Causal Inference Case Studies (adopted from Irene Chen, MIT)

Case studies

1. Post surgical opioid abuse

2. Diabetes treatment management

Drug overdose deaths in America

*Some deaths on this chart may overlap if they involve multiple drugs.

Share of organ donors who died of drug overdoses

Research

Postsurgical prescriptions for opioid naive patients and association with overdose and misuse: retrospective cohort study

BMJ 2018 ; 360 doi: https://doi.org/10.1136/bmj.j5790 (Published 17 January 2018) Cite this as: *BMJ* 2018;360:j5790

Article	Related content	Metrics	Responses	Peer review					
Gabriel A Brat, instructor in surgery ¹ ² , Denis Agniel, postdoctoral fellow ¹ , Andrew Beam, research scientist ¹ ,									
Brian Yorkgitis, assistant professor in surgery ³ , Mark Bicket, assistant professor in anesthesia ⁴ , Mark Homer, postdoctoral fellow ¹ ,									
Kathe P Fox, director ⁵ , Daniel B Knecht, chief of staff ⁵ , Cheryl N McMahill-Walraven, director ⁵ ,									

Nathan Palmer, research scientist 1, Isaac Kohane, department chair 1

Author affiliations ¥

Correspondence to: G A Brat gbrat@bidmc.harvard.edu Accepted 1 December 2017

Do postsurgical opioids cause opioid abuse?

Aetna Insurance claims

Pros

- Complete patient record
- Hospital and pharmacy care
- Surgical claims from CPT, outcomes from ICD-9 codes

Cons

- Lacking granular information about hospital stays (e.g. lab values)
- CPT and ICD-9 codes can be incorrect or manipulated for billing purposes

Data source

Include

- Patients with "complete" medical and pharmacy insurance records
- Underwent first surgery
- Opioid naïve: little/no previous opioid use

Final cohort

- Large dataset (37 million)
- Longitudinal (2008-2016)
- After inclusion criteria, 1 million opioid naïve patients undergoing surgery

Do postsurgical opioids cause opioid abuse?

How do we define T, Y, and X?

What is treatment T?

- Refill
- Total dosage
- Duration of use

What is outcome Y?

- ICD-9 code for opioid dependence, abuse, and overdose
- Only include diagnosis codes related to prescription opioids

What are confounders X?

- Demographics (age, sex)
- US state of residence
- surgery type group
- surgery year
- presurgical diagnoses

Statistical analysis

- Weighted linear regression for log transformed weekly rates of misuse
 - Each week weighted according to sample size
 - Create outcome of adjusted analysis of time until misuse event using Cox proportional hazards (survival analysis!)
 - Results report **multiplicative percentage increases** in rate
- Sensitivity analysis to rule out structural confounders
 - Interaction term between duration and year indicator
 - Interaction between duration and state of residence indicator
 - Build in an unobserved confounder with a Bernoulli random variable

Recap: Postsurgical opioid use to misuse

- "Duration more than dosage use may cause opioid misuse"
- Use covariate adjustment to estimate multiplicative effects
- Interaction terms

Case studies

- 1. Post surgical opioid abuse
- 2. Diabetes treatment management

Clinical Care/Education/Nutrition/Psychosocial Research

Personalized Diabetes Management Using Electronic Medical Records

Dimitris Bertsimas 1, Nathan Kallus, Alexander M. Weinstein and Ying Daisy Zhuo

+ Author Affiliations

Corresponding author: Dimitris Bertsimas, dbertsim@mit.edu.

Diabetes Care 2017 Feb; 40(2): 210-217. https://doi.org/10.2337/dc16-0826

G Previous								
Article	Figures & Tables	Suppl Material	Info & Metrics	🗅 PDF				

Abstract

OBJECTIVE Current clinical guidelines for managing type 2 diabetes do not differentiate based on patient-specific factors. We present a data-driven algorithm for personalized diabetes management that improves health outcomes relative to the standard of care.

Type 2 Diabetes Treatment Still a Mystery

Figure 2.2 Prevalence (%) of people with diabetes by age and sex, 2013

BMJ Open. 2015; 5(5): e007375. Published online 2015 May 12. doi: 10.1136/bmjopen-2014-007375

PMCID: PMC4431069 PMID: 25967997

Racial ethnic differences in type 2 diabetes treatment patterns and glycaemic control in the Boston Area Community Health Survey

Sunali D Goonesekera, May H Yang, Susan A Hall, Shona C Fang, Rebecca S Piccolo, and John B McKinlay

Author information > Article notes > Copyright and License information Disclaimer

age (years)

Diabetologia. Author manuscript; available in PMC 2014 Dec 1. Published in final edited form as: Diabetologia. 2013 Dec; 56(12): 10.1007/s00125-013-3078-7.

NIHMSID: NIHMS529351 PMID: 24092493

PMCID: PMC3842214

Published online 2013 Oct 5. doi: 10.1007/s00125-013-3078-7

Age-related differences in glycaemic control in diabetes

Elizabeth Selvin¹ and Christina M. Parrinello¹

What do we include in this analysis?

Inclusion criteria

- Patients in hospital EMR for >1 year
- Prescription for at least one blood glucose regulation agent
- At least three recorded laboratory results for HbA1C
- No recorded diagnosis of type 1 diabetes (from ICD-9 code 250.x1 or 250.x3)

Final cohort

- 10k patients, 48k patient visits
- Access to demographic information
- Analyze all associated EMR data

What makes two patients similar or different?

Features

- Differentiate 13 lines of therapy
- Patient visit every 100 day and average HbA1C after visit (75-200 days after)
- Collect what standard of care was actually administered

[Slide 17 of lecture 15]

Which treatment will lead to lower HbA1C?

Model

- For each patient visit, find kNN regression to predict HbA1C under every possible treatment
- Algorithm prescribes regimen with best predicted outcome if predictive improvement exceeds threshold
- Evaluation compared actual treatment and outcome with recommended therapy and outcome
- Sensitivity analysis by drawing new training and testing splits

[Figure 1 of Bertsimas et al, 2017]

Recap: Diabetes treatment management

- "kNN over patients can recommend diabetes treatments"
- Use matching to estimate different treatment effects
- Evaluate by comparing predicted and actual treatment and HbA1C values
- Sensitivity analysis through repeated sampling of training and test data