Causal Inference Case Studies

(adopted from Irene Chen, MIT)
Case studies

1. Post surgical opioid abuse
2. Diabetes treatment management
Drug overdose deaths in America

*Some deaths on this chart may overlap if they involve multiple drugs.
Share of organ donors who died of drug overdoses

Source: Organ Procurement and Transplantation Network
Research

Postsurgical prescriptions for opioid naive patients and association with overdose and misuse: retrospective cohort study

BMJ 2018; 360 doi: https://doi.org/10.1136/bmj.j5790 (Published 17 January 2018)

Cite this as: *BMJ* 2018;360:j5790

Gabriel A Brat, instructor in surgery1 2, Denis Agnie, postdoctoral fellow1, Andrew Beam, research scientist1,
Brian Yorkgdis, assistant professor in surgery3, Mark Bicket, assistant professor in anesthesia4, Mark Homer, postdoctoral fellow1,
Kathe P Fox, director5, Daniel B Knecht, chief of staff5, Cheryl N McMahill-Walraven, director5,
Nathan Palmer, research scientist1, Isaac Kohane, department chair1

Author affiliations

Correspondence to: G A Brat gbrat@bidmc.harvard.edu

Accepted 1 December 2017
Do postsurgical opioids cause opioid abuse?

- T: dosage, refills
- Y: opioid abuse
- X: other diagnoses

Diagram:
- T → X → Y
- Y → X → T
- X → T → Y

Questions:
- How do postsurgical opioids lead to opioid abuse?
- What role does dosage and refills play in this process?
Aetna Insurance claims

Pros

• Complete patient record
• Hospital and pharmacy care
• Surgical claims from CPT, outcomes from ICD-9 codes

Cons

• Lacking granular information about hospital stays (e.g. lab values)
• CPT and ICD-9 codes can be incorrect or manipulated for billing purposes
Data source

Include

• Patients with “complete” medical and pharmacy insurance records
• Underwent first surgery
• Opioid naïve: little/no previous opioid use

Final cohort

• Large dataset (37 million)
• Longitudinal (2008-2016)
• After inclusion criteria, 1 million opioid naïve patients undergoing surgery
Do postsurgical opioids cause opioid abuse?

Dosage, refills

Other diagnoses

Opoid abuse
How do we define T, Y, and X?

What is treatment T?
• Refill
• Total dosage
• Duration of use

What is outcome Y?
• ICD-9 code for opioid dependence, abuse, and overdose
• Only include diagnosis codes related to prescription opioids

What are confounders X?
• Demographics (age, sex)
• US state of residence
• surgery type group
• surgery year
• presurgical diagnoses
Statistical analysis

• Weighted linear regression for log transformed weekly rates of misuse
 • Each week weighted according to sample size
 • Create outcome of adjusted analysis of time until misuse event using Cox proportional hazards (survival analysis!)
 • Results report multiplicative percentage increases in rate

• Sensitivity analysis to rule out structural confounders
 • Interaction term between duration and year indicator
 • Interaction between duration and state of residence indicator
 • Build in an unobserved confounder with a Bernoulli random variable
Recap: Postsurgical opioid use to misuse

• “Duration more than dosage use may cause opioid misuse”
• Use covariate adjustment to estimate multiplicative effects
• Interaction terms
Case studies

1. Post surgical opioid abuse
2. Diabetes treatment management
Personalized Diabetes Management Using Electronic Medical Records

Dimitris Bertsimas†, Nathan Kallus, Alexander M. Weinstein and Ying Daisy Zhuo

Author Affiliations

Corresponding author: Dimitris Bertsimas, dbertsim@mit.edu.

https://doi.org/10.2337/dc16-0826

Abstract

OBJECTIVE Current clinical guidelines for managing type 2 diabetes do not differentiate based on patient-specific factors. We present a data-driven algorithm for personalized diabetes management that improves health outcomes relative to the standard of care.
Type 2 Diabetes Treatment Still a Mystery
What do we include in this analysis?

Inclusion criteria
• Patients in hospital EMR for >1 year
• Prescription for at least one blood glucose regulation agent
• At least three recorded laboratory results for HbA1C
• No recorded diagnosis of type 1 diabetes (from ICD-9 code 250.x1 or 250.x3)

Final cohort
• 10k patients, 48k patient visits
• Access to demographic information
• Analyze all associated EMR data
What makes two patients similar or different?

Features

- Differentiate 13 lines of therapy
- Patient visit every 100 day and average HbA1C after visit (75-200 days after)
- Collect what standard of care was actually administered

[Slide 17 of lecture 15]
Which treatment will lead to lower HbA1C?

Which treatment will lead to lower HbA1C?

- **T** (line of therapy)
- **X** (demographics)
- **Y** (Subsequent HbA1C)
Model

- For each patient visit, find kNN regression to predict HbA1C under every possible treatment
- Algorithm prescribes regimen with best predicted outcome if predictive improvement exceeds threshold
- Evaluation compared actual treatment and outcome with recommended therapy and outcome
- Sensitivity analysis by drawing new training and testing splits
[Figure 1 of Bertsimas et al, 2017]
A Recommendation: Switch from insulin monotherapy to metformin monotherapy

B Outcomes for similar patients who were prescribed...

C Predicted HbA1c (%): 8.3

- PATIENT ID: 12XXXXX
- AGE (Years): 61.9
- SEX: F
- RACE/ETHNICITY: Black
- CURRENT HbA1c (%): 10.1
- CURRENT REGIMEN: Insulin

D Patient Treatment & HbA1c History

[Figure 2 of Bertsimas et al, 2017]
Recap: Diabetes treatment management

• “kNN over patients can recommend diabetes treatments”
• Use matching to estimate different treatment effects
• Evaluate by comparing predicted and actual treatment and HbA1C values
• Sensitivity analysis through repeated sampling of training and test data