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Probabilistic Graphical Models, Spring 2012

Problem Set 2: Undirected graphical models
Due: Thursday, February 23, 2012 at 5pm

1. Exercise 4.1 from Koller & Friedman (requirement of positivity in Hammersley-Clifford
theorem; see page 116).

2. Both of:

(a) Exercise 4.2 from Koller & Friedman (reparameterization leaves distribution unchanged.
See page 124).

(b) Exercise 4.12 from Koller & Friedman (converting Boltzmann machine to Ising model.
See page 126).

3. Give a procedure to convert any Markov network into a pairwise Markov random field.
In particular, given a distribution p(X), specify a new distribution p(X,Y) which is a
pairwise MRF, such that p(x) =

∑
y p(x,y), where Y are any new variables added.

Hint: consider the factor graph representation of the Markov network, and introduce one
new variable for each non-pairwise factor.

4. Exponential families (see Chap. 8.1-8.3). Probability distributions in the exponential
family have the form:

p(x; η) = h(x) exp{η · f(x)− lnZ(η)}

for some scalar function h(x), vector of functions f(x) = (f1(x), . . . , fd(x)), canonical
parameter vector η ∈ Rd (often referred to as the natural parameters), and Z(η) a constant
(depending on η) chosen so that the distribution normalizes.

(a) Determine which of the following distributions are in the exponential family, exhibiting
the f(x), Z(η), and h(x) functions for those that are.

i. N(µ, I)—multivariate Gaussian with mean vector µ and identity covariance ma-
trix.

ii. Dir(α)—Dirichlet with parameter vector α = (α1, α2, . . . , αK).

iii. log-Normal distribution—the distribution of Y = exp(X), where X ∼ N(0, σ2).

iv. Boltzmann distribution—an undirected graphical model G = (V,E) involving
a binary random vector X taking values in {0, 1}n with distribution p(x) ∝
exp

{∑
i uixi +

∑
(i,j)∈E wi,jxixj

}
.

(b) Derivatives and moments. The partition function Z(η) is a function of the parameters
η chosen so that the distribution normalizes to 1. Here we draw a connection between
the log of the partition function, lnZ(η), and moments of the distribution. For discrete
distributions, we have

lnZ(η) = ln

(∑
x

h(x) exp
{
η · f(x)

})
.
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For continuous distributions, the summation over x is replaced with an integration.
In this question, show that the derivative of the function lnZ(η) takes the form

∇η lnZ(η) = Ep(x;η)[f(x)]. (1)

It can further be shown that the 2nd derivative of the log-partition function gives the
second-order moments, i.e. ∇2 lnZ(η) = cov[f(x)].

(c) Verify Eq. 1 explicitly for case (i) from (a), using your solution for Z(η).

(d) Conditional models. One can also talk about conditional distributions being in the
exponential family, being of the form:

p(y | x; η) = h(x,y) exp{η · f(x,y)− lnZ(η,x)}.

The partition function Z now depends on x, the variables that are conditioned on.
Let Y be a binary variable whose conditional distribution is specified by the logistic
function,

p(Y = 1 | x;α) =
1

1 + e−α0−
∑n

i=1 αixi

Show that this conditional distribution is in the exponential family.

5. Conjugacy and Bayesian prediction.

(a) Let θ ∼ Dir(α). Consider multinomial random variables (X1, X2, . . . , XN ), where
Xi ∼ Mult(θ) for each i (thus the Xi are conditionally independent of one another
given θ). Show that the posterior p(θ | x1, . . . , xN , α) is given by Dir(α′), where

α′k = αk +

N∑
i=1

1[xi = k].

This property, that the posterior distribution p(θ | x) is in the same family as the
prior distribution p(θ), is called conjugacy. The Dirichlet distribution is the conjugate
prior for the Multinomial distribution. Every distribution in the exponential family
has a conjugate prior. For example, the conjugate prior for the mean of a Gaussian
distribution can be shown to be another Gaussian distribution.

(b) Now consider a random variable Xnew ∼ Mult(θ) that is assumed conditionally in-
dependent of (X1, X2, . . . , XN ) given θ. Compute:

p(xnew | x1, x2, . . . , xN , α)

by integrating over θ.

Hint: Your result should take the form of a ratio of gamma functions.

This is called Bayesian prediction because we put a prior distribution over the pa-
rameters θ (in this case, a Dirichlet) and are thus able to take into consideration our
initial uncertainty over (and prior knowledge of) the parameters together with the
evidence we observed (samples x1, . . . , xN ) when giving our predictions for xnew.
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6. Properties of Kullback-Leibler divergence (see Chap. A.1).

Given two probability distributions p(x) and q(x) for the random variable X, where X
takes values in {0, 1, . . . , k − 1}, the Kullback-Leibler divergence is defined as

D(p‖q) =

k−1∑
x=0

p(x) log
p(x)

q(x)
.

(a) Show that D(p ‖ q) ≥ 0 for all p, q, with equality if and only if p = q.

Hint: Use Jensen’s inequality (see page 41).

(b) Use part (a) to show that entropy, H(p) = −
∑
x p(x) log p(x), satisfies H(p) ≤ log k

for all distributions p. When does equality hold?


