Causal Inference Case Studies

(adopted from Irene Chen, MIT)



Case studies

1. Post surgical opioid abuse
2. Diabetes treatment management



Drug overdose deaths in America v f P

*Some deaths on this chart may overlap if they involve multiple drugs.
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Share of organ donors who died
of drug overdoses
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Do postsurgical opioids cause opioid abuse?

@ other diagnoses
o T\
(1) = (1)

dosage, refills opioid abuse




Aetna Insurance claims

Pros
 Complete patient record
* Hospital and pharmacy care

* Surgical claims from CPT,
outcomes from ICD-9 codes

Cons

* Lacking granular information
about hospital stays (e.g. lab
values)

* CPT and ICD-9 codes can be
incorrect or manipulated for
billing purposes



Data source

Include Final cohort

e Patients with “complete” * Large dataset (37 million)

medical and pharmacy insurance . | gngitydinal (2008-2016)

records , _ o .
e After inclusion criteria, 1 million

* Underwent first surgery opioid naive patients undergoing
* Opioid naive: little/no previous surgery
opioid use



Do postsurgical opioids cause opioid abuse?
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How do we define T, Y, and X?

What is treatment T?
e Refill
* Total dosage

 Duration of use

What is outcome Y?

* |CD-9 code for opioid
dependence, abuse, and
overdose

* Only include diagnosis codes
related to prescription opioids

What are confounders X?
 Demographics (age, sex)

 US state of residence

* surgery type group

* surgery year

* presurgical diagnoses



Statistical analysis

* Weighted linear regression for log transformed weekly rates of misuse
* Each week weighted according to sample size

* Create outcome of adjusted analysis of time until misuse event using Cox
proportional hazards (survival analysis!)

* Results report multiplicative percentage increases in rate

* Sensitivity analysis to rule out structural confounders
* Interaction term between duration and year indicator
* Interaction between duration and state of residence indicator
 Build in an unobserved confounder with a Bernoulli random variable



Recap: Postsurgical opioid use to misuse

* “Duration more than dosage use may cause
opioid misuse”

* Use covariate adjustment to estimate
multiplicative effects

* Interaction terms



Case studies

1. Post surgical opioid abuse
2. Diabetes treatment management
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OBJECTIVE Current clinical guidelines for managing type 2 diabetes do not differentiate based
on patient-specific factors. We present a data-driven algorithm for personalized diabetes

management that improves health outcomes relative to the standard of care.



Type 2 Diabetes Treatment Still a Mystery
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What do we include in this analysis?

Inclusion criteria

 Patients in hospital EMR for >1
year

* Prescription for at least one
blood glucose regulation agent

* At least three recorded
laboratory results for HbA1C

* No recorded diagnosis of type 1
diabetes (from ICD-9 code
250.x1 or 250.x3)

Final cohort
* 10k patients, 48k patient visits

* Access to demographic
information

* Analyze all associated EMR data



What makes two patients similar or different?

Features
* Differentiate 13 lines of therapy | @
* Patient visit every 100 day and oty ﬁ
average HbA1C after visit (75- index O
200 days after) @ o
e Collect what standard of care ® o
ontro Age

was actually administered

[Slide 17 of lecture 15]



Which treatment will lead to lower HbA1C?

@demographics
o T\
(1) = (1)

line of therapy Subsequent HbA1C




Model

* For each patient visit, find kNN regression to predict
HbA1C under every possible treatment

* Algorithm prescribes regimen with best predicted
outcome if predictive improvement exceeds threshold

e Evaluation compared actual treatment and outcome with
recommended therapy and outcome

* Sensitivity analysis by drawing new training and testing
splits



Regimen Prescribed by Algorithm
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[Figure 1 of Bertsimas et al, 2017]



A

Recommendation: Switch from insulin monotherapy to metformin monotherapy

B Outcomes for similar patients who were prescribed...
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Recap: Diabetes treatment management

* “kNN over patients can recommend diabetes
treatments”

* Use matching to estimate different treatment
effects

* Evaluate by comparing predicted and actual
treatment and HbA1C values

 Sensitivity analysis through repeated sampling of
training and test data



