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Goals	of	disease	progression	
modeling

• Predictive:
– What	will	this	patient’s	future	trajectory	look	like?	

• Descriptive:
– Find	markers	of	disease	stage	and	progression,	
statistics	of	what	to	expect	when

– Discover	new	disease	subtypes
• Key	challenges	we	will	tackle:

– Seldom	directly	observe	disease	stage,	but	rather	only	
indirect	observations	(e.g.	symptoms)

– Data	is	censored	– don’t	observe	beginning	to	end
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Predicting	disease	progression	in	
Alzheimer’s	disease

[Image	credit:	Wikipedia;	 "Alzheimer's	 Disease	 Education	and	Referral	Center,	a	service	 of	the	
National	 Institute	 on	Aging.”]



Disease	status	
quantified	by	
cognitive	score
(continuous	valued)



Predicting	disease	progression	in	
Alzheimer’s	disease

• Goal:	Predict	disease	status	in	6,	12,	24,	36,	
and	48	months

• Five	different	regression	tasks?
• Challenge:	data	sparsity

– Total	number	of	patients	is	small
– Labels	are	noisy
– Due	to	censoring,	fewer	patients	at	later	time	
points

[Zhou	et	al.,	Modeling	Disease	Progression	 via	Fused	Sparse	Group	Lasso,	KDD	’12]
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• Goal:	Predict	disease	status	in	6,	12,	24,	36,	
and	48	months

• Five	different	regression	tasks?
• Challenge:	data	sparsity

Table 1: The sample size and feature dimensional-
ity of different data sets used in the experiments.
M denotes baseline MMSE features and E denotes
baseline META features.
Target Source M06 M12 M24 M36 M48 Dim.

MMSE
M 648 642 569 389 87 306

M+E 648 642 569 389 87 371

ADAS
M 648 638 564 377 85 306

M+E 648 642 569 389 87 371

Table 2: Features included in the META dataset.
In META, we include baseline cognitive scores as
features to predict the future cognitive scores. A
detailed explanation of each cognitive score and lab
test can be found at [1].

Type Features
Demographic age, years of education, gender
Genetic ApoE-ε4 information
Baseline
cognitive
scores

MMSE, ADAS-Cog, ADAS-MOD, ADAS sub-
scores, CDR, FAQ, GDS, Hachinski, Neu-
ropsychological Battery, WMS-R Logical
Memory

Lab tests RCT1, RCT11, RCT12, RCT13, RCT14,
RCT1407, RCT1408, RCT183, RCT19,
RCT20, RCT29, RCT3, RCT392, RCT4,
RCT5, RCT6, RCT8

biomarkers (M, P, C) as META (E). A detailed list of the
META data is given in Table 2. The date when the patient
performs the screening in the hospital for the first time is
called baseline, and the time point for the follow-up visits is
denoted by the duration starting from the baseline. For in-
stance, we use the notation “M06” to denote the time point
half year after the first visit. Currently ADNI has up to 48
months’ follow-up data for some patients. However, many
patients drop out from the study for many reasons (e.g. de-
ceased). In our experiments, we predict future MMSE and
ADAS-Cog scores using various measurements at the base-
line. For each target we build a prediction model using a
data set that only contains baseline MRI features (M), and
another data set that contains both MRI and META fea-
tures (M+E). In the current study, CSF and PET are not
used due to the small sample size. The MRI features are
extracted in the same way as in [43]. There are 5 types
of MRI features used: white matter parcellation volume
(Vol.WM.), cortical parcellation volume (Vol.C.), surface
area (Surf. Area), cortical thickness average (CTA), cortical
thickness standard deviation (CTStd). The sample size and
dimensionality for each time point and feature combination
is given in Table 1.

6.2 Prediction Performance
In the first experiment, we compare the proposed meth-

ods including Convex Fused Sparse Group Lasso (cFSGL)
and the two Non-Convex Fused Group Lasso: nFSGL1 in
Eq. (16) and nFSGL2 in Eq. (17) with ridge regression (Ridge)
and Temporal Group Lasso (TGL) on the prediction of MMSE
and ADAS-Cog using selected types of feature combinations,
namely M and M+E. Note that Lasso is a special case of
cFSGL when both λ2 and λ3 are set to 0. For each feature
combination, we randomly split the data into training and
testing sets using a ratio 9 : 1. The 5-fold cross validation
is used to select model parameters. For the regression per-

formance measures, we use Normalized Mean Squared Error
(nMSE) as used in the multi-task learning literature [40, 3]
and weighted correlation coefficient (R-value) as employed
in the medical literature addressing AD progression prob-
lems [10, 31, 18]. We report the mean and standard devia-
tion based on 20 iterations of experiments on different splits
of data. To investigate the effects of the fused Lasso term,
in cFSGL we fix the value of λ2 in Eq.(2) to be 20, 50, 100,
and perform cross validation to select λ1 and λ3. The three
configurations are labeled as cFSGL1, cFSGL2 and cFSGL3
respectively.
The experimental results using 90% training data on MRI

and MRI+META are presented in Table 3 and Table 4.
Overall our proposed approaches outperform Ridge and TGL,
in terms of both nMSE and correlation coefficient. We have
the following observations: 1) The fused Lasso term is effec-
tive. We witness significant improvement in cFSGL when
changing the parameter value for the fused Lasso term. 2)
The proposed cFSGL and nFSGL formulations witness sig-
nificant improvement for later time points. This may be due
to the data sparseness at later time points (see Table 1),
as the proposed sparsity-inducing models are expected to
achieve better generalization performance in this case. 3)
The non-convex nFSGL formulations are better than cFSGL
in many tasks. One practical strength of the non-convex
nFSGL formulations is that they have fewer parameters to
be estimated (only 2 parameters).

6.3 Temporal Patterns of Biomarkers
One of the strengthens of the proposed formulations is

that they facilitate the identification of temporal patterns
of biomarkers. In this experiment we study the temporal
patterns of biomarkers using longitudinal stability selection
with cFSGL and nFSGL. Note that because the sample size
at the M48 time point is too small, we perform stability
selection for M06, M12, M24, and M36 only.
The stability vectors of MRI stable features using cFSGL

nFSGL1 and nFSGL2 formulations are given in Figure 1,
Figure 2 and Figure 3 respectively. In the figures, we collec-
tively list the stable features (η = 20) at the 4 time points.
The total number of features may be less than 80 because
one feature may be identified as a stable feature at multi-
ple time points. In Figure 1(a), we observe that cortical
thickness average of left middle temporal, cortical thickness
average of left and right Entorhinal, and white matter vol-
ume of left Hippocampus are important biomarkers for all
time points, which agrees with the previous findings [43].
Cortical volume of left Entorhinal provides significant infor-
mation in later stages than in the first 6 months. Several
biomarkers including white matter volume of left and right
Amygdala, and surface area of right Bankssts provide use-
ful information only in later time points. On the contrary,
some biomarkers have a large stability score during the first
2 years after baseline screening, such as cortical thickness
average of left inferior temporal, left inferior parietal, and
cortical thickness standard deviation of left isthmus cingu-
late, right lingual, left inferior parietal, and cortical volume
of right precentral, right isthmus cingulate, and left middle
temporal cortex.
The stability vector of stable MRI features for MMSE are

given in Figure 1(b). We obtain very different patterns from
ADAS-Cog. We find that most biomarkers provide signifi-
cant information for the first 2 years and very few of them
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Number	of	patients	M	months	after	baseline	
(Alzheimer’s	 Disease	Neuroimaging	 Initiative)

M06	=	6	months	after	baseline

[Zhou	et	al.,	Modeling	Disease	Progression	 via	Fused	Sparse	Group	Lasso,	KDD	’12]



Multi-task	learning

• Goal:	Predict	disease	status	in	6,	12,	24,	36,	
and	48	months

• Rather	than	learn	several	independent	models,	
view	as	multi-task learning
– Select	common	set	of	biomarkers	for	all	time	points
– Also	allow	for	specific	set	of	biomarkers	at	different	
time	points

– Incorporate	temporal	smoothness	in	models

[Zhou	et	al.,	Modeling	Disease	Progression	 via	Fused	Sparse	Group	Lasso,	KDD	’12]









Convex	fused	sparse	group	lasso
• Simultaneously	learn	all	5	models	by	solving	the	
following	convex	optimization	problem:

• Squared	loss:
(S is	a	mask	to	account	for	labels	missing	in	subset	of	tasks)

• Group	Lasso	penalty														given	by
• R	=

[Zhou	et	al.,	KDD	’12]

tion problem:

min
W

L(W ) + λ1 ∥W∥1 + λ2

∥∥∥RWT
∥∥∥
1
+ λ3 ∥W∥2,1 , (2)

where ∥W∥1 is the Lasso penalty, the group Lasso penalty

∥W∥2,1 is given by
∑d

i=1

√∑t
j=1 W

2
ij ,

∥∥RWT
∥∥
1
is the fused

Lasso penalty, R is an (t − 1) × t sparse matrix in which
Ri,i = 1 and Ri,i+1 = −1, and λ1, λ2 and λ3 are regulariza-
tion parameters. The combination of Lasso and group Lasso
penalties is also known as the sparse group Lasso penalty,
which allows simultaneous joint feature selection for all tasks
and selection of a specific set of features for each task. The
fused Lasso penalty is employed to incorporate the tempo-
ral smoothness. We call the formulation in Eq. (2) “convex
fused sparse group Lasso”(cFSGL). The cFSGL formulation
involves three non-smooth terms, and is thus challenging to
solve. We propose to solve the optimization problem by the
accelerated gradient method (AGM) [27, 28]. One of the
key steps in using AGM is the computation of the proxi-
mal operator associated with the composite of non-smooth
penalties defined as follows:

π(V ) = argmin
W

1
2
∥W − V ∥2F + λ1∥W∥1

+ λ2∥RWT ∥1 + λ3∥W∥2,1. (3)

It is clear that each row of W is decoupled in Eq. (3). Thus
for obtaining the ith row wi, we only need to solve the fol-
lowing optimization problem:

π(vi) = argmin
wi

1
2
∥wi − vi∥22 + λ1∥wi∥1

+λ2∥Rwi∥1 + λ3∥wi∥2, (4)

where vi is the ith row of V . The proximal operator in
Eq. (4) is challenging to compute due to the presence of three
non-smooth terms. One of the key technical contributions
of this paper is to show that the proximal operator exhibits
a certain decomposition property, based on which we can
efficiently compute the proximal operator in two stages, as
summarized in the following theorem:

Theorem 1. Define

πFL(v) = argmin
w

1
2
∥w − v∥22 + λ1∥w∥1 + λ2∥Rw∥1 (5)

πGL(v) = argmin
w

1
2
∥w − v∥22 + λ3∥w∥2. (6)

Then the following holds:

π(v) = πGL(πFL(v)). (7)

Proof: The necessary and sufficient optimality conditions
for (4), (5), and (6) can be written as:

0 ∈ π(v)− v + λ1SGN(π(v))

+ λ2R
TSGN(Rπ(v)) + λ3∂g(π(v)), (8)

0 ∈ πFL(v)− v + λ1SGN(πFL(v))

+ λ2R
TSGN(RπFL(v)), (9)

0 ∈ πGL(πFL(v))− πFL(v) + λ3∂g(πGL(πFL(v))), (10)

where SGN(x) is a set defined in a componentwise manner
as:

(SGN(x))i =

⎧
⎨

⎩

[−1, 1] xi = 0
{1} xi > 0
{−1} xi < 0,

(11)

and

∂g(x) =

{ x
∥x∥2

x ̸= 0
{y : ∥y∥2 ≤ 1} x = 0.

(12)

It follows from (10) and (12) that: 1) if ∥πFL(v)∥2 ≤ λ3,
then πGL(πFL(v)) = 0; and 2) if ∥πFL(v)∥2 > λ3, then

πGL(πFL(v)) =
∥πFL(v)∥2−λ3

∥πFL(v)∥2
πFL(v).

It is easy to observe that, 1) if the i-th entry of πFL(v)
is zero, so is the i-th entry of πGL(πFL(v)); 2) if the i-th
entry of πFL(v) is positive (or negative), so is the i-th entry
of πGL(πFL(v)). Therefore, we have:

SGN(πFL(v)) ⊆ SGN(πGL(πFL(v))). (13)

Meanwhile, 1) if the i-th and the (i + 1)-th entries of
πFL(v) are identical, so are those of πGL(πFL(v)); 2) if the
i-th entry is larger (or smaller) than the (i+ 1)-th entry in
πFL(v), so is in πGL(πFL(v)). Therefore, we have:

SGN(RπFL(v)) ⊆ SGN(RπGL(πFL(v))). (14)

It follows from (9), (10), (13), and (14) that:

0 ∈ πGL(πFL(v))− v + λ1SGN(πGL(πFL(v)))

+ λ2R
TSGN(RπGL(πFL(v))) + λ3∂g(πGL(πFL(v))).

(15)

Since (4) has a unique solution, we can get (7) from (8)
and (15). ✷
Note that the fused Lasso signal approximator [13] in

Eq.(5) can be effectively solved using [24]. The complete
algorithm for computing the proximal operator associated
with cFSGL is given in Algorithm 1.

Algorithm 1 Proximal operator associated with the Con-
vex Fused Sparse Group Lasso (cFSGL)

Input: V ∈ Rd×t, R ∈ Rt−1×t, λ1, λ2, λ3

Output: W ∈ Rd×t

1: for i = 1 : d do
2: ui = argminw

1
2∥w − vi∥22 + λ1∥w∥1 + λ2∥Rw∥1

3: wi = argminw
1
2∥w − ui∥22 + λ3∥w∥2

4: end for

3. NON-CONVEX PROGRESSION MODELS
In cFSGL, we aim to select task-shared and task-specific

features using the sparse group Lasso penalty. However, the
decomposition property shown in Theorem 1 implies that
a simple composition of the ℓ1-norm penalty and ℓ2,1-norm
penalty may be sub-optimal. Besides, the sparsity-inducing
penalties are known to lead to biased estimates [12]. To
this end, we propose the following non-convex multi-task
regression formulation for modeling disease progression:

min
W

L(W ) + λ
d∑

i=1

√
∥wi∥1 + γ∥RWT ∥1, (16)

where the second term is the summation of the squared root
of ℓ1-norm of wi (wi is the ith row of W ), and is called the
composite ℓ(0.5,1)-norm regularization. Note that it is in fact
not a valid norm due to its non-convexity. It is known that
the ℓ0.5 penalty leads to a sparse solution, thus many of the
rows of W will be zero, i.e., the features corresponding to
the zero rows will be removed from all tasks. In addition,
for the nonzero rows, due to the use of the ℓ1 penalty for
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cognitive subscale (ADAS-Cog) [10, 31], or the volume of a
certain brain region [16], or clinically defined categories [9,
26]. When high-dimensional data, such as neuroimages (i.e.,
MRI and/or PET) are used as input features, the methods of
sequentially evaluating individual features are suboptimal.
In such cases, dimension reduction techniques such as prin-
ciple component analysis are commonly applied to project
the data into a lower-dimensional space [10]. One disadvan-
tage of using dimension reduction is that the models are no
longer interpretable. A better alternative is to use feature
selection in modeling the disease progression [31]. Most ex-
isting work focus on the prediction of target at a single time
point (baseline [31], or one year [10]); however, a joint analy-
sis of data from multiple time points is expected to improve
the performance especially when the number of subjects is
small and the number of input features is large.

To address the aforementioned challenges, multi-task learn-
ing techniques have recently been proposed to model the dis-
ease progression [39, 43]. The idea of multi-task learning is
to utilize the intrinsic relationships among multiple related
tasks in order to improve the generalization performance;
it is most effective when the number of samples for each
task is small. One of the key issues in multi-task learning
is to identify how the tasks are related and build learning
models to capture such task relatedness. One way of model-
ing multi-task relationship is to assume all tasks are related
and task models are closed to each other [11], or tasks are
clustered into groups [4, 20, 32, 41]. Alternatively, one can
assume that the tasks share a common subspace [2, 7], or
a common set of features [3, 29]. In [39], the prediction of
different types of targets such as MMSE and ADAS-Cog is
modeled as a multi-task learning problem and all models are
constrained to share a common set of features. In [43], multi-
task learning is used to model the longitudinal disease pro-
gression. Given the set of baseline features of a patient, the
prediction of the patient’s disease status at each time point
can be considered as a regression task. Multiple prediction
tasks at different time points are performed simultaneously
to capture the temporal smoothness of the prediction mod-
els across different time points. However, similar to [39], the
formulation in [43] constrains the models at all time points
to select a common set of features, thus failing to capture the
temporal patterns of the biomarkers in disease progression [6,
19]. It is thus desirable to develop formulations that allow
the simultaneous selection of a common set of biomarkers
for multiple time points and specific sets of biomarkers for
different time points.

In this paper, we propose novel multi-task learning formu-
lations for predicting the disease progression measured by
the clinical scores (ADAS-Cog and MMSE). Specifically, we
propose a convex fused sparse group Lasso (cFSGL) formu-
lation that simultaneously selects a common set of biomark-
ers for all time points and selects a specific set of biomark-
ers at different time points using the sparse group Lasso
penalty [14], and in the meantime incorporates the tempo-
ral smoothness using the fused Lasso penalty [33]. The pro-
posed formulation is, however, challenging to solve due to
the use of several non-smooth penalties including the sparse
group Lasso and fused Lasso penalties. We show that the
proximal operator associated with the optimization prob-
lem in cFSGL exhibits a certain decomposition property
and can be solved efficiently. Therefore cFSGL can be effi-
ciently solved using the accelerated gradient method [27, 28].

The convex sparsity-inducing penalties are known to intro-
duce shrinkage bias [12]. To further improve the progression
model and reduce the shrinkage bias in cFSGL, we propose
two non-convex progression formulations. We employ the
difference of convex (DC) programming technique to solve
the non-convex formulations, which iteratively solves a se-
quence of convex relaxed optimization problems. We show
that at each step the convex relaxed problems are equivalent
to reweighted sparse learning problems [5].

We have performed extensive experiments to demonstrate
the effectiveness of the proposed models using data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). We
have also performed longitudinal stability selection [43] us-
ing our proposed formulations to identify and analyze the
temporal patterns of biomarkers in disease progression.

2. A CONVEX FORMULATION OF MOD-
ELING DISEASE PROGRESSION

In the longitudinal AD study, cognitive scores of selected
patients are repeatedly measured at multiple time points.
The prediction of cognitive scores at each time point can
be considered as a regression problem, and the prediction
of cognitive scores at multiple time points can be treated as
a multi-task regression problem. By employing multi-task
regression, the temporal information among different tasks
can be incorporated into the model to improve the prediction
performance.

Consider a multi-task regression problem of t tasks with
n samples of d features. Let {x1, · · · ,xn} be the input data
at the baseline, and let {y1, · · · ,yn} be the targets, where
each xi ∈ Rd represents a sample (patient), and yi ∈ Rt is
the corresponding targets (clinical scores) at different time
points. We collectively denote X = [x1, · · · ,xn]

T ∈ Rn×d

as the data matrix, Y = [y1, · · · ,yn]
T ∈ Rn×t as the target

matrix, andW =
[
w1, · · · ,wt

]
∈ Rd×t as the weight matrix.

To consider the missing values from the target, we denote
the loss function as:

L(W ) = ∥S ⊙ (XW − Y )∥2F , (1)

where matrix S ∈ Rn×t indicates missing target values:
Si,j = 0 if the target value of sample i is missing at the
jth time point, and Si,j = 1 otherwise. The component-
wise operator ⊙ is defined as follows: Z = A ⊙ B denotes
Zi,j = Ai,jBi,j , for all i, j. The multi-task regression solves
the following optimization problem: minW L(W ) + Ω(W ),
where Ω(W ) is a regularization term that captures the task
relatedness.

In the multi-task setting for modeling disease progression,
each task is to predict a specific target (e.g., MMSE) for a
set of subjects at different time points. It is thus reason-
able to assume that the difference of the predictions between
immediate time points is small, i.e., the temporal smooth-
ness [43]. It is also well believed in the literature that a
small subset of biomarkers are related to the disease pro-
gression, and biomarkers involved at different stages may be
different [19]. To this end, we propose a novel multi-task
learning formulation for modeling disease progression which
allows simultaneous joint feature selection for multiple tasks
and task-specific feature selection, and in the meantime in-
corporates the temporal smoothness. Mathematically, the
proposed formulation solves the following convex optimiza-
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tion problem:

min
W

L(W ) + λ1 ∥W∥1 + λ2

∥∥∥RWT
∥∥∥
1
+ λ3 ∥W∥2,1 , (2)

where ∥W∥1 is the Lasso penalty, the group Lasso penalty

∥W∥2,1 is given by
∑d

i=1

√∑t
j=1 W

2
ij ,

∥∥RWT
∥∥
1
is the fused

Lasso penalty, R is an (t − 1) × t sparse matrix in which
Ri,i = 1 and Ri,i+1 = −1, and λ1, λ2 and λ3 are regulariza-
tion parameters. The combination of Lasso and group Lasso
penalties is also known as the sparse group Lasso penalty,
which allows simultaneous joint feature selection for all tasks
and selection of a specific set of features for each task. The
fused Lasso penalty is employed to incorporate the tempo-
ral smoothness. We call the formulation in Eq. (2) “convex
fused sparse group Lasso”(cFSGL). The cFSGL formulation
involves three non-smooth terms, and is thus challenging to
solve. We propose to solve the optimization problem by the
accelerated gradient method (AGM) [27, 28]. One of the
key steps in using AGM is the computation of the proxi-
mal operator associated with the composite of non-smooth
penalties defined as follows:

π(V ) = argmin
W

1
2
∥W − V ∥2F + λ1∥W∥1

+ λ2∥RWT ∥1 + λ3∥W∥2,1. (3)

It is clear that each row of W is decoupled in Eq. (3). Thus
for obtaining the ith row wi, we only need to solve the fol-
lowing optimization problem:

π(vi) = argmin
wi

1
2
∥wi − vi∥22 + λ1∥wi∥1

+λ2∥Rwi∥1 + λ3∥wi∥2, (4)

where vi is the ith row of V . The proximal operator in
Eq. (4) is challenging to compute due to the presence of three
non-smooth terms. One of the key technical contributions
of this paper is to show that the proximal operator exhibits
a certain decomposition property, based on which we can
efficiently compute the proximal operator in two stages, as
summarized in the following theorem:

Theorem 1. Define

πFL(v) = argmin
w

1
2
∥w − v∥22 + λ1∥w∥1 + λ2∥Rw∥1 (5)

πGL(v) = argmin
w

1
2
∥w − v∥22 + λ3∥w∥2. (6)

Then the following holds:

π(v) = πGL(πFL(v)). (7)

Proof: The necessary and sufficient optimality conditions
for (4), (5), and (6) can be written as:

0 ∈ π(v)− v + λ1SGN(π(v))

+ λ2R
TSGN(Rπ(v)) + λ3∂g(π(v)), (8)

0 ∈ πFL(v)− v + λ1SGN(πFL(v))

+ λ2R
TSGN(RπFL(v)), (9)

0 ∈ πGL(πFL(v))− πFL(v) + λ3∂g(πGL(πFL(v))), (10)

where SGN(x) is a set defined in a componentwise manner
as:

(SGN(x))i =

⎧
⎨

⎩

[−1, 1] xi = 0
{1} xi > 0
{−1} xi < 0,

(11)

and

∂g(x) =

{ x
∥x∥2

x ̸= 0
{y : ∥y∥2 ≤ 1} x = 0.

(12)

It follows from (10) and (12) that: 1) if ∥πFL(v)∥2 ≤ λ3,
then πGL(πFL(v)) = 0; and 2) if ∥πFL(v)∥2 > λ3, then

πGL(πFL(v)) =
∥πFL(v)∥2−λ3

∥πFL(v)∥2
πFL(v).

It is easy to observe that, 1) if the i-th entry of πFL(v)
is zero, so is the i-th entry of πGL(πFL(v)); 2) if the i-th
entry of πFL(v) is positive (or negative), so is the i-th entry
of πGL(πFL(v)). Therefore, we have:

SGN(πFL(v)) ⊆ SGN(πGL(πFL(v))). (13)

Meanwhile, 1) if the i-th and the (i + 1)-th entries of
πFL(v) are identical, so are those of πGL(πFL(v)); 2) if the
i-th entry is larger (or smaller) than the (i+ 1)-th entry in
πFL(v), so is in πGL(πFL(v)). Therefore, we have:

SGN(RπFL(v)) ⊆ SGN(RπGL(πFL(v))). (14)

It follows from (9), (10), (13), and (14) that:

0 ∈ πGL(πFL(v))− v + λ1SGN(πGL(πFL(v)))

+ λ2R
TSGN(RπGL(πFL(v))) + λ3∂g(πGL(πFL(v))).

(15)

Since (4) has a unique solution, we can get (7) from (8)
and (15). ✷
Note that the fused Lasso signal approximator [13] in

Eq.(5) can be effectively solved using [24]. The complete
algorithm for computing the proximal operator associated
with cFSGL is given in Algorithm 1.

Algorithm 1 Proximal operator associated with the Con-
vex Fused Sparse Group Lasso (cFSGL)

Input: V ∈ Rd×t, R ∈ Rt−1×t, λ1, λ2, λ3

Output: W ∈ Rd×t

1: for i = 1 : d do
2: ui = argminw

1
2∥w − vi∥22 + λ1∥w∥1 + λ2∥Rw∥1

3: wi = argminw
1
2∥w − ui∥22 + λ3∥w∥2

4: end for

3. NON-CONVEX PROGRESSION MODELS
In cFSGL, we aim to select task-shared and task-specific

features using the sparse group Lasso penalty. However, the
decomposition property shown in Theorem 1 implies that
a simple composition of the ℓ1-norm penalty and ℓ2,1-norm
penalty may be sub-optimal. Besides, the sparsity-inducing
penalties are known to lead to biased estimates [12]. To
this end, we propose the following non-convex multi-task
regression formulation for modeling disease progression:

min
W

L(W ) + λ
d∑

i=1

√
∥wi∥1 + γ∥RWT ∥1, (16)

where the second term is the summation of the squared root
of ℓ1-norm of wi (wi is the ith row of W ), and is called the
composite ℓ(0.5,1)-norm regularization. Note that it is in fact
not a valid norm due to its non-convexity. It is known that
the ℓ0.5 penalty leads to a sparse solution, thus many of the
rows of W will be zero, i.e., the features corresponding to
the zero rows will be removed from all tasks. In addition,
for the nonzero rows, due to the use of the ℓ1 penalty for
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tion problem:

min
W

L(W ) + λ1 ∥W∥1 + λ2

∥∥∥RWT
∥∥∥
1
+ λ3 ∥W∥2,1 , (2)

where ∥W∥1 is the Lasso penalty, the group Lasso penalty

∥W∥2,1 is given by
∑d

i=1

√∑t
j=1 W

2
ij ,

∥∥RWT
∥∥
1
is the fused

Lasso penalty, R is an (t − 1) × t sparse matrix in which
Ri,i = 1 and Ri,i+1 = −1, and λ1, λ2 and λ3 are regulariza-
tion parameters. The combination of Lasso and group Lasso
penalties is also known as the sparse group Lasso penalty,
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and selection of a specific set of features for each task. The
fused Lasso penalty is employed to incorporate the tempo-
ral smoothness. We call the formulation in Eq. (2) “convex
fused sparse group Lasso”(cFSGL). The cFSGL formulation
involves three non-smooth terms, and is thus challenging to
solve. We propose to solve the optimization problem by the
accelerated gradient method (AGM) [27, 28]. One of the
key steps in using AGM is the computation of the proxi-
mal operator associated with the composite of non-smooth
penalties defined as follows:

π(V ) = argmin
W

1
2
∥W − V ∥2F + λ1∥W∥1

+ λ2∥RWT ∥1 + λ3∥W∥2,1. (3)

It is clear that each row of W is decoupled in Eq. (3). Thus
for obtaining the ith row wi, we only need to solve the fol-
lowing optimization problem:

π(vi) = argmin
wi

1
2
∥wi − vi∥22 + λ1∥wi∥1

+λ2∥Rwi∥1 + λ3∥wi∥2, (4)

where vi is the ith row of V . The proximal operator in
Eq. (4) is challenging to compute due to the presence of three
non-smooth terms. One of the key technical contributions
of this paper is to show that the proximal operator exhibits
a certain decomposition property, based on which we can
efficiently compute the proximal operator in two stages, as
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Theorem 1. Define

πFL(v) = argmin
w

1
2
∥w − v∥22 + λ1∥w∥1 + λ2∥Rw∥1 (5)

πGL(v) = argmin
w

1
2
∥w − v∥22 + λ3∥w∥2. (6)

Then the following holds:

π(v) = πGL(πFL(v)). (7)

Proof: The necessary and sufficient optimality conditions
for (4), (5), and (6) can be written as:

0 ∈ π(v)− v + λ1SGN(π(v))

+ λ2R
TSGN(Rπ(v)) + λ3∂g(π(v)), (8)

0 ∈ πFL(v)− v + λ1SGN(πFL(v))

+ λ2R
TSGN(RπFL(v)), (9)

0 ∈ πGL(πFL(v))− πFL(v) + λ3∂g(πGL(πFL(v))), (10)

where SGN(x) is a set defined in a componentwise manner
as:

(SGN(x))i =

⎧
⎨

⎩

[−1, 1] xi = 0
{1} xi > 0
{−1} xi < 0,

(11)

and

∂g(x) =

{ x
∥x∥2

x ̸= 0
{y : ∥y∥2 ≤ 1} x = 0.

(12)

It follows from (10) and (12) that: 1) if ∥πFL(v)∥2 ≤ λ3,
then πGL(πFL(v)) = 0; and 2) if ∥πFL(v)∥2 > λ3, then

πGL(πFL(v)) =
∥πFL(v)∥2−λ3

∥πFL(v)∥2
πFL(v).

It is easy to observe that, 1) if the i-th entry of πFL(v)
is zero, so is the i-th entry of πGL(πFL(v)); 2) if the i-th
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SGN(RπFL(v)) ⊆ SGN(RπGL(πFL(v))). (14)

It follows from (9), (10), (13), and (14) that:

0 ∈ πGL(πFL(v))− v + λ1SGN(πGL(πFL(v)))

+ λ2R
TSGN(RπGL(πFL(v))) + λ3∂g(πGL(πFL(v))).

(15)

Since (4) has a unique solution, we can get (7) from (8)
and (15). ✷

Note that the fused Lasso signal approximator [13] in
Eq.(5) can be effectively solved using [24]. The complete
algorithm for computing the proximal operator associated
with cFSGL is given in Algorithm 1.

Algorithm 1 Proximal operator associated with the Con-
vex Fused Sparse Group Lasso (cFSGL)

Input: V ∈ Rd×t, R ∈ Rt−1×t, λ1, λ2, λ3

Output: W ∈ Rd×t

1: for i = 1 : d do
2: ui = argminw

1
2∥w − vi∥22 + λ1∥w∥1 + λ2∥Rw∥1

3: wi = argminw
1
2∥w − ui∥22 + λ3∥w∥2

4: end for

3. NON-CONVEX PROGRESSION MODELS
In cFSGL, we aim to select task-shared and task-specific

features using the sparse group Lasso penalty. However, the
decomposition property shown in Theorem 1 implies that
a simple composition of the ℓ1-norm penalty and ℓ2,1-norm
penalty may be sub-optimal. Besides, the sparsity-inducing
penalties are known to lead to biased estimates [12]. To
this end, we propose the following non-convex multi-task
regression formulation for modeling disease progression:

min
W

L(W ) + λ
d∑

i=1

√
∥wi∥1 + γ∥RWT ∥1, (16)

where the second term is the summation of the squared root
of ℓ1-norm of wi (wi is the ith row of W ), and is called the
composite ℓ(0.5,1)-norm regularization. Note that it is in fact
not a valid norm due to its non-convexity. It is known that
the ℓ0.5 penalty leads to a sparse solution, thus many of the
rows of W will be zero, i.e., the features corresponding to
the zero rows will be removed from all tasks. In addition,
for the nonzero rows, due to the use of the ℓ1 penalty for

1097

4

5
1	-1

1	-1
1	-1



Features

371	in	total

Table 1: The sample size and feature dimensional-
ity of different data sets used in the experiments.
M denotes baseline MMSE features and E denotes
baseline META features.
Target Source M06 M12 M24 M36 M48 Dim.

MMSE
M 648 642 569 389 87 306

M+E 648 642 569 389 87 371

ADAS
M 648 638 564 377 85 306

M+E 648 642 569 389 87 371

Table 2: Features included in the META dataset.
In META, we include baseline cognitive scores as
features to predict the future cognitive scores. A
detailed explanation of each cognitive score and lab
test can be found at [1].

Type Features
Demographic age, years of education, gender
Genetic ApoE-ε4 information
Baseline
cognitive
scores

MMSE, ADAS-Cog, ADAS-MOD, ADAS sub-
scores, CDR, FAQ, GDS, Hachinski, Neu-
ropsychological Battery, WMS-R Logical
Memory

Lab tests RCT1, RCT11, RCT12, RCT13, RCT14,
RCT1407, RCT1408, RCT183, RCT19,
RCT20, RCT29, RCT3, RCT392, RCT4,
RCT5, RCT6, RCT8

biomarkers (M, P, C) as META (E). A detailed list of the
META data is given in Table 2. The date when the patient
performs the screening in the hospital for the first time is
called baseline, and the time point for the follow-up visits is
denoted by the duration starting from the baseline. For in-
stance, we use the notation “M06” to denote the time point
half year after the first visit. Currently ADNI has up to 48
months’ follow-up data for some patients. However, many
patients drop out from the study for many reasons (e.g. de-
ceased). In our experiments, we predict future MMSE and
ADAS-Cog scores using various measurements at the base-
line. For each target we build a prediction model using a
data set that only contains baseline MRI features (M), and
another data set that contains both MRI and META fea-
tures (M+E). In the current study, CSF and PET are not
used due to the small sample size. The MRI features are
extracted in the same way as in [43]. There are 5 types
of MRI features used: white matter parcellation volume
(Vol.WM.), cortical parcellation volume (Vol.C.), surface
area (Surf. Area), cortical thickness average (CTA), cortical
thickness standard deviation (CTStd). The sample size and
dimensionality for each time point and feature combination
is given in Table 1.

6.2 Prediction Performance
In the first experiment, we compare the proposed meth-

ods including Convex Fused Sparse Group Lasso (cFSGL)
and the two Non-Convex Fused Group Lasso: nFSGL1 in
Eq. (16) and nFSGL2 in Eq. (17) with ridge regression (Ridge)
and Temporal Group Lasso (TGL) on the prediction of MMSE
and ADAS-Cog using selected types of feature combinations,
namely M and M+E. Note that Lasso is a special case of
cFSGL when both λ2 and λ3 are set to 0. For each feature
combination, we randomly split the data into training and
testing sets using a ratio 9 : 1. The 5-fold cross validation
is used to select model parameters. For the regression per-

formance measures, we use Normalized Mean Squared Error
(nMSE) as used in the multi-task learning literature [40, 3]
and weighted correlation coefficient (R-value) as employed
in the medical literature addressing AD progression prob-
lems [10, 31, 18]. We report the mean and standard devia-
tion based on 20 iterations of experiments on different splits
of data. To investigate the effects of the fused Lasso term,
in cFSGL we fix the value of λ2 in Eq.(2) to be 20, 50, 100,
and perform cross validation to select λ1 and λ3. The three
configurations are labeled as cFSGL1, cFSGL2 and cFSGL3
respectively.
The experimental results using 90% training data on MRI

and MRI+META are presented in Table 3 and Table 4.
Overall our proposed approaches outperform Ridge and TGL,
in terms of both nMSE and correlation coefficient. We have
the following observations: 1) The fused Lasso term is effec-
tive. We witness significant improvement in cFSGL when
changing the parameter value for the fused Lasso term. 2)
The proposed cFSGL and nFSGL formulations witness sig-
nificant improvement for later time points. This may be due
to the data sparseness at later time points (see Table 1),
as the proposed sparsity-inducing models are expected to
achieve better generalization performance in this case. 3)
The non-convex nFSGL formulations are better than cFSGL
in many tasks. One practical strength of the non-convex
nFSGL formulations is that they have fewer parameters to
be estimated (only 2 parameters).

6.3 Temporal Patterns of Biomarkers
One of the strengthens of the proposed formulations is

that they facilitate the identification of temporal patterns
of biomarkers. In this experiment we study the temporal
patterns of biomarkers using longitudinal stability selection
with cFSGL and nFSGL. Note that because the sample size
at the M48 time point is too small, we perform stability
selection for M06, M12, M24, and M36 only.
The stability vectors of MRI stable features using cFSGL

nFSGL1 and nFSGL2 formulations are given in Figure 1,
Figure 2 and Figure 3 respectively. In the figures, we collec-
tively list the stable features (η = 20) at the 4 time points.
The total number of features may be less than 80 because
one feature may be identified as a stable feature at multi-
ple time points. In Figure 1(a), we observe that cortical
thickness average of left middle temporal, cortical thickness
average of left and right Entorhinal, and white matter vol-
ume of left Hippocampus are important biomarkers for all
time points, which agrees with the previous findings [43].
Cortical volume of left Entorhinal provides significant infor-
mation in later stages than in the first 6 months. Several
biomarkers including white matter volume of left and right
Amygdala, and surface area of right Bankssts provide use-
ful information only in later time points. On the contrary,
some biomarkers have a large stability score during the first
2 years after baseline screening, such as cortical thickness
average of left inferior temporal, left inferior parietal, and
cortical thickness standard deviation of left isthmus cingu-
late, right lingual, left inferior parietal, and cortical volume
of right precentral, right isthmus cingulate, and left middle
temporal cortex.
The stability vector of stable MRI features for MMSE are

given in Figure 1(b). We obtain very different patterns from
ADAS-Cog. We find that most biomarkers provide signifi-
cant information for the first 2 years and very few of them
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Results	(averaged	over	5	time	points)
Table 3: Comparison of our proposed approaches (cFSGL and nFSGL) and existing approaches (Ridge and
TGL) on longitudinal MMSE and ADAS-Cog prediction using MRI features (M) in terms of normalized
mean squared error (nMSE), average correlation coefficient (R) and mean squared error (MSE) for each time
point. 90 percent of data is used as training data.

Ridge TGL cFSGL1 cFSGL2 cFSGL3 nFSGL1 nFSGL2
Target: MMSE

nMSE 0.548± 0.057 0.449± 0.045 0.428± 0.052 0.400± 0.053 0.395± 0.052 0.412± 0.054 0.408± 0.056
R 0.689± 0.030 0.755± 0.029 0.772± 0.030 0.790± 0.032 0.796± 0.031 0.788± 0.031 0.792± 0.031

M06 MSE 2.269± 0.207 2.038± 0.262 2.117± 0.209 2.069± 0.209 2.071± 0.213 2.149± 0.194 2.181± 0.201
M12 MSE 3.266± 0.556 2.923± 0.643 2.900± 0.629 2.803± 0.662 2.762± 0.669 2.835± 0.662 2.793± 0.659
M24 MSE 3.494± 0.599 3.363± 0.733 3.125± 0.612 3.016± 0.624 3.000± 0.642 3.031± 0.604 2.979± 0.546
M36 MSE 4.003± 0.853 3.768± 0.962 3.456± 0.766 3.302± 0.781 3.265± 0.803 3.263± 0.785 3.211± 0.786
M48 MSE 4.328± 1.310 3.631± 1.226 2.857± 0.892 2.787± 0.871 2.871± 0.884 2.780± 0.855 2.766± 0.826

Target: ADAS-Cog
nMSE 0.532± 0.095 0.464± 0.067 0.444± 0.059 0.404± 0.055 0.391± 0.059 0.386± 0.060 0.381± 0.057

R 0.705± 0.043 0.747± 0.033 0.765± 0.032 0.791± 0.026 0.803± 0.024 0.809± 0.023 0.809± 0.023
M06 MSE 5.213± 0.522 4.820± 0.489 4.779± 0.421 4.543± 0.374 4.451± 0.340 4.458± 0.354 4.428± 0.351
M12 MSE 6.079± 0.775 5.813± 0.697 5.605± 0.622 5.363± 0.595 5.230± 0.589 5.183± 0.597 5.136± 0.617
M24 MSE 7.409± 1.154 6.835± 1.052 6.893± 0.950 6.456± 0.974 6.249± 0.996 6.174± 0.943 6.153± 0.911
M36 MSE 7.143± 1.351 6.938± 1.363 6.475± 1.135 6.101± 1.071 5.928± 1.064 5.819± 0.945 5.879± 0.972
M48 MSE 6.644± 2.750 6.000± 2.738 5.767± 2.189 5.751± 2.081 5.980± 1.979 5.889± 1.848 5.837± 2.160

Table 4: Comparison of our proposed approaches (cFSGL and nFSGL) and existing approaches (Ridge and
TGL) on longitudinal MMSE and ADAS-Cog prediction using MRI+META features (M+E) in terms of
normalized mean squared error (nMSE), average correlation coefficient (R) and mean squared error (MSE)
for each time point. 90 percent of data is used as training data.

Ridge TGL cFSGL1 cFSGL2 cFSGL3 nFSGL1 nFSGL2
Target: MMSE

nMSE 0.404± 0.056 0.320± 0.044 0.310± 0.042 0.311± 0.042 0.312± 0.043 0.308± 0.046 0.303± 0.046
R 0.788± 0.032 0.839± 0.027 0.842± 0.026 0.841± 0.026 0.840± 0.026 0.839± 0.027 0.843± 0.027

M06 MSE 2.188± 0.194 1.943± 0.161 1.918± 0.155 1.912± 0.153 1.907± 0.149 1.935± 0.150 1.906± 0.149
M12 MSE 2.744± 0.638 2.366± 0.722 2.355± 0.716 2.356± 0.713 2.357± 0.711 2.374± 0.696 2.326± 0.707
M24 MSE 3.113± 0.560 2.821± 0.664 2.790± 0.653 2.823± 0.656 2.875± 0.675 2.766± 0.601 2.730± 0.604
M36 MSE 3.150± 0.517 2.933± 0.657 2.851± 0.635 2.878± 0.640 2.905± 0.646 2.755± 0.550 2.792± 0.523
M48 MSE 3.639± 0.959 3.544± 1.136 3.233± 1.070 3.098± 1.013 2.956± 0.924 2.942± 0.928 2.961± 0.969

Target: ADAS-Cog
nMSE 0.314± 0.036 0.278± 0.034 0.238± 0.033 0.233± 0.035 0.235± 0.035 0.238± 0.035 0.243± 0.035

R 0.840± 0.015 0.868± 0.016 0.882± 0.013 0.886± 0.014 0.886± 0.014 0.884± 0.015 0.880± 0.013
M06 MSE 3.972± 0.415 3.560± 0.469 3.566± 0.380 3.553± 0.375 3.617± 0.362 3.659± 0.356 3.535± 0.403
M12 MSE 4.365± 0.469 4.080± 0.598 3.742± 0.394 3.678± 0.389 3.659± 0.393 3.739± 0.367 3.742± 0.430
M24 MSE 6.028± 1.128 5.888± 1.641 5.226± 1.201 5.115± 1.277 5.122± 1.338 5.111± 1.222 5.257± 1.337
M36 MSE 5.824± 1.076 5.639± 1.339 4.871± 0.894 4.747± 0.957 4.712± 1.002 4.737± 0.917 5.055± 1.033
M48 MSE 6.192± 2.327 6.337± 2.487 5.133± 1.499 5.065± 1.446 5.103± 1.527 4.968± 1.339 5.404± 1.802
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(a) Target: ADAS-Cog (25 stable features) (b) Target: MMSE (33 stable features)

Figure 1: The stability vector of stable MRI features using Convex Fused Sparse Group Lasso (cFSGL).

contain information about the progression in later stages.
The lacking of predictable MRI biomarkers in later stages
is a potential factor that contributes to the lower predictive

performance of MMSE than that of ADAS-Cog in our study
and other related studies [39]. These results suggest that
ADAS-Cog may be a better cognitive measurement for lon-
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Table 3: Comparison of our proposed approaches (cFSGL and nFSGL) and existing approaches (Ridge and
TGL) on longitudinal MMSE and ADAS-Cog prediction using MRI features (M) in terms of normalized
mean squared error (nMSE), average correlation coefficient (R) and mean squared error (MSE) for each time
point. 90 percent of data is used as training data.

Ridge TGL cFSGL1 cFSGL2 cFSGL3 nFSGL1 nFSGL2
Target: MMSE

nMSE 0.548± 0.057 0.449± 0.045 0.428± 0.052 0.400± 0.053 0.395± 0.052 0.412± 0.054 0.408± 0.056
R 0.689± 0.030 0.755± 0.029 0.772± 0.030 0.790± 0.032 0.796± 0.031 0.788± 0.031 0.792± 0.031

M06 MSE 2.269± 0.207 2.038± 0.262 2.117± 0.209 2.069± 0.209 2.071± 0.213 2.149± 0.194 2.181± 0.201
M12 MSE 3.266± 0.556 2.923± 0.643 2.900± 0.629 2.803± 0.662 2.762± 0.669 2.835± 0.662 2.793± 0.659
M24 MSE 3.494± 0.599 3.363± 0.733 3.125± 0.612 3.016± 0.624 3.000± 0.642 3.031± 0.604 2.979± 0.546
M36 MSE 4.003± 0.853 3.768± 0.962 3.456± 0.766 3.302± 0.781 3.265± 0.803 3.263± 0.785 3.211± 0.786
M48 MSE 4.328± 1.310 3.631± 1.226 2.857± 0.892 2.787± 0.871 2.871± 0.884 2.780± 0.855 2.766± 0.826

Target: ADAS-Cog
nMSE 0.532± 0.095 0.464± 0.067 0.444± 0.059 0.404± 0.055 0.391± 0.059 0.386± 0.060 0.381± 0.057

R 0.705± 0.043 0.747± 0.033 0.765± 0.032 0.791± 0.026 0.803± 0.024 0.809± 0.023 0.809± 0.023
M06 MSE 5.213± 0.522 4.820± 0.489 4.779± 0.421 4.543± 0.374 4.451± 0.340 4.458± 0.354 4.428± 0.351
M12 MSE 6.079± 0.775 5.813± 0.697 5.605± 0.622 5.363± 0.595 5.230± 0.589 5.183± 0.597 5.136± 0.617
M24 MSE 7.409± 1.154 6.835± 1.052 6.893± 0.950 6.456± 0.974 6.249± 0.996 6.174± 0.943 6.153± 0.911
M36 MSE 7.143± 1.351 6.938± 1.363 6.475± 1.135 6.101± 1.071 5.928± 1.064 5.819± 0.945 5.879± 0.972
M48 MSE 6.644± 2.750 6.000± 2.738 5.767± 2.189 5.751± 2.081 5.980± 1.979 5.889± 1.848 5.837± 2.160

Table 4: Comparison of our proposed approaches (cFSGL and nFSGL) and existing approaches (Ridge and
TGL) on longitudinal MMSE and ADAS-Cog prediction using MRI+META features (M+E) in terms of
normalized mean squared error (nMSE), average correlation coefficient (R) and mean squared error (MSE)
for each time point. 90 percent of data is used as training data.

Ridge TGL cFSGL1 cFSGL2 cFSGL3 nFSGL1 nFSGL2
Target: MMSE

nMSE 0.404± 0.056 0.320± 0.044 0.310± 0.042 0.311± 0.042 0.312± 0.043 0.308± 0.046 0.303± 0.046
R 0.788± 0.032 0.839± 0.027 0.842± 0.026 0.841± 0.026 0.840± 0.026 0.839± 0.027 0.843± 0.027

M06 MSE 2.188± 0.194 1.943± 0.161 1.918± 0.155 1.912± 0.153 1.907± 0.149 1.935± 0.150 1.906± 0.149
M12 MSE 2.744± 0.638 2.366± 0.722 2.355± 0.716 2.356± 0.713 2.357± 0.711 2.374± 0.696 2.326± 0.707
M24 MSE 3.113± 0.560 2.821± 0.664 2.790± 0.653 2.823± 0.656 2.875± 0.675 2.766± 0.601 2.730± 0.604
M36 MSE 3.150± 0.517 2.933± 0.657 2.851± 0.635 2.878± 0.640 2.905± 0.646 2.755± 0.550 2.792± 0.523
M48 MSE 3.639± 0.959 3.544± 1.136 3.233± 1.070 3.098± 1.013 2.956± 0.924 2.942± 0.928 2.961± 0.969

Target: ADAS-Cog
nMSE 0.314± 0.036 0.278± 0.034 0.238± 0.033 0.233± 0.035 0.235± 0.035 0.238± 0.035 0.243± 0.035

R 0.840± 0.015 0.868± 0.016 0.882± 0.013 0.886± 0.014 0.886± 0.014 0.884± 0.015 0.880± 0.013
M06 MSE 3.972± 0.415 3.560± 0.469 3.566± 0.380 3.553± 0.375 3.617± 0.362 3.659± 0.356 3.535± 0.403
M12 MSE 4.365± 0.469 4.080± 0.598 3.742± 0.394 3.678± 0.389 3.659± 0.393 3.739± 0.367 3.742± 0.430
M24 MSE 6.028± 1.128 5.888± 1.641 5.226± 1.201 5.115± 1.277 5.122± 1.338 5.111± 1.222 5.257± 1.337
M36 MSE 5.824± 1.076 5.639± 1.339 4.871± 0.894 4.747± 0.957 4.712± 1.002 4.737± 0.917 5.055± 1.033
M48 MSE 6.192± 2.327 6.337± 2.487 5.133± 1.499 5.065± 1.446 5.103± 1.527 4.968± 1.339 5.404± 1.802
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(a) Target: ADAS-Cog (25 stable features) (b) Target: MMSE (33 stable features)

Figure 1: The stability vector of stable MRI features using Convex Fused Sparse Group Lasso (cFSGL).

contain information about the progression in later stages.
The lacking of predictable MRI biomarkers in later stages
is a potential factor that contributes to the lower predictive

performance of MMSE than that of ADAS-Cog in our study
and other related studies [39]. These results suggest that
ADAS-Cog may be a better cognitive measurement for lon-
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nMSE – normalized	mean	squared	error.	Smaller	is	better
R	– average	R2 (correlation	coefficient).	Larger	is	better

Baseline	 –
independent	
regressors

tion problem:

min
W

L(W ) + λ1 ∥W∥1 + λ2

∥∥∥RWT
∥∥∥
1
+ λ3 ∥W∥2,1 , (2)

where ∥W∥1 is the Lasso penalty, the group Lasso penalty

∥W∥2,1 is given by
∑d

i=1

√∑t
j=1 W

2
ij ,

∥∥RWT
∥∥
1
is the fused

Lasso penalty, R is an (t − 1) × t sparse matrix in which
Ri,i = 1 and Ri,i+1 = −1, and λ1, λ2 and λ3 are regulariza-
tion parameters. The combination of Lasso and group Lasso
penalties is also known as the sparse group Lasso penalty,
which allows simultaneous joint feature selection for all tasks
and selection of a specific set of features for each task. The
fused Lasso penalty is employed to incorporate the tempo-
ral smoothness. We call the formulation in Eq. (2) “convex
fused sparse group Lasso”(cFSGL). The cFSGL formulation
involves three non-smooth terms, and is thus challenging to
solve. We propose to solve the optimization problem by the
accelerated gradient method (AGM) [27, 28]. One of the
key steps in using AGM is the computation of the proxi-
mal operator associated with the composite of non-smooth
penalties defined as follows:

π(V ) = argmin
W

1
2
∥W − V ∥2F + λ1∥W∥1

+ λ2∥RWT ∥1 + λ3∥W∥2,1. (3)

It is clear that each row of W is decoupled in Eq. (3). Thus
for obtaining the ith row wi, we only need to solve the fol-
lowing optimization problem:

π(vi) = argmin
wi

1
2
∥wi − vi∥22 + λ1∥wi∥1

+λ2∥Rwi∥1 + λ3∥wi∥2, (4)

where vi is the ith row of V . The proximal operator in
Eq. (4) is challenging to compute due to the presence of three
non-smooth terms. One of the key technical contributions
of this paper is to show that the proximal operator exhibits
a certain decomposition property, based on which we can
efficiently compute the proximal operator in two stages, as
summarized in the following theorem:

Theorem 1. Define

πFL(v) = argmin
w

1
2
∥w − v∥22 + λ1∥w∥1 + λ2∥Rw∥1 (5)

πGL(v) = argmin
w

1
2
∥w − v∥22 + λ3∥w∥2. (6)

Then the following holds:

π(v) = πGL(πFL(v)). (7)

Proof: The necessary and sufficient optimality conditions
for (4), (5), and (6) can be written as:

0 ∈ π(v)− v + λ1SGN(π(v))

+ λ2R
TSGN(Rπ(v)) + λ3∂g(π(v)), (8)

0 ∈ πFL(v)− v + λ1SGN(πFL(v))

+ λ2R
TSGN(RπFL(v)), (9)

0 ∈ πGL(πFL(v))− πFL(v) + λ3∂g(πGL(πFL(v))), (10)

where SGN(x) is a set defined in a componentwise manner
as:

(SGN(x))i =

⎧
⎨

⎩

[−1, 1] xi = 0
{1} xi > 0
{−1} xi < 0,

(11)

and

∂g(x) =

{ x
∥x∥2

x ̸= 0
{y : ∥y∥2 ≤ 1} x = 0.

(12)

It follows from (10) and (12) that: 1) if ∥πFL(v)∥2 ≤ λ3,
then πGL(πFL(v)) = 0; and 2) if ∥πFL(v)∥2 > λ3, then

πGL(πFL(v)) =
∥πFL(v)∥2−λ3

∥πFL(v)∥2
πFL(v).

It is easy to observe that, 1) if the i-th entry of πFL(v)
is zero, so is the i-th entry of πGL(πFL(v)); 2) if the i-th
entry of πFL(v) is positive (or negative), so is the i-th entry
of πGL(πFL(v)). Therefore, we have:

SGN(πFL(v)) ⊆ SGN(πGL(πFL(v))). (13)

Meanwhile, 1) if the i-th and the (i + 1)-th entries of
πFL(v) are identical, so are those of πGL(πFL(v)); 2) if the
i-th entry is larger (or smaller) than the (i+ 1)-th entry in
πFL(v), so is in πGL(πFL(v)). Therefore, we have:

SGN(RπFL(v)) ⊆ SGN(RπGL(πFL(v))). (14)

It follows from (9), (10), (13), and (14) that:

0 ∈ πGL(πFL(v))− v + λ1SGN(πGL(πFL(v)))

+ λ2R
TSGN(RπGL(πFL(v))) + λ3∂g(πGL(πFL(v))).

(15)

Since (4) has a unique solution, we can get (7) from (8)
and (15). ✷

Note that the fused Lasso signal approximator [13] in
Eq.(5) can be effectively solved using [24]. The complete
algorithm for computing the proximal operator associated
with cFSGL is given in Algorithm 1.

Algorithm 1 Proximal operator associated with the Con-
vex Fused Sparse Group Lasso (cFSGL)

Input: V ∈ Rd×t, R ∈ Rt−1×t, λ1, λ2, λ3

Output: W ∈ Rd×t

1: for i = 1 : d do
2: ui = argminw

1
2∥w − vi∥22 + λ1∥w∥1 + λ2∥Rw∥1

3: wi = argminw
1
2∥w − ui∥22 + λ3∥w∥2

4: end for

3. NON-CONVEX PROGRESSION MODELS
In cFSGL, we aim to select task-shared and task-specific

features using the sparse group Lasso penalty. However, the
decomposition property shown in Theorem 1 implies that
a simple composition of the ℓ1-norm penalty and ℓ2,1-norm
penalty may be sub-optimal. Besides, the sparsity-inducing
penalties are known to lead to biased estimates [12]. To
this end, we propose the following non-convex multi-task
regression formulation for modeling disease progression:

min
W

L(W ) + λ
d∑

i=1

√
∥wi∥1 + γ∥RWT ∥1, (16)

where the second term is the summation of the squared root
of ℓ1-norm of wi (wi is the ith row of W ), and is called the
composite ℓ(0.5,1)-norm regularization. Note that it is in fact
not a valid norm due to its non-convexity. It is known that
the ℓ0.5 penalty leads to a sparse solution, thus many of the
rows of W will be zero, i.e., the features corresponding to
the zero rows will be removed from all tasks. In addition,
for the nonzero rows, due to the use of the ℓ1 penalty for
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Table 3: Comparison of our proposed approaches (cFSGL and nFSGL) and existing approaches (Ridge and
TGL) on longitudinal MMSE and ADAS-Cog prediction using MRI features (M) in terms of normalized
mean squared error (nMSE), average correlation coefficient (R) and mean squared error (MSE) for each time
point. 90 percent of data is used as training data.

Ridge TGL cFSGL1 cFSGL2 cFSGL3 nFSGL1 nFSGL2
Target: MMSE

nMSE 0.548± 0.057 0.449± 0.045 0.428± 0.052 0.400± 0.053 0.395± 0.052 0.412± 0.054 0.408± 0.056
R 0.689± 0.030 0.755± 0.029 0.772± 0.030 0.790± 0.032 0.796± 0.031 0.788± 0.031 0.792± 0.031

M06 MSE 2.269± 0.207 2.038± 0.262 2.117± 0.209 2.069± 0.209 2.071± 0.213 2.149± 0.194 2.181± 0.201
M12 MSE 3.266± 0.556 2.923± 0.643 2.900± 0.629 2.803± 0.662 2.762± 0.669 2.835± 0.662 2.793± 0.659
M24 MSE 3.494± 0.599 3.363± 0.733 3.125± 0.612 3.016± 0.624 3.000± 0.642 3.031± 0.604 2.979± 0.546
M36 MSE 4.003± 0.853 3.768± 0.962 3.456± 0.766 3.302± 0.781 3.265± 0.803 3.263± 0.785 3.211± 0.786
M48 MSE 4.328± 1.310 3.631± 1.226 2.857± 0.892 2.787± 0.871 2.871± 0.884 2.780± 0.855 2.766± 0.826

Target: ADAS-Cog
nMSE 0.532± 0.095 0.464± 0.067 0.444± 0.059 0.404± 0.055 0.391± 0.059 0.386± 0.060 0.381± 0.057

R 0.705± 0.043 0.747± 0.033 0.765± 0.032 0.791± 0.026 0.803± 0.024 0.809± 0.023 0.809± 0.023
M06 MSE 5.213± 0.522 4.820± 0.489 4.779± 0.421 4.543± 0.374 4.451± 0.340 4.458± 0.354 4.428± 0.351
M12 MSE 6.079± 0.775 5.813± 0.697 5.605± 0.622 5.363± 0.595 5.230± 0.589 5.183± 0.597 5.136± 0.617
M24 MSE 7.409± 1.154 6.835± 1.052 6.893± 0.950 6.456± 0.974 6.249± 0.996 6.174± 0.943 6.153± 0.911
M36 MSE 7.143± 1.351 6.938± 1.363 6.475± 1.135 6.101± 1.071 5.928± 1.064 5.819± 0.945 5.879± 0.972
M48 MSE 6.644± 2.750 6.000± 2.738 5.767± 2.189 5.751± 2.081 5.980± 1.979 5.889± 1.848 5.837± 2.160

Table 4: Comparison of our proposed approaches (cFSGL and nFSGL) and existing approaches (Ridge and
TGL) on longitudinal MMSE and ADAS-Cog prediction using MRI+META features (M+E) in terms of
normalized mean squared error (nMSE), average correlation coefficient (R) and mean squared error (MSE)
for each time point. 90 percent of data is used as training data.

Ridge TGL cFSGL1 cFSGL2 cFSGL3 nFSGL1 nFSGL2
Target: MMSE

nMSE 0.404± 0.056 0.320± 0.044 0.310± 0.042 0.311± 0.042 0.312± 0.043 0.308± 0.046 0.303± 0.046
R 0.788± 0.032 0.839± 0.027 0.842± 0.026 0.841± 0.026 0.840± 0.026 0.839± 0.027 0.843± 0.027

M06 MSE 2.188± 0.194 1.943± 0.161 1.918± 0.155 1.912± 0.153 1.907± 0.149 1.935± 0.150 1.906± 0.149
M12 MSE 2.744± 0.638 2.366± 0.722 2.355± 0.716 2.356± 0.713 2.357± 0.711 2.374± 0.696 2.326± 0.707
M24 MSE 3.113± 0.560 2.821± 0.664 2.790± 0.653 2.823± 0.656 2.875± 0.675 2.766± 0.601 2.730± 0.604
M36 MSE 3.150± 0.517 2.933± 0.657 2.851± 0.635 2.878± 0.640 2.905± 0.646 2.755± 0.550 2.792± 0.523
M48 MSE 3.639± 0.959 3.544± 1.136 3.233± 1.070 3.098± 1.013 2.956± 0.924 2.942± 0.928 2.961± 0.969

Target: ADAS-Cog
nMSE 0.314± 0.036 0.278± 0.034 0.238± 0.033 0.233± 0.035 0.235± 0.035 0.238± 0.035 0.243± 0.035

R 0.840± 0.015 0.868± 0.016 0.882± 0.013 0.886± 0.014 0.886± 0.014 0.884± 0.015 0.880± 0.013
M06 MSE 3.972± 0.415 3.560± 0.469 3.566± 0.380 3.553± 0.375 3.617± 0.362 3.659± 0.356 3.535± 0.403
M12 MSE 4.365± 0.469 4.080± 0.598 3.742± 0.394 3.678± 0.389 3.659± 0.393 3.739± 0.367 3.742± 0.430
M24 MSE 6.028± 1.128 5.888± 1.641 5.226± 1.201 5.115± 1.277 5.122± 1.338 5.111± 1.222 5.257± 1.337
M36 MSE 5.824± 1.076 5.639± 1.339 4.871± 0.894 4.747± 0.957 4.712± 1.002 4.737± 0.917 5.055± 1.033
M48 MSE 6.192± 2.327 6.337± 2.487 5.133± 1.499 5.065± 1.446 5.103± 1.527 4.968± 1.339 5.404± 1.802
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(a) Target: ADAS-Cog (25 stable features) (b) Target: MMSE (33 stable features)

Figure 1: The stability vector of stable MRI features using Convex Fused Sparse Group Lasso (cFSGL).

contain information about the progression in later stages.
The lacking of predictable MRI biomarkers in later stages
is a potential factor that contributes to the lower predictive

performance of MMSE than that of ADAS-Cog in our study
and other related studies [39]. These results suggest that
ADAS-Cog may be a better cognitive measurement for lon-

1101



Goals	of	disease	progression	
modeling

• Predictive:
– What	will	this	patient’s	future	trajectory	look	like?	

• Descriptive:
– Find	markers	of	disease	stage	and	progression,	
statistics	of	what	to	expect	when

– Discover	new	disease	subtypes
• Key	challenges	we	will	tackle:

– Seldom	directly	observe	disease	stage,	but	rather	only	
indirect	observations	(e.g.	symptoms)

– Data	is	censored	– don’t	observe	beginning	to	end



K-Means
• An iterative clustering 

algorithm

– Initialize: Pick K random 
points as cluster centers

– Alternate:
1. Assign data points to 

closest cluster center
2. Change the cluster 

center to the average 
of its assigned points

– Stop when no points’
assignments change



K-means	clustering:	Example

• Pick K random 
points as cluster 
centers (means)

Shown here for K=2



K-means	clustering:	Example

Iterative Step 1
• Assign data points to 

closest cluster center



K-means	clustering:	Example
Iterative Step 2
• Change the cluster 

center to the average of 
the assigned points



K-means	clustering:	Example

• Repeat	until	
convergence



Asthma:	the	problem

• 5	to	10%	of	people	with	severe	asthma	remain	
poorly	controlled	despite	maximal	inhaled	
therapy	

[Holgate ST, Polosa R. The mechanisms, diagnosis, 
and management of severe asthma in adults. Lancet. 
2006; 368:780–793]

[whatasthmais.com]



• What	are	the	processes	 (genetic	 or	environmental)	 that	underlie	different	
subtypes	of	asthma?

• Which	aspects	of	airway	remodelling are	important	 in	disease	subtypes?
• What	are	the	best	biomarkers	 of	disease	 progression	 or	treatment	

response?
• Why	are	some	patients	less	 responsive	 to	conventional	 therapies	 than	

others?

[Adcock	et	al.,	“New	targets	for	drug	development	 in	asthma”.	The	Lancet,	2008]

“It	is	now	recognised that	there	are	distinct	 asthma	phenotypes and	that	
distinct	 therapeutic	 approaches	may	only	impinge	on	some	aspects	of	the	
disease	process	within	each	subgroup”

Asthma:	the	question



[Haldar et	al.,	Am	J	Respir Crit Care	Med,	2008]

Discovering	subtypes	from	data



The	data

• All	patients	had	physician	diagnosis	of	asthma	and	at	least	one	
recent	prescription	for	asthma	therapy

• All	were	current	nonsmokers
• Data	set	#1:	184	patients	recruited	from	primary-care	

practices	in	the	UK
• Data	set	#2:	187	patients	from	refractory	asthma	clinic	in	the	

UK
• Data	set	#3:	68	patients	from	12	month	clinical	study
• Features:	z scores	for	continuous	variables,	0/1	for	categorical

– Some	of	the	continuous	variables	 log-transformed	 to	approximate	a	
normal	distribution

[Haldar et	al.,	Am	J	Respir Crit Care	Med,	2008]



[Haldar et	al.,	Am	J	Respir Crit Care	Med,	2008]

 Europe PM
C Funders A

uthor M
anuscripts

 Europe PM
C Funders A

uthor M
anuscripts

Haldar et al. Page 12

TABLE 1
Comparison of Baseline Characteristics in the three Asthma Populations

Variable
Primary Care

(n = 184)
Secondary Care

(n = 187)
Longitudinal Cohort

(n = 68) P Value*

Sex, % female 54.4 65.8 47.1 0.082

Age, yr (SD) 49.2 (13.9) 43.4 (15.9) 52.4 (14.6) <0.001

Age of onset, yr (SD) 24.7 (19) 20.3 (18.4) 31.1 (23.7) <0.001

Atopic status, % positive 72.8 73.8 57.4 0.365

Body mass index, kg/m2 (SD) 27.5 (5.4) 28.5 (6.5) 28.0 (5.9) 0.55

PC20 methacholine†, mg/ml 1.04 (1.13) † 0.67 (0.68) 0.19

Peak flow variability, amp % mean 17 (0.38) 32.2 (0.48) 13.8 (0.29) <0.001

FEV1 change with bronchodilator, % 1.63 (1.16) 12.8 (0.41) 3.2 (1.04) <0.001

Post-bronchodilator FEV1, % predicted 91.4 (21) 82.1 (21.1) 80.2 (20.6) 0.013

Sputum eosinophil count, % 1.32 (0.62) 2.9 (0.99) 2.4 (0.81) 0.08

FENO
‡, ppb 31.6 (0.33) 43 (0.32) 4.32 (0.64)‡ <0.001

Sputum neutrophil count, % 55.09 (0.31) 46.7 (0.32) 41.1 (0.35) 0.04

Modified JACS§ (SD) 1.36 (0.74) 2.02 (1.16) 1.42 (1.26) <0.001

Dose of inhaled corticosteroid, BDP equivalent/µg (SD) 632 (579) 1,018 (539) 1,821 (1,239) <0.001

Long-acting bronchodilator use, % 40.2 93 86.7 <0.001

Definition of abbreviations: amp = amplitude; BDP = beclomethasone dipropionate; JACS = Juniper Asthma Control Score; SD = standard
deviation.

*Significance figures are derived using one-way analysis of variance between the three populations for continuous variables or χ2 test for
proportions.

†Bronchial challenge testing is not routinely performed in secondary care for refractory asthma. The comparison given is between the primary-care
asthma population and the longitudinal study cohort.

‡FENO was measured using the NIOX (Aerocrine, Solna, Sweden) analyzer at 50 ml/second in the primary-care population and secondary-care
population. The Logan (Logan Research, Ltd., Rochester, Kent, UK) analyzer was used at a flow rate of 250 ml/second in the longitudinal study
cohort. A strong linear correlation of 0.97 exists between the two measurement protocols. The statistical comparison is between Feno levels in
primary and secondary care using NIOX.

§The Juniper Asthma Control Score, modified to include the symptom domains only (see the online supplement).

Am J Respir Crit Care Med. Author manuscript; available in PMC 2014 April 21.



 Europe PM
C Funders A

uthor M
anuscripts

 Europe PM
C Funders A

uthor M
anuscripts

Haldar et al. Page 13

TABLE 2
Clusters in Primary Care

Cluster 1 Cluster 2 Cluster 3

Variable
Primary Care

(n = 184)

Early-Onset
Atopic Asthma

(n = 61)

Obese
Noneosinophilic

(n = 27)
Benign Asthma

(n = 96)
Significance
(P Value)*

Sex†, % female 54.4 45.9 81.5 52.1 0.006

Age, yr (SD) 49.2 (13.9) 44.5 (14.3) 53.9 (14) 50.8 (13) 0.003

Age of onset†, yr (SD) 24.7 (19) 14.6 (15.4) 35.3 (19.6) 28.2 (18.3) <0.001

Atopic status†, % positive 72.8 95.1 51.9 64.6 <0.001

Body mass index†, kg/m2 (SD) 27.5 (5.4) 26.1 (3.8) 36.2 (5.5) 26 (3.6) <0.001

PC20 methacholine†‡, mg/ml 1.04 (1.13) 0.12 (0.86) 1.60 (0.93) 6.39 (0.75) <0.001

PC20 >8 mg/ml, n (%) 64 (34.7) 2 (3.3) 6 (22.2) 56 (58.3) <0.001

Peak flow variability†‡, amp % mean 17 (0.38) 20 (0.47) 21.9 (0.32) 14.8 (0.32) 0.039

FEV1 change with bronchodilator‡, % 1.63 (1.16) 4.5 (0.91) 1.82 (1.16) 0.83 (1.22) <0.001

Post-bronchodilator FEV1, % predicted 91.4 (21) 86.9 (20.7) 91.5 (21.4) 94.2 (20.7) 0.107

Sputum eosinophil count†‡, % 1.32 (0.62) 3.75 (0.64) 1.55 (0.51) 0.65 (0.44) <0.001

FENO
‡§, ppb 31.6 (0.33) 57.5 (0.27) 25.8 (0.29) 22.8 (0.27) <0.001

Sputum neutrophil count‡, % 55.09 (0.31) 45.87 (0.24) 72.71 (0.13) 57.56 (0.36) 0.038

Modified JACS† (SD) 1.36 (0.74) 1.54 (0.58) 2.06 (0.73) 1.04 (0.66) <0.001

Dose of inhaled corticosteroid, BDP
equivalent/µg (SD) 632 (579) 548 (559) 746 (611) 653 (581) 0.202

Long-acting bronchodilator use, % 40.2 34.4 48.2 41.7 0.442

Previous hospital admission or emergency
attendance, no. per patient 0.60 (1.57) 1.04 0.26 0.20 0.037

Previous outpatient attendance, % attended 15% 22% 19% 6% 0.121

Severe asthma exacerbations (requiring oral
corticosteroids) in past 12 mo, no. per patient 1.25 (1.94) 1.86 (0.32) 1.07 (0.32) 0.39 (0.18) 0.002

For definition of abbreviations, see Table 1.

Boldface type denotes population statistics. The column headed “Cluster 3” represents a cluster not observed in the secondary-care asthma
population.

*Comparison between clusters using analysis of variance for continuous variables and χ2 test for proportions. Significance values for variables
included in the cluster analysis are a product of the cluster algorithm and are provided for illustrative purposes only.

†Variables included in the cluster analysis.

‡Geometric mean (log10 SD)

§Measured with NIOX at a flow rate of 50 ml/second.

Am J Respir Crit Care Med. Author manuscript; available in PMC 2014 April 21.

Clusters	in	
primary	
care

(found	by	
K-means)
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TABLE 3
Clusters in Secondary Care

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Variable

Secondary
Care

(n = 187)
Early Onset, Atopic

(n = 74)

Obese,
Noneosinophilic

(n = 23)

Early Symptom
Predominant

(n = 22)

Inflammation
Predominant

(n = 68)
Significance
(P Value)*

Sex†, % female 65.8 75.7 87 68.2 47.1 <0.001

Age, yr (SD) 43.4 (15.9) 39.4 (15.7) 42.7 (11.1) 35.5 (15.5) 50.6 (15.1) <0.001

Age of onset†, yr (SD) 20.3 (18.4) 12.7 (12.9) 15.4 (15.2) 12.6 (15) 32.6 (19.1) <0.001

Atopic status†, % positive 73.8 83.8 65.2 81.8 63.2 0.024

Body mass index†, kg/m2 (SD) 28.5 (6.5) 27.6 (4.5) 40.9 (6.5) 23.6 (3.1) 27 (3.9) <0.001

Peak flow variability‡, amp %
mean

32.2 (0.48) 46.1 (0.35) 21.2 (0.76) 24.2 (0.65) 27.6 (0.36) 0.002

FEV1 change with

bronchodilator‡, %
12.8 (0.41) 24.5 (0.31) 9.3 (0.35) 4.5 (0.33) 9.8 (0.34) <0.001

Post-bronchodilator FEV1, %
predicted (SD) 82.1 (21.1) 79.0 (21.9) 79.0 (18.5) 79.5 (26.1) 87.2 (18.5) 0.093

Sputum eosinophil count†‡, % 2.9 (0.99) 4.2 (0.76) 1.3 (1.01) 0.1 (0.9) 8.4 (0.64) <0.001

FENO
‡§, ppb 43 (0.32) 51.2 (0.36) 24.2 (0.27) 22.6 (0.30) 53.1 (0.32) <0.001

Sputum neutrophil count, %‡ 46.7 (0.32) 45.4 (0.39) 49.3 (0.22) 51.3 (0.23) 45.9 (0.29) 0.892

Modified JACS† (SD) 2.02 (1.16) 2.63 (0.93) 2.37 (1.09) 2.11 (1.11) 1.21 (0.95) <0.001

Dose of inhaled corticosteroid,
BDP equivalent/µg (SD) 1,018 (539) 1,168 (578) 1,045 (590) 809 (396) 914 (479) 0.008

Long-acting bronchodilator use,
% 93.0 91.9 95.4 90.9 94.1 0.999

Maintenance oral corticosteroid
use, % 31.7 32.4 22.7 22.7 36.8 0.604

Median Nijmegen score (IQR)

(% with score >23)∥
16 (7–26.5) 20.5 (12–30.25) (44.6) 23 (12–33) (52.2) 16.5 (4.5–27.5) (31.8) 9 (1–17) (19.1) 0.004

Median anxiety score (IQR) (%

with score ≥11)∥
7 (4–10) 7.5 (4.75–10.25) (24.3) 8 (3–14) (34.8) 6 (3.75–8.25) (13.6) 6 (3–9) (19.1) 0.34

Median depression score (IQR)

(% with score ≥11)∥
4 (2–7) 4.5 (2–8) (13.5) 5 (2–7) (4.3) 4 (2–7) (4.5) 3 (1–6) (7.4) 0.104

Courses of oral corticosteroids
for asthma exacerbations, n/
case/yr

4.05 (2.33) 4.62 (0.27) 3.90 (0.38) 3.57 (0.49) 3.43 (0.27) 0.02

Hospital admissions for asthma,
n/case/yr 1.54 1.64 1.61 1.54 1.23 0.703

Failed clinic appointments, %
total appointments to DAC/yr 20.0 26.2 15.7 19.0 14.8 0.027

Definition of abbreviations: amp = amplitude; BDP = beclomethasone diproprionate; DAC = difficult asthma clinic; IQR = interquartile range;
JACS = Juniper Asthma Control Score; SD = standard deviation.

Anxiety and depression scores are obtained from the Hospital Anxiety and Depression Scale, a validated 14-point screening questionnaire. Scores
of greater than 11 for either domain are suggestive of clinically important symptoms (25). Boldface type denotes population statistics. Columns
headed “Cluster 3” and “Cluster 4” represent clusters not identified in the primary care asthma population.

*Comparison between clusters using analysis of variance for continuous variables and χ2 test for proportions. As for the other tables, significance
values for variables included in the cluster analysis are a product of the cluster algorithm and should not be further interpreted.

†Variables included in the cluster analysis.

Am J Respir Crit Care Med. Author manuscript; available in PMC 2014 April 21.

Clusters	in	
secondary	 care

Resembled	clusters	from	
primary	care	– i.e.,	these	

are	common	across	
spectrum	of	severity

Objective	measures	of	
disease	severity	show	
more	advanced	disease



How	should	we	treat	asthma?

[Haldar et	al.,	Am	J	Respir Crit Care	Med,	2008]

• Now	we	use	3rd dataset	– 68	patients	over	12	months
• Randomized	control	trial	with	two	arms:

– Standard	clinical	care	(“clinical”)
– Regular	monitoring	of	airway	inflammation	using	induced	
sputum,	to	titrate	steroid	therapy	to	maintain	normal	
eosinophil	counts	(“sputum”)

• Original	study	found	no	difference in	corticosteroid	
usage
– But,	this	could	have	been	explained	by	heterogeneity	in	
treatment	response!



Patients	in	different	clusters	respond	differently	to	treatment!
(analysis	using	3rd dataset	from	12	month	study)
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TABLE 4
Cluster Specific Outcomes for Longitudinal Study

Study Group

Cluster Outcomes Clinical
(n = 10)

Sputum
(n = 8) Significance

1: Obese female Δ Inhaled corticosteroid dose*/µg per day (SEM) −400 (328) −462 (271) 0.89

Severe exacerbation frequency over 12 mo (SEM) 1.40 (0.78) 1.50 (0.80) 0.93

Number commenced on oral corticosteroids 2 1 0.59

Clinical (n = 15) Sputum (n = 24)

2: Inflammation predominant Δ Inhaled corticosteroid dose*/µg per day (SEM) +753 (334) +241 (233) 0.22

Severe exacerbation frequency over 12 mo (SEM) 3.53 (1.18) 0.38 (0.13) 0.002

Number commenced on oral corticosteroids 2 9 0.17

Clinical (n = 7) Sputum (n = 4)

3: Early symptom predominant Δ Inhaled corticosteroid dose*/µg per day (SEM) +1,429 (429) −400 (469) 0.022

Severe exacerbation frequency over 12 mo (SEM) 5.43 (1.90) 2.50 (0.87) 0.198

Number commenced on oral corticosteroids 6 0 Undefined

A comparison of prespecified asthma outcomes between the two management protocols analyzed according to cluster allocation of subjects at
study entry.

*
Expressed as equivalent dose of beclomethasone.

Am J Respir Crit Care Med. Author manuscript; available in PMC 2014 April 21.

[Haldar et	al.,	Am	J	Respir Crit Care	Med,	2008]

Cluster
(found	using	baseline data)

Treatment	strategy



Summary	– two	approaches

• Supervised:
predict	future	disease	status

• Unsupervised:
which	patients	look	similar	/	different?	Do	
clusters	have	different	outcomes?



Limitations	of	what	we’ve	described	
thus	far

• Can’t	differentiate	between	subtype and stage	
– Patients	assumed	to	be	aligned	at	baseline

• Only	make	use	of	one	time	point	per	patient
• Assumes	single	factor	(cluster)	explains	all	
variation



How	can	we	discover	stages?

1. Intuition	on	staging	from	cross-sectional	data
2. Staging	with	pseudo-time	methods
3. Staging	with	probabilistic	models:	missing	data	

&	multiple	time	points
– Case	study:	chronic	obstructive	pulmonary	disease
– Case	study:	Type	2	diabetes



Biomarker	A

“John” “Mary”

Early	disease Late	disease

In	1-D,	might	assume	that	low	values	
correspond	to	an	early	disease	stage	
(or	vice-versa)

Assume	samples	were	all	taken	today



Biomarker	A

Biomarker	B

What	about	in	higher	dimensions?



Biomarker	A

Biomarker	B

What	about	in	higher	dimensions?

Insight	#1:	with	
enough	data,	may	
be	possible	to	
recognize	structure

[Bendall	et	al.,	Cell	2014	(human	B	cell	development)]



1

2

4

1

1
2

2
3

3

Biomarker	A

Biomarker	B

What	about	in	higher	dimensions?

Insight	#2:	sequential	
observations	from	
same	patient	can	
also	help

Each	color	is	
a	different	
patient



Biomarker	A

Biomarker	B

What	about	in	higher	dimensions?

Early	disease

Late	disease



Biomarker	A

Biomarker	B

May	also	seek	to	discover	disease	subtypes

Subtype	1
Subtype	2



How	can	we	discover	stages?

1. Intuition	on	staging	from	cross-sectional	 data
2. Staging	with	pseudo-time	methods
3. Staging	with	probabilistic	models:	missing	data	

&	multiple	time	points
– Case	study:	chronic	obstructive	pulmonary	disease
– Case	study:	Type	2	diabetes



Single-cell	sequencing

[Figure	source:	https://en.wikipedia.org/wiki/Single_cell_sequencing]



Inferring	original	trajectory	from	single-cell	data

Next, the pseudotime trajectory of the cells in this low-dimensional embedding is character-
ised. In Monocle [12] this is achieved by the construction of a minimum spanning tree (MST)
joining all cells. The diameter of the MST provides the main trajectory along which pseudo-
time is measured. Related graph-based techniques (Wanderlust) have also been used to
characterise temporal processes from single cell mass cytometry data [10]. In SCUBA [11] the
trajectory itself is directly modelled using principal curves [27] and pseudotime is assigned to
each cell by projecting its location in the low-dimensional embedding on to the principal
curve. The estimated pseudotimes can then be used to order the cells and to assess differential
expression of genes across pseudotime. Note that in the diffusion pseudotime framework [17],
all the diffusion components are used in the random-walk pseudotime model and there is no
strict dimensionality reduction step. However, the derivation of the diffusion maps does lead
to the compression of information into the first few diffusion components which is what
enables successful visualisation [23].

A limitation of these approaches is that they provide only a single point estimate of pseudo-
times concealing the full impact of variability and technical noise. As a consequence, the statis-
tical uncertainty in the pseudotimes is not propagated to downstream analyses precluding a
thorough treatment of stability. To date, the impact of this pseudotime uncertainty has not
been explored and its implications are unknown as the methods applied typically do not pos-
sess a probabilistic interpretation. However, we can examine the stability of the pseudotime

Fig 1. The single cell pseudotime estimation problem. (A) Single cells at different stages of a temporal process. (B) The
temporal labelling information is lost during single cell capture. (C) Statistical pseudotime estimation algorithms attempt to
reconstruct the relative temporal ordering of the cells but cannot fully reproduce physical time. (D) The pseudotime estimates
can be used to identify genes that are differentially expressed over (pseudo)time.

doi:10.1371/journal.pcbi.1005212.g001

Probabilistic Models for Pseudotime Inference

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005212 November 21, 2016 3 / 20

[Figure	from:	Campbell	&	Yau,	PLOS	Computational	 Biology,	2016]



MST-based	approach	(Monocle)
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population of cells branched from the trajectory near the transition 
between phases. These cells lacked myogenic markers but expressed 
PDGFRA and SPHK1, suggesting that they are contaminating intersti-
tial mesenchymal cells and did not arise from the myoblasts. Such cells 
were recently shown to stimulate muscle differentiation19. Monocle’s 
estimates of the frequency and proliferative status of these cells  
were consistent with estimates derived from immunofluorescent 
stains against ANPEP (also known as CD13) and nuclear Ser10- 
phosphorylated histone H3 (Supplementary Fig. 4). Monocle thus 
enabled analysis of the myoblast differentiation trajectory without 
subtracting these cells by immunopurification, maintaining in vitro 
differentiation kinetics that resemble physiological cell crosstalk 
occurring in the in vivo niche.

To find genes that were dynamically regulated as the cells pro-
gressed through differentiation, we modeled expression of each gene 
as a nonlinear function of pseudotime. A total of 1,061 genes were 

dynamically regulated during differentiation (false discovery rate 
(FDR) < 5%; Fig. 2c). Cells positive for MEF2C and MYH2, early and 
late markers of differentiation, respectively, were present at expected 
frequencies as assayed by both immunofluorescence and RNA-Seq. 
Moreover, the pseudotime ordering of cells shows an increase in 
MEF2C+ cells before the increase in MYH2+ cells (Fig. 2d). Notably, 
genes that act at the early and late stages of muscle differentiation 
showed pseudotemporal kinetics that were highly consistent with 
expectations, with cell-cycle regulators active early in pseudotime 
and sarcomere components active later, confirming the accuracy of 
the ordering (Supplementary Fig. 5).

We next examined the pseudotemporal kinetics of a set of genes 
whose mouse orthologs are targeted by Myod, Myog or Mef2 pro-
teins in C2C12 myoblasts20 (Supplementary Fig. 6). The kinetics of 
these genes during differentiation were highly consistent with changes 
observed during mouse myogenesis, with nearly all significantly 
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[Trapnell et	al.,	Nature	Biotechnology,	2014]
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population of cells branched from the trajectory near the transition 
between phases. These cells lacked myogenic markers but expressed 
PDGFRA and SPHK1, suggesting that they are contaminating intersti-
tial mesenchymal cells and did not arise from the myoblasts. Such cells 
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were consistent with estimates derived from immunofluorescent 
stains against ANPEP (also known as CD13) and nuclear Ser10- 
phosphorylated histone H3 (Supplementary Fig. 4). Monocle thus 
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subtracting these cells by immunopurification, maintaining in vitro 
differentiation kinetics that resemble physiological cell crosstalk 
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as a nonlinear function of pseudotime. A total of 1,061 genes were 
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(FDR) < 5%; Fig. 2c). Cells positive for MEF2C and MYH2, early and 
late markers of differentiation, respectively, were present at expected 
frequencies as assayed by both immunofluorescence and RNA-Seq. 
Moreover, the pseudotime ordering of cells shows an increase in 
MEF2C+ cells before the increase in MYH2+ cells (Fig. 2d). Notably, 
genes that act at the early and late stages of muscle differentiation 
showed pseudotemporal kinetics that were highly consistent with 
expectations, with cell-cycle regulators active early in pseudotime 
and sarcomere components active later, confirming the accuracy of 
the ordering (Supplementary Fig. 5).

We next examined the pseudotemporal kinetics of a set of genes 
whose mouse orthologs are targeted by Myod, Myog or Mef2 pro-
teins in C2C12 myoblasts20 (Supplementary Fig. 6). The kinetics of 
these genes during differentiation were highly consistent with changes 
observed during mouse myogenesis, with nearly all significantly 
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How	can	we	discover	stages?

1. Intuition	on	staging	from	cross-sectional	 data
2. Staging	with	pseudo-time	methods
3. Staging	with	probabilistic	models:	missing	data	

&	multiple	time	points
– Case	study:	chronic	obstructive	pulmonary	disease
– Case	study:	Type	2	diabetes



Can	we	learn	10-year	progression	of	
COPD	from	EHR	data?

• Only	2-4 years	of	data	for	each	patient
• High-dimensional,	with	lots	of	missing	data
• No ground	truth	– not	even	spirometry

[Xiang,	Sontag,	Wang,	“Unsupervised	learning	of	Disease	Progression	
Models”,	KDD	2014]
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How	can	we	discover	stages?

1. Intuition	on	staging	from	cross-sectional	 data
2. Staging	with	pseudo-time	methods
3. Staging	with	probabilistic	models:	missing	data	

&	multiple	time	points
– Case	study:	chronic	obstructive	pulmonary	disease
– Case	study:	Type	2	diabetes
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• Long-term:	which	diabetes	medications	work	best	for	whom?
• Actions:	9	diabetic	drugs	including	Metformin	and	Insulin	(m),

lab	test	orders	(u)

• Here	we	just	do	a	sanity	check.	8000	diabetic	&	pre-diabetic	
patients,	4	years	of	data.
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Figure 6: (Left Two Plots) Estimating Counterfactuals with DMM:
The x-axis denotes the number of 3-month intervals after prescrip-
tion of Metformin. The y-axis denotes the proportion of patients
(out of a test set size of 800) who, after their first prescription of
Metformin, experienced a high level of A1C. In each tuple of bar
plots at every time step, the left aligned bar plots (green) represent
the population that received diabetes medication while the right
aligned bar plots (red) represent the population that did not receive
diabetes medication. (Rightmost Plot) Upper bound on negative-
log likelihood for different DMMs trained on the medical data. (T)
denotes “transition”, (E) denotes “emission”, (L) denotes “linear”
and (NL) denotes “non-linear”.

variable z
t

decomposes as log p(m
t

, o

t

|z
t

) = log p(m

t

|z
t

)+

log p(o

t

|z
t

) since the random variables are conditionally in-
dependent given their parent. If m is missing and marginal-
ized out while o

t

is observed, then our log-likelihood
is: log

R
m

p(m

t

, o

t

|z
t

) = log(

R
m

p(m

t

|z
t

)p(o

t

|z
t

)) =

log p(o

t

|z
t

) (since
R
m

p(m

t

|z
t

) = 1) i.e we effectively
ignore the missing observations when estimating the log-
likelihood of the data.

The Effect of Anti-Diabetic Medications: Since our co-
hort comprises diabetic patients, we ask a counterfactual
question: what would have happened to a patient had anti-
diabetic drugs not been prescribed? Specifically we are in-
terested in the patient’s blood-sugar level as measured by
the widely-used A1C blood-test. We perform inference us-
ing held-out patient data leading up to the time k of first
prescription of Metformin. From the posterior mean, we per-
form ancestral sampling tracking two latent trajectories: (1)
the factual: where we sample new latent states conditioned
on the medication u

t

the patient had actually received and
(2) the counterfactual: where we sample conditioned on not
receiving any drugs for all remaining timesteps (i.e u

k

set
to the zero-vector). We reconstruct the patient observations
x

k

, . . . , x

T

, threshold the predicted values of A1C levels into
high and low and visualize the average number of high A1C
levels we observe among the synthetic patients in both sce-
narios. This is an example of performing do-calculus (Pearl
2009) in order to estimate model-based counterfactual effects.

The results are shown in Fig. 6. We see the model learns
that, on average, patients who were prescribed anti-diabetic
medication had more controlled levels of A1C than patients
who did not receive any medication. Despite being an ag-
gregate effect, this is interesting because it is a phenomenon
that coincides with our intuition but was confirmed by the
model in an entirely unsupervised manner. Note that in our
dataset, most diabetic patients are indeed prescribed anti-
diabetic medications, making the counterfactual prediction
harder. The ability of this model to answer such queries opens

up possibilities into building personalized neural models of
healthcare. Samples from the learned generative model and
implementation details may be found in the supplement.

7 Discussion
We introduce a general algorithm for scalable learning in a
rich family of latent variable models for time-series data. The
underlying methodological principle we propose is to build
the inference network to mimic the posterior distribution
(under the generative model). The space complexity of our
learning algorithm depends neither on the sequence length
T nor on the training set size N , offering massive savings
compared to classical variational inference methods.

Here we propose and evaluate building variational infer-
ence networks to mimic the structure of the true posterior
distribution. Other structured variational approximations are
also possible. For example, one could instead use an RNN
from the past, conditioned on a summary statistic of the fu-
ture, during learning and inference.

Since we use RNNs only in the inference network, it should
be possible to continue to increase their capacity and condi-
tion on different modalities that might be relevant to approxi-
mate posterior inference without worry of overfitting the data.
Furthermore, this confers us the ability to easily model in the
presence of missing data since the semantics of the DMM
render it easy to marginalize out unobserved data. In contrast,
in a (stochastic) RNN (bottom in Fig. 1) it is much more
difficult to marginalize out unobserved data due to the depen-
dence of the intermediate hidden states on the previous input.
Indeed this allowed us to develop a principled application of
the learning algorithm to modeling longitudinal patient data
in EHR data and inferring treatment effect.
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question: what would have happened to a patient had anti-
diabetic drugs not been prescribed? Specifically we are in-
terested in the patient’s blood-sugar level as measured by
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Figure 6: (Left Two Plots) Estimating Counterfactuals with DMM:
The x-axis denotes the number of 3-month intervals after prescrip-
tion of Metformin. The y-axis denotes the proportion of patients
(out of a test set size of 800) who, after their first prescription of
Metformin, experienced a high level of A1C. In each tuple of bar
plots at every time step, the left aligned bar plots (green) represent
the population that received diabetes medication while the right
aligned bar plots (red) represent the population that did not receive
diabetes medication. (Rightmost Plot) Upper bound on negative-
log likelihood for different DMMs trained on the medical data. (T)
denotes “transition”, (E) denotes “emission”, (L) denotes “linear”
and (NL) denotes “non-linear”.
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ignore the missing observations when estimating the log-
likelihood of the data.

The Effect of Anti-Diabetic Medications: Since our co-
hort comprises diabetic patients, we ask a counterfactual
question: what would have happened to a patient had anti-
diabetic drugs not been prescribed? Specifically we are in-
terested in the patient’s blood-sugar level as measured by
the widely-used A1C blood-test. We perform inference us-
ing held-out patient data leading up to the time k of first
prescription of Metformin. From the posterior mean, we per-
form ancestral sampling tracking two latent trajectories: (1)
the factual: where we sample new latent states conditioned
on the medication u

t

the patient had actually received and
(2) the counterfactual: where we sample conditioned on not
receiving any drugs for all remaining timesteps (i.e u

k

set
to the zero-vector). We reconstruct the patient observations
x

k

, . . . , x

T

, threshold the predicted values of A1C levels into
high and low and visualize the average number of high A1C
levels we observe among the synthetic patients in both sce-
narios. This is an example of performing do-calculus (Pearl
2009) in order to estimate model-based counterfactual effects.

The results are shown in Fig. 6. We see the model learns
that, on average, patients who were prescribed anti-diabetic
medication had more controlled levels of A1C than patients
who did not receive any medication. Despite being an ag-
gregate effect, this is interesting because it is a phenomenon
that coincides with our intuition but was confirmed by the
model in an entirely unsupervised manner. Note that in our
dataset, most diabetic patients are indeed prescribed anti-
diabetic medications, making the counterfactual prediction
harder. The ability of this model to answer such queries opens

up possibilities into building personalized neural models of
healthcare. Samples from the learned generative model and
implementation details may be found in the supplement.

7 Discussion
We introduce a general algorithm for scalable learning in a
rich family of latent variable models for time-series data. The
underlying methodological principle we propose is to build
the inference network to mimic the posterior distribution
(under the generative model). The space complexity of our
learning algorithm depends neither on the sequence length
T nor on the training set size N , offering massive savings
compared to classical variational inference methods.

Here we propose and evaluate building variational infer-
ence networks to mimic the structure of the true posterior
distribution. Other structured variational approximations are
also possible. For example, one could instead use an RNN
from the past, conditioned on a summary statistic of the fu-
ture, during learning and inference.

Since we use RNNs only in the inference network, it should
be possible to continue to increase their capacity and condi-
tion on different modalities that might be relevant to approxi-
mate posterior inference without worry of overfitting the data.
Furthermore, this confers us the ability to easily model in the
presence of missing data since the semantics of the DMM
render it easy to marginalize out unobserved data. In contrast,
in a (stochastic) RNN (bottom in Fig. 1) it is much more
difficult to marginalize out unobserved data due to the depen-
dence of the intermediate hidden states on the previous input.
Indeed this allowed us to develop a principled application of
the learning algorithm to modeling longitudinal patient data
in EHR data and inferring treatment effect.
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Summary

• Incredible	potential	for	clinical	data	to	be	used	
for:
– Population-level	understanding	of	disease	progression	
– Discovering	new	disease	subtypes
– Predicting	future	outcomes	such	as	survival	time	and	
complications

– Personalizing	therapy	by	identifying	who	will	respond	
best	to	treatment

• Key	advance	is	to	show	how	to	do	these	from	
high-dimensional,	noisy,	incomplete	patient	
trajectories


