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Goals of disease progression
modeling

* Predictive:
— What will this patient’s future trajectory look like?
* Descriptive:

— Find markers of disease stage and progression,
statistics of what to expect when

— Discover new disease subtypes

* Key challenges we will tackle:

— Seldom directly observe disease stage, but rather only
indirect observations (e.g. symptoms)

— Data is censored — don’t observe beginning to end
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Predicting disease progression in
Alzheimer’s disease

Cerebral
Cortex

Extreme Shrinkage of
Cerebral Cortex
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s Shrinkage of
- Hippocampus

4 Entorhinal

Hippocampus” i
e Cortex

[Image credit: Wikipedia; "Alzheimer's Disease Education and Referral Center, a service of the
National Institute on Aging.”]



Disease status
quantified by
cognitive score
(continuous valued)

Name:

MINI MENTAL STATE
EXAMINATION
(MMSE)

DOB:

Hospital Number:

One point for each answer DATE:

ORIENTATION o e /5 | /5 | . /5
Year Season Month Date Time
Country Town District Hospital Ward/Floor | ... /5 | ... /5 | ... /5

REGISTRATION
Examiner names three objects (e.g. apple, table, penny) and asks the /3 /3 /3
patient to repeat (1 point for each correct. THEN the patientlearns | ~~ ~ | " 7 | 77
the 3 names repeating until correct).

ATTENTION AND CALCULATION
Subtract 7 from 100, then repeat from result. Continue five times: | ... {5 | s /5 | e /5
100, 93, 86, 79, 65. (Alternative: spell “WORLD” backwards: DLROW).

RECALL _ I /3 | wnd3 | 3
Ask for the names of the three objects learned earlier.

LANGUAGE /2 /2 /2
Name two objects (e.g. pen, watch). | T o
Repeat “No ifs, ands, or buts”. | . /1 | ... /1 | ... /1
Give a three-stage command. Score 1 for each stage. (e.g. “Place /3 /3 /3
index finger of right hand on your nose and then on your leftear”). | ™"~ | ™™= | ="
Ask the patient to read and obey a written command on a piece of /1 /1 /1
paper. The written instruction is: “Close youreyes”. | 7707 s
Ask the patient to write a sentence. Score 1 if it is sensible and has a /1 /1 /1
subjectandaverb. o m o

COPYING: Ask the patient to copy a pair of intersecting pentagons

...... /1| /1] /1
TOTAL: e/ 30 | e /30 | ... /30

MMSE scoring

24-30: no cognitive impairment
18-23: mild cognitive impairment
0-17: severe cognitive impairment

\

w‘{)MF Oxford Medical
\C § Education



Predicting disease progression in
Alzheimer’s disease

 Goal: Predict disease statusin 6, 12, 24, 36,
and 48 months

* Five different regression tasks?

* Challenge: data sparsity
— Total number of patients is small
— Labels are noisy

— Due to censoring, fewer patients at later time
0oints

[Zhou et al., Modeling Disease Progression via Fused Sparse Group Lasso, KDD ’"12]



Predicting disease progression in
Alzheimer’s disease

 Goal: Predict disease statusin 6, 12, 24, 36,
and 48 months

* Five different regression tasks?

* Challenge: data sparsity

Number of patients M months after baseline
(Alzheimer’s Disease Neuroimaging Initiative)

MO6 M12 M24 M36 M48
648 642 569 389 87

MO6 = 6 months after baseline

[Zhou et al., Modeling Disease Progression via Fused Sparse Group Lasso, KDD ’"12]



Multi-task learning

 Goal: Predict disease statusin 6, 12, 24, 36,
and 48 months

e Rather than learn several independent models,
view as multi-task learning
— Select common set of biomarkers for all time points

— Also allow for specific set of biomarkers at different
time points

— Incorporate temporal smoothness in models

[Zhou et al., Modeling Disease Progression via Fused Sparse Group Lasso, KDD ’"12]












Convex fused sparse group lasso

Simultaneouslylearn all 5 models by solving the
following convex optimization problem:

min L(W) + Ar [W]); + o

RWT|| 4+ s W],

Squared loss: L(W) = ||S ® (XW — Y)||%
(S is a mask to account for [abels missing in subset of tasks)

Group Lasso penalty W, given by >¢, \/Z§:1 w3
R = >

1-1
1

-1
1-1

[Zhou et al., KDD "12]




Features

MRI scans (white matter parcellation volume, etc.) +

Demographic| age, years of education, gender

Genetic ApoE-e4 information

Baseline MMSE, ADAS-Cog, ADAS-MOD, ADAS sub-

cognitive scores, CDR, FAQ, GDS, Hachinski, Neu-

scores ropsychological Battery, WDMGS-R Logical
Memory

Lab tests RCT1, RCT11, RCT12, RCT13, RCT14,

ROT1407, RCT1408, RCT183, RCT19,
RCT20, RCT29, RCT3, RCT392, RCT4,
RCT5, ROT6, ROTS

371 in total

[Zhou et al., Modeling Disease Progression via Fused Sparse Group Lasso, KDD "12]



Results (averaged over 5 time points)

Baseline — Temporal smoothing helps!
ndependent  \, =20 A2 = 50 Ay = 100
regressors

Ridge cFSGL1 cFSGL2 cFSGL3

Target: MMSE

nMSE 0.548 &= 0.057 0.428 £0.052  0.400 £0.053 0.395 £+ 0.052
R 0.689 £0.030 0.77240.030 0.790 £ 0.032 0.796 4+ 0.031

NMSE — normalized mean squared error. Smalleris better
R — average R? (correlation coefficient). Larger is better

min L(W) + Ay [W], + Ao

RWT|| 42 [ Wl



Feature importance varies by time
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(a) Target: ADAS-Cog (25 stable features)



Goals of disease progression
modeling

* Predictive:
— What will this patient’s future trajectory look like?
* Descriptive:

— Find markers of disease stage and progression,
statistics of what to expect when

— Discover new disease subtypes

* Key challenges we will tackle:

— Seldom directly observe disease stage, but rather only
indirect observations (e.g. symptoms)

— Data is censored — don’t observe beginning to end



K-Means

* An iterative clustering
algorithm

— Initialize: Pick K random
points as cluster centers

— Alternate:

1. Assign data points to
closest cluster center

2. Change the cluster
center to the average
of its assigned points

— Stop when no points’
assignments change



K-means clustering: Example

2| * Pick K random
points as cluster
centers (means)
91 Shown here for K=2
21




K-means clustering: Example

lterative Step 1

» Assign data points to
closest cluster center




K-means clustering: Example

lterative Step 2

| « Change the cluster

center to the average of
the assigned points



K-means clustering: Example

* Repeat until
convergence




Asthma: the problem

* 5to 10% of people with severe asthma remain
poorly controlled despite maximal inhaled
therapy

[Holgate ST, Polosa R. The mechanisms, diagnosis,

and management of severe asthma in adults. Lancet.
2006; 368:780—793]

//o.

[whatasthmais.com]



Asthma: the question

“It is now recognised that there are distinct asthma phenotypes and that
distinct therapeutic approaches may only impinge on some aspects of the
disease process within each subgroup”

 What are the processes (genetic or environmental) that underlie different
subtypes of asthma?

* Which aspects of airway remodelling are important in disease subtypes?

« What are the best biomarkers of disease progression or treatment
response?

* Why are some patients less responsive to conventional therapies than
others?

[Adcock et al., “New targets for drug development in asthma”. The Lancet, 2008]



Discovering subtypes from data

Monitoring inflammation

Discordant
Symptoms

allows down-titration of
corticosteroids.

EARLY SYMPTOM
PREDOMINANT

Early onset, atopic.

Normal BMI. o

High symptom expression. #.

OBESE 7
NON-EOSINOPHILIC 7

Later onset, female preponderance. ,
High symptom expression. =

Symptoms g $=§5 o>

,/ BENIGN ASTHMA -
/ Mixed middle-aged cohort Pes
/ Well controlled symptoms and —
] inflammation. Benign prognosis. _-

Primary Care Asthma Secondary Care Asthma
- - - ~ N
.-~ Concordant
5 o . I
Disease
/
Symptom-based approach to ¢
therapy titration may be ,’
sufficient. 7
/
/
/
’
7/
s
’
’
/
’
/s
/s
/s
/s
’
/s
’
’
’
Monitoring inflammation allows
targeted corticosteroids to lower
exacerbation frequency.
Discordant
Inflammation

INFLAMMATION PREDOMINANT
Late onset, greater proportion of males.
Few daily symptoms but active eosinophilic
inflammation.

>
>

= Eosinophilic Inflammation =

[Haldar et al., Am J Respir Crit Care Med, 2008]



The data

All patients had physician diagnosis of asthma and at least one
recent prescription for asthma therapy

All were current nonsmokers

Data set #1: 184 patientsrecruited from primary-care
practices in the UK

Data set #2: 187 patients from refractory asthmaclinicin the
UK

Data set #3: 68 patientsfrom 12 month clinical study
Features: z scores for continuous variables, 0/1 for categorical

— Some of the continuous variables log-transformed to approximate a
normal distribution

[Haldar et al., Am J Respir Crit Care Med, 2008]



Comparison of Baseline Characteristics in the three Asthma Populations

Primary Care Secondary Care Longitudinal Cohort
Variable (n=184) (n=187) (n=68)
Sex, % female 544 65.8 47.1
Age, yr (SD) 492 (13.9) 434 (15.9) 524 (14.6)
Age of onset, yr (SD) 24.7 (19) 20.3 (18.4) 31.1 (23.7)
Atopic status, % positive 72.8 73.8 574
Body mass index, kg/m2 (SD) 275(54) 28.5(6.5) 28.0(5.9)
PC,, methacholine , mg/ml 104 (1.13) f 0.67 (0.68)
Peak flow variability, amp % mean 17 (0.38) 32.2(0.48) 13.8 (0.29)
FEV, change with bronchodilator, % 1.63 (1.16) 12.8 (0.41) 32(1.04)
Post-bronchodilator FEV, % predicted 914 (21) 82.1 (21.1) 80.2 (20.6)
Sputum eosinophil count, % 1.32 (0.62) 2.9(0.99) 2.4 (0.81)
FENoi, ppb 31.6 (0.33) 43 (0.32) 432 (O.64)$
Sputum neutrophil count, % 55.09 (0.31) 46.7 (0.32) 41.1 (0.35)
Modified JACS§ (SD) 1.36 (0.74) 202 (1.16) 1.42 (1.26)
Dose of inhaled corticosteroid, BDP equivalent/ug (SD) 632 (579) 1,018 (539) 1,821 (1,239)
Long-acting bronchodilator use, % 40.2 93 86.7

Definition of abbreviations: amp = amplitude; BDP = beclomethasone dipropionate; JACS = Juniper Asthma Control Score

[Haldar et al., Am J Respir Crit Care Med, 2008]



Clusters in
primary
care

(found by
K-means)

Cluster 1 Cluster 2 Cluster 3
Early-Onset Obese L.
Primary Care  Atopic Asthma Noneosinophilic Benign Asthma Slgnlficanie
Variable (n=184) (n=61) M (n=96) (P Value)
Sexf, % female 544 459 81.5 52.1 0.006
Age, yr (SD) 49.2 (13.9) 44 A 53.9 (14) 50.8 (13) 0.003
Age of onsetf, yr (SD) 24.7 (19) @ 35.3(19.6) 28.2 (18.3) <0.001
Atopic statusf, % positive 72.8 95.1 519 64.6 <0.001
Body mass indexf, kg/m? (SD) 27.5(54) 26.1 (3.8) @ 26 (3.6) <0.001
PCy methacholineﬂ, mg/ml 1.04 (1.13) 0.12 (0.86) 1.60 (0.93) 6.39 (0.75) <0.001
PCyo >8 mg/ml, n (%) 64 (34.7) 2(3.3) 6(22.2) 56 (58.3) <0.001
Peak flow Variabﬂityﬁ , amp % mean 17 (0.38) 20 (0.47) 21.9(0.32) 14.8 (0.32) 0.039
Post-bronchodilator FEV, % predicted 91.4 (21) 86.9 (20.7) 91.5(21.4) 94.2 (20.7) 0.107
Sputum eosinophil countﬁ . % 1.32 (0.62) 3.75(0.64) 1.55(0.51) 0.65 (0.44) <0.001
Fino' S, ppb 31.6 (0.33) 57.5 (0.27) 25.8 (0.29) 22.8(0.27) <0.001
Sputum neutrophil counti % 55.09 (0.31) 45.87 (0.24) 72.71 (0.13) 57.56 (0.36) 0.038
Modified J ACS7L (SD) 1.36 (0.74) 1.54 (0.58) 2.06 (0.73) 1.04 (0.66) <0.001
Dose of inhaled corticosteroid, BDP
equivalent/ug (SD) 632 (579) 548 (559) 746 (611) 653 (581) 0.202
Long-acting bronchodilator use, % 40.2 344 48.2 41.7 0.442
Previous hospital admission or emergency
attendance, no. per patient 0.60 (1.57) » 026 020 0.037
Previous outpatient attendance, % attended 15% 22% 19% 6% 0.121
Severe asthma exacerbations (requiring oral 1.25 (1.94) 1,86 (032) 107 (032) 39(0.18 0.002

corticosteroids) in past 12 mo, no. per patient




Clusters in

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Secondary Obese, Early Symptom Inflammation N
secon d d ry care Care Early Onset, Atopic Noneosinophilic Predominant Predominant Slgnlfican;e
Variable (n=187) (n=74) (n=23) (n=22) (n=68) (P Value)
Sex . % female 65.8 Resembled clusters from 68.2 47.1 <0.001
Age, yr (SD) 434 (15.9) primary care —i.e., these 355 (15.5) 50.6 (15.1) <0.001
7 20.3 (18.4) dre common across 12.6 (15) 32.6 (19.1) 0.001
A f t', SD o o . i i . <U.
ge of onset, yr (SD) spectrum of severity
Atopic statusT, % positive 738 81.8 63.2 0.024
Objective measures of
Body mass mdexﬁ ke/m? (SD) 28.5 (6.5) _ J _ 23.6(3.1) 27 (3.9) <0.001
disease severity show
Peak flow Variabilityi ,amp % 322 (0.48) more advanced disease 242 (0.65) 27.6 (0.36) 0.002
mean
FEV; change with
+ 12.8 (0.41) 245 (0.31) 9.3 (0.35) 45 (0.33) 9.8 (0.34) <0.001
bronchodilator” , %
Post-bronchodilator FEV{, %
oredicted (SD) 82.1 (21.1) 79.0 (21.9) 79.0 (18.5) 79.5 (26.1) 87.2 (18.5) 0.093
Sputum eosinophil count T % 2.9 (0.99) 4.2 (0.76) 1.3 (1.01) 0.1 (0.9) 8.4 (0.64) <0.001
FENOi§ . ppb 43 (0.32) 51.2 (0.36) 24.2(0.27) 22.6 (0.30) 53.1(0.32) <0.001
Sputum neutrophil count, % 46.7 (0.32) 454 (0.39) 493 (0.22) 51.3(0.23) 459 (0.29) 0.892
Modified JACS (SD) 2.02 (1.16) 2.63 (0.93) 2.37 (1.09) 2.11 (1.11) 121 (0.95) <0.001
ggslf e";&fvhaiﬁ /;‘gt(iggitemid’ 1,018 (539) 1,168 (578) 1,045 (590) 809 (396) 914 (479) 0.008
Long-acting bronchodilator use, 93.0 91.9 95.4 90.9 94.1 0.999

%



How should we treat asthma?

* Now we use 3" dataset — 68 patients over 12 months
 Randomized control trial with two arms:

— Standard clinical care (“clinical”)

— Regular monitoring of airway inflammation usinginduced
sputum, to titrate steroid therapy to maintain normal
eosinophil counts (“sputum”)

e Original study found no difference in corticosteroid
usage

— But, this could have been explained by heterogeneityin
treatment response!

[Haldar et al., Am J Respir Crit Care Med, 2008]



Patients in different clusters respond differently to treatment!
(analysis using 39 dataset from 12 month study)

Treatment strategy

Cluster

) ) Out Clinical Sputum Sionifi
(found using baseline data) utcomes (n = 10) n=2) 1gniticance
1: Obese female A Inhaled corticosteroid dose */ug per day (SEM) —400 (328) —462 (271) 0.89
Severe exacerbation frequency over 12 mo (SEM) 1.40 (0.78) 1.50 (0.80) 0.93
Number commenced on oral corticosteroids 2 1 0.59
Clinical (n=15) Sputum (n = 24)
2: Inflammation predominant A Inhaled corticosteroid dose >k/ug per day (SEM) +753 (3 34) +241 (23 3) 0.22
Severe exacerbation frequency over 12 mo (SEM) 3.53 (1.18) 0.38 (0.13) 0.002
Number commenced on oral corticosteroids 2 9 0.17
Clinical (n=7) Sputum (n = 4)
3: Early symptom predominant A Inhaled corticosteroid dose "/ ug per day (SEM) +1,429 (429) —400 (469) 0.022
Severe exacerbation frequency over 12 mo (SEM) 5.43 (1.90) 2.50 (0.87) 0.198
Number commenced on oral corticosteroids 6 0 Undefined

[Haldar et al., Am J Respir Crit Care Med, 2008]



Summary — two approaches

e Supervised:
predict future disease status

* Unsupervised:
which patients look similar / different? Do
clusters have different outcomes?



Limitations of what we’ve described

thus far

* Can’t differentiate between subtype and stage
— Patients assumed to be aligned at baseline

* Only make use of one time point

* Assumes single factor (cluster) ex
variation

oer patient

nlains all




How can we discover stages?

1. Intuition on staging from cross-sectional data
2. Staging with pseudo-time methods

3. Staging with probabilistic models: missing data
& multiple time points

— Case study: chronic obstructive pulmonary disease
— Case study: Type 2 diabetes



In 1-D, might assume that low values
correspond to an early disease stage
(or vice-versa)

IIJOhnII llMaryII
Early disease Biomarker A Late disease

Assume samples were all taken today



What about in higher dimensions?

Biomarker B

A

Biomarker A



What about in higher dimensions?

Insight #1: with
enough data, may
be possible to
recognize structure

Biomarker B

- Biomarker A
[Bendall et al., Cell 2014 (human B cell development)]



What about in higher dimensions?

N Insight #2: sequential
o observations from
G same patient can

e L also help

Biomarker B

a Q e Each color is

a different

e patient

>

Biomarker A



What about in higher dimensions?

A  Early disease

Biomarker B

Late disease
>

Biomarker A



May also seek to discover disease subtypes

A

Subtype 1
Subtype 2

Biomarker B

Biomarker A



How can we discover stages?

. Intuition on staging from cross-sectional data
. Staging with pseudo-time methods

. Staging with probabilistic models: missing data
& multiple time points
— Case study: chronic obstructive pulmonary disease

— Case study: Type 2 diabetes



Solid Tissue

Single-cell sequencing

RT& Second-strand

Synthesis
b%‘;
Dissociation Single Cell Isolation RNA cDNA

IVT , OR
Amplified . X 5
RNA ‘_',: S \;f'

RT ‘ PCR
CAAGTTCCTACAGCTA
AGTCCATGCCCATCCG W h»_ # b
AATCGGACTTCAGCCT y
GACCTAAGCCATCAGA - m « \
AATCCTAGCATCCAGC /
ACCGTTACATCAACAG y : .
ATTCGATAACGACCAT
CATGCCATTGACGATT

Sequencing Sequencing Library Amplified cDNA

[Figure source: https://en.wikipedia.org/wiki/Single cell sequencing]




Inferring original trajectory from single-cell data

A Physical time

—
) O OOO QOO OO
e® @ o 905 A C
B @ C |

Process estimation

00 L O I:> @00 000 CRDOOCITITDOOOD
O ® O O “Statistically inferred ordering”
e 500 @

" . o Gene A
Loss of temporal information ><
Gene B

Pseudotime

“Genes that are differentially expressed over
(pseudo)time”

Fig 1. The single cell pseudotime estimation problem. (A) Single cells at different stages of a temporal process. (B) The
temporal labelling information is lost during single cell capture. (C) Statistical pseudotime estimation algorithms attempt to
reconstruct the relative temporal ordering of the cells but cannot fully reproduce physical time. (D) The pseudotime estimates
can be used to identify genes that are differentially expressed over (pseudo)time.

[Figure from: Campbell & Yau, PLOS Computational Biology, 2016]



MST-based approach (Monocle)

Cells represented as

points in expression space Reduce dimensionality Build MST on cells
. (ICA) o
S (R ‘ ' ®
“0“ E % . ﬂ
------ --9® :
: R @
"""" rd o
QPR
..... :’,ﬁ-:..... -
...... .. -
Label cells by type Order cells in pseudotime
via MST
Differentially expressed ®
genes by cell type ® O Look for
Differentially expressed ® - longest
genes across pseudotime path in
@
Gene expression ® the tree
clusters and trends

[Magwene et al., Bioinformatics, 2003; Trapnell et al., Nature Biotechnology, 2014]



Component 1

MST-based approach (Monocle)

+

Proliferating
cell

Differentiatin Interstitial
9 o mesenchymal
myoblast cell

Beginning of
/ pseudotime

End of
(@)~ pseudotime

-2

Component 2

[Trapnell et al., Nature Biotechnology, 2014]



How can we discover stages?

1. Intuition on staging from cross-sectional data
2. Staging with pseudo-time methods

3. Staging with probabilistic models: missing data
& multiple time points
— Case study: chronic obstructive pulmonary disease

— Case study: Type 2 diabetes



Can we learn 10-year progression of
COPD from EHR data?

* Only 2-4 years of data for each patient
* High-dimensional, with lots of missing data
* No ground truth — not even spirometry

[Xiang, Sontag, Wang, “Unsupervised learning of Disease Progression
Models”, KDD 2014]



Probabilistic model of disease progression

Markov Jump ) , S(1) ) 2 >

Process '
. Mar. ‘1 Apr. 11 Feb. 12 Jun. 12
Progression Stages S, S, COPD stage St1 5;
X1 1 X1, Diabetes X1 1. X1
Comorbidities, .
each with its own \ng X2,2 Depression @ Xor
Markov chain

1Lu ng cancer —3x, Xr
Medications,

Observations Diagnosis O;
codes

N patients
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Inferred prevalence of comorbidities across
stages (Diabetes & Musculoskeletal disorders)
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Inferred prevalence of comorbidities across
stages (Cardiovascular disease)

Progression Stage
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0.9
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morbidity Prevalen

0.2 -8~ Cardiovascular diseases (e.g. heart failure)

0 | | | |
0.6 2.5 4.0 8.69.0

Years Elapsed



ce
©
~

omorbidity Prevalen

Inf| ==

0.6

= CHEST ournaL

DSS

Home | Online First | Current Issue | All Issues | CHEST Collections | Guidelines | CHE

August 2009, Vol 136, No. 2

< Previous in this issue Next in this issue >

Editorials | August 2009

Is COPD Really a Cardiovascular Disease? | rreeroview
Don D. Sin, MD, FCCP

Author and Funding Information

Chest. 2009;136(2):329-330. doi:10.1378/chest.09-0808 Text Size: A A A

Related editorial/commentary:
A Postmortem Analysis of Major Causes of Early Death in Patients Hospitalized With COPD
Exacerbation (Chest. 2009;136(2):376-380.)

m References

It is now well established that COPD is a chronic inflammatory condition with

rt failure)

significant extrapulmonary manifestations.' In patients with mild-to-moderate
COPD, the leading cause of morbidity and mortality is cardiovascular disease.jin
the Lung Health Study,“ which examined nearly 6,000 smokers whose FEV{ was

between 55% and 90% predicted, cardiovascular diseases were the leading cause
of hospitalization, accounting for nearly 50% of all hospital admissions, and the

second leading cause of mortality, accounting for a quarter of all deaths.



How can we discover stages?

1. Intuition on staging from cross-sectional data
2. Staging with pseudo-time methods

3. Staging with probabilistic models: missing data
& multiple time points
— Case study: chronic obstructive pulmonary disease

— Case study: Type 2 diabetes



Deep Markov models (DMMs)

VA Zo Z3 Z4

Patient state z, ¢ R'"’

Mar. ‘11

Actions u
(e.g., medication, surgery)

Observations X
(blood and urine test results,
diagnoses, vital signs, ...)

[Krishnan, Shalit, Sontag, AAAI ‘17]



Deep Markov models (DMMs)

VA Zo Z3 Z4

Patient state z, ¢ R'"’
Mar. ‘11 Apr. 1 Feb. 1 Jun. ‘1

Actions u d
(e.g., medication, surgery)

uj u? u;3
Observations X C)
(blood and urine test results,
diagnoses, vital signs, ...) X1 X9 X3 X4

[Krishnan, Shalit, Sontag, AAAI ‘17]




Deep Markov models (DMMs)

Z1 Z2 Z3 Z4
Patient state z, ¢ R'"’

Mar. ‘11 Apr. 1 Feb. 1 Jun. ‘1

Actions u
(e.g., medication, surgery)

w AL u AL

Observations X d C)
(blood and urine test results,

diagnoses, vital signs, ...) X1 X9 X3 X4

[Krishnan, Shalit, Sontag, AAAI ‘17]




Deep Markov models (DMMs)

VA Zo Z3 Z4

Patient state z, ¢ R'"’
Mar. ‘11 Apr. 1 Feb. 1 Jun. ‘1

Actions u d
(e.g., medication, surgery)

W A W2 [ U

Observations X W d C)
(blood and urine test results,

diagnoses, vital signs, ...) X1 X9 X3 X4

[Krishnan, Shalit, Sontag, AAAI ‘17]




Deep Markov models (DMMs)

VA Zo Z3 Z4

Patient state z, ¢ R'"’

Mar. ‘11
Actions u
(e.g., medication, surgery)
us
Observations X C)
(blood and urine test results,
diagnoses, vital signs, ...) X1 X9 X3 X4

Provides an in-silico model for assessing effect of interventions
(actions), by forward sampling in model

[Krishnan, Shalit, Sontag, AAAI ‘17]



Deep Markov models (DMMs)

VA Zo Z3 Z4

Patient state z, ¢ R'"’

Mar. ‘11
Actions u
(e.g., medication, surgery)
us
Observations X C)
(blood and urine test results,
diagnoses, vital signs, ...) X1 X9 X3 X4

* Providesan in-silico model for assessing effect of interventions
(actions), by forward sampling in model

* Transition & emission distributions given by deep neural networks:

Input Output
I Zy ~ N(Q(Zt—hut—l), S(Zt—hut—l))
Zi 1 x«ff‘.\m‘. u
AR ‘\'i,(; ] Zt

[Krishnan, Shalit, Sontag, AAAI ‘17]



Learning the effect of diabetic
treatments

 Long-term:which diabetes medications work best for whom?

e Actions: 9 diabeticdrugsincluding Metformin and Insulin (m),
lab test orders (u)

100 5] 1o

Medications

VA Z3 Z3

u; us
Lab test
orders
Cj/ Cj/ C) Observations
X1 X2 X3

* Here we just do a sanity check. 8000 diabetic & pre-diabetic
patients, 4 years of data.



Effect of diabetes treatments on glucose

Bl / medication Bl w/out medication
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1. Align patients by when
they were first prescribed
Metformin

2. Sample future patient data
using the medications
they truly received

3. Samplefuture patient data
as if they never received
medication
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Effect of diabetes treatments on glucose

Bl / medication Bl w/out medication
1 0 High Glucose

1. Align patients by when (as expected)
they were first prescribed 0.9} diabetes medication causes
] decrease in glucose
Metformin

2. Sample future patient data 0.8}

using the medications
they truly received

3. Samplefuture patient data
as if they never received
medication 0.5
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-
\]
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Summary

* Incredible potential for clinical data to be used
for:

— Population-level understanding of disease progression

— Discovering new disease subtypes

— Predicting future outcomes such as survival time and
complications

— Personalizing therapy by identifying who will respond
best to treatment
* Key advance is to show how to do these from
high-dimensional, noisy, incomplete patient
trajectories



