hospitalized Patients

Characteristic Findinga

Age, mean (SE), y 60.9 (18.15)

Female 23 952 (50.8)

Black/African American race 5258 (11.2)

Hispanic/Latino ethnicity 3667 (7.8)

Medicaid 8303 (17.6)

Heart failure in problem list 3630 (7.7)

Prior diagnosis of any heart failure 2985 (6.3)

Prior diagnosis of primary heart failure 615 (1.3)

Prior echocardiography 15 938 (33.8)

Loop diuretics

Inpatient 6837 (14.5)

Outpatient 6427 (13.6)

ACE inhibitors or ARB

Inpatient 13 166 (27.9)

Outpatient 14 797 (31.4)

β-Blockers

Inpatient 19 748 (41.9)

Outpatient 14 870 (31.6)

Heart failure with β-blockers

Inpatient 6310 (13.4)

Outpatient 8644 (18.4)

Blood pressure, mean (SE), mm Hg

Systolic 123.3 (18.3)

Diastolic 67.8 (12.8)

Creatinine, mean (SE), mg/dL 1.01 (1.1)

Sodium, mean (SE), mEq/L 138.4 (3.7)

BNP, pg/mL

<500 1721 (23.4)

500-999 878 (12.0)

1000-4999 2498 (34.0)

5000-9999 931 (12.7)

10 000-19 999 652 (8.9)

≥20 000 667 (9.1)

Blood pressure

Any systolic 46 982 (99.7)

Any diastolic 46 982 (99.7)

Any creatinine 46 598 (98.9)

Any sodium 46 613 (98.9)

Any BNP 7347 (15.6)

Problem list

Acute MI 952 (2.0)

Atherosclerosis 6147 (13.0)

Final discharge diagnosis of heart failure

Any diagnosis 6549 (13.9)

Principal diagnosis 1214 (2.6)

Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin receptor
blocker; BNP, brain natriuretic peptide; MI, myocardial infarction.
SI conversion factors: to convert creatinine to micromoles per liter, multiply by
88.4; sodium to millimoles per liter, multiply by 1; and BNP to nanograms per
liter, multiply by 1.
a Data are presented as number (percentage) of hospitalized patients unless

otherwise indicated.
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[Chen,	 Johansson,	Sontag,	Why	is	my	classifier	discriminatory?,	NeurIPS,	2018]



Hot	topics	in	MLHC

• Interpretability
• Robustness	to	adversaries,	dataset	shift
• Fairness
• Reinforcement	learning



Watch	video:	https://www.youtube.com/watch?v=V1eYniJ0Rnk

Learning	to	play	Atari	games

Could	we	use	such	reinforcement	
learning	algorithms	in	health	care?



(Off-Policy)	Reinforcement	Learning

• Goal:	Find	a	dynamic	treatment	regime	(policy)	
𝜋(𝐴$ ∣ 𝐻$)
– that	selects	actions	𝑨𝒕
– which	optimize	outcomes	𝒀𝒕:𝑻 (i.e.,	future	rewards)

– given	the	history	𝐻$ = 𝑆/,𝐴/, 𝑌/ ,… , 𝑆$34, 𝐴$34, 𝑌$34 , 𝑆$
of	states	𝑺𝒕 ,	actions	and	outcomes

• Given:	samples	of	past	histories	(no	exploration	
possible)

• Algorithms:	e.g.,	deep	Q-learning



Example:	Managing	sepsis	in	the	ICU

TimeMechanical ventilation? Sedation? Vasopressors?

Unobserved

YT: Observed 
(e.g., patient 

dies)

St:	Heart rate,	blood
oxygenation,	etc.

𝑨𝒕:

Komorowski et al.,"The Artificial Intelligence Clinician learns optimal treatment 
strategies for sepsis in intensive care”, Nature Medicine 2018



Off-policy	RL	has	to	be	done	with	care1

• In	performing	and	evaluating	observational	
studies	of	sequential	decision	making,	we	
must	ask:
1. Do	we	have	access	to	the	information	currently	
used	in	decision	making?

2. Are	we	optimizing	the	right	reward/outcome?
3. Is	our	data	large	enough	to	compare	our	proposed	
policy	to	existing	ones?

1Guidelines for reinforcement learning in healthcare. Gottesman, O; Johansson, F; 
Komorowski, M; Faisal, A; Sontag, D; Doshi-Velez, F; and Celi, L. Nature Medicine, 
25(1): 16–18. 2019



Time
Mechanical ventilation? Sedation? Vasopressors?

Unobserved
responses

Observed 
decisions 
& response

Off-policy	RL	guidelines:	confounding

1. Do	we	have	access	to	the	
information	used	by	doctors	
in	making	this	choice?

If	not,	our	estimate	will	
likely	be	confounded



Off-policy	RL	guidelines:	outcome	label

Time
Mechanical ventilation? Sedation? Vasopressors?

Observed 
response

2.	What	reward are	we	optimizing?
Does	it	capture	long-term	effects?



Proposed policy

Effective cohort

Time

Decisions with disagreement

Discomfort

Blood pressure

O2 Intake

Mechanical ventilation? Sedation? Vasopressors?

Patient characteristics

Off-policy	RL	guidelines:	sample	size

• Standard	to	make	use	only	of	patient	trajectories	
that	agree	with	the	proposed	policy—small	effective	
sample	size

3.	How	large	is	the	
effective	sample	size?



Hot	topics	in	MLHC

• Interpretability
• Robustness	to	adversaries,	dataset	shift
• Fairness
• Reinforcement	learning



And	that’s	a	wrap!

• Thanks	for	a	great	two	days
• Keep	in	touch:

E-mail:	dsontag@csail.mit.edu
Twitter:	david_sontag
LinkedIn:	https://www.linkedin.com/in/david-sontag/
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• Population-Level	Prediction	of	Type	2	Diabetes	using	Claims	Data	and	Analysis	of	Risk	
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Caleb	Hug,	Master's	thesis	at	MIT,	2006
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References	for	causal	inference
• Miguel	 Hernan’s	causal	 inference	book
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https://www.springer.com/us/book/9781441912121
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• Estimating individual	 treatment effect:	generalization bounds and algorithms
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https://arxiv.org/abs/1802.05998

• Cardiologist-Level	 Arrhythmia	Detection	With	Convolutional	 Neural	Networks
Rajpurkar et	al.	https://arxiv.org/abs/1707.01836

• Modeling	 Disease Progression via	Fused Sparse Group	Lasso
Zhou	et	al.,	KDD	’12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191837/
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Dimitris	Bertsimas,	Nathan	Kallus,	Alexander	M.	Weinstein,	 and	Ying	
Daisy	Zhuo
Diabetes	Care,	2016	
http://care.diabetesjournals.org/content/early/2016/12/01/dc16-
0826.full-text.pdf

• Medical	Homes	and	Cost	and	Utilization	Among	High-Risk	 Patients
Susannah	Higgins;	Ravi	Chawla;	Christine	Colombo;	 Richard	Snyder;	
and	Somesh Nigam
American	 Journal	of	Managed	Care,	2014
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n3/medical-homes-and-cost-and-utilization-among-high-risk-
patients?p=1
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