
GA.3033-006 Problem Set 6 1

Probabilistic Graphical Models, Spring 2012

Problem Set 6: EM and Structured Prediction
Due: Thursday, May 3, 2012 at 5pm (in class)

1. HMM with mixture model emissions.

A common modification of the hidden Markov model involves using mixture models for
the emission probabilities p(yt|qt), where qt refers to the state for time t and yt to the
observation for time t.

Suppose that yt ∈ Rn and that the emission distribution is given by a mixture of Gaussians
for each value of the state. To be concrete, suppose that the qt can take K discrete states
and each mixture has M components. Then,

p(yt | qt) =

M∑
j=1

bqtj

(
1

(2π)
n
2 |Σqtj |

1
2

exp

{
−1

2
(yt − µqtj)

T Σ−1qtj
(yt − µqtj)

})

where bi ∈ [0, 1]M denotes the mixing weights for state i (
∑M

j=1 bij = 1 for i = 1, . . .K),

µij ∈ Rn and Σij ∈ Rn×n.

Let π ∈ RK be the probability distribution for the initial state q0, A ∈ RK×K the transition
matrix of the qt’s. In this problem you will derive an EM algorithm for learning the
parameters {bij , µij ,Σij} and A, π.

(a) The EM algorithm is substantially simpler if you introduce auxiliary variables zt ∈
{1, . . . ,M} denoting which mixture component the t’th observation is drawn from.

Draw the graphical model for this modified HMM, identifying clearly the additional
latent variables that are needed.

(b) Write the expected complete log likelihood for the model and identify the expectations
that you need to compute in the E step. Show all steps of your derivation.

(c) Give an algorithm for computing the E step.

Hint: Reduce the inference problem to something you know how to do, such as sum-
product belief propagation in tree-structured pairwise MRFs.

(d) Write down the equations that implement the M step.

2. Structured prediction for part-of-speech tagging

In this question, you will experiment with structured prediction using the averaged per-
ceptron algorithm on a chain-structured conditional random field (CRF). You will tackle
the task of part-of-speech (POS) tagging, a problem from the natural language processing
domain. POS tagging is a classification problem where the goal is to accurately predict
the part of speech (e.g., noun, verb, adjective) of each word in a sentence.

The CRF used in this prediction task is a Markov model. Let Li be the length of sen-
tence i. Then, the CRF for sentence i has variables Y1, . . . , YLi

, where Yl is a discrete
variable denoting the part-of-speech of token l. The tokens are denoted by the variables
X1, . . . , XLi

. The CRF for a sequence of length 4 is shown below.

GA.3033-006 Problem Set 6 2

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Raw POS tagging data takes the form of a set of sentences and tag sequences. Each token
(normally a word but sometimes a number or punctuation symbol) in each sentence is
associated with exactly one tag. Standard POS tag sets typically include around C = 40
distinct tags. For the purpose of this assignment, we have prepared data with a simplified
tag set consisting of C = 10 groups of tags. Each token in the data set is assigned one of
these 10 tags. To learn prediction models for the POS tagging task, we need to select a
feature space to represent the tokens. You will use simple features that we have extracted
from the tokens for you.

The data consist of a set of training sentences train-i.txt and a set of test sentences test-
i.txt. Each file contains one sentence. Each row in each file contains the raw token, the
tag ID for that token, and five feature values in standard comma-separated-value (CSV)
format. The format of each row is as follows: <Token>, <TagId>, <Bias>, <InitCap>,
<AllCap>, <Pre>, <Suff>. A description of the fields is given below.

Column Field Description Value

1 Token The raw token string Any string
2 TagID The ID of the tag {1, ..., 10}
3 Bias Feature: Bias 1
4 InitCap Feature: Initial Capital {0, 1}
5 AllCap Feature: All Capitals {0, 1}
6 Pre Feature: Prefix ID {1, ..., 201}
7 Suff Feature: Suffix ID {1, ..., 201}

The 10 tag ID’s correspond to the following 10 tag groups: verb, noun, adjective, adverb,
preposition, pronoun, determiner, number, punctuation, and other. The Bias feature is a
constant 1 for all tokens. The InitCap feature is 1 if the token string starts with a capital
letter and 0 otherwise. The AllCap feature is 1 if the token string is all capital letters and
0 otherwise. The Pre feature takes one of 201 values corresponding to the most common
two-character token string prefixes. The Suff feature takes one of 201 values corresponding
to the most common two-character token string suffixes.

For each word l we have a feature vector xl of dimension 5 (corresponding to rows 3–7
in the table), where xla takes values in the set Va (given in the last column of the table).
The CRF model has one parameter wA

cav for each of part-of-speech tag c, feature a, and
feature value v (note that different features a have different numbers of values as given by
the set Va). These parameters encode the compatibility between feature values and class
labels. The CRF also has one transition parameter wT

cc′ for each pair of labels c and c′.
The transition parameters encode the compatibility between adjacent class labels in the
sequence. All of the parameters can take arbitrary (positive or negative) real values. To be
clear, there are exactly (1 + 2 + 2 + 201 + 201) · 10 + 102 = 4170 parameters to be learned.

GA.3033-006 Problem Set 6 3

The log-potentials are then given by:

θl(yl,xl) =

5∑
a=1

wA
yl,a,xla

θl,l+1(yl, yl+1) = wT
yl,yl+1

Given a new sentence of length L, we predict its part-of-speech tagging by MAP inference
in this CRF,

Predict POS(x; w) = arg max
y

L∑
l=1

θl(yl,xl) +

L−1∑
l=1

θl,l+1(yl, yl+1)

Since the CRF is chain-structured, MAP inference can be performed in linear time using
variable elimination or max-sum belief propagation.

Let w denote weight vector (i.e., of dimension 4170), and let f(x,y) be the feature vector
(the sufficient statistics) for the CRF, such that the joint distribution is given by:

Pr(y | x; w) =
1

Z(x; w)
exp{w · f(x,y)}

The averaged structured perceptron algorithm is given as follows:

1 Input: Training examples (xi,yi)

2 Initialization: Set w = 0, w = 0

3 For t = 1, . . . , T

4 For i = 1, . . . , N

5 ŷ← Predict POS(xi; w)

6 w← w + f(x,yi)− f(x, ŷ)

7 w← w + w
NT

8 Output: Parameters w

Notice that the weight vector in line 6 is only modified if ŷ 6= yi. The averaging of the
parameters can be understood as a type of regularization to prevent overfitting. In practice,
one would choose the number of epochs T by evaluating performance on held-out data.
However, for the purpose of this problem set, let T = 50.

(a) Implement the averaged structured perceptron algorithm. You may use any
programming language. You may want to use the inference code that you wrote for
the earlier problem sets.

(b) Run your algorithm using the first 100 training sentences. Using the learned pa-
rameters, report the average per-token error rate on the training set. Next, evaluate
the learned parameters using the 1000 test sentences, again reporting the average
per-token error rate. How do these differ?

(c) Effect of Training Data Set Size: Repeat the experiment in the previous part,
but varying the number of training sentences from the first 100 to the first 1000 in
steps of 100. Produce one graph showing the average per-token error rate on test data
as a function of the amount of training data.

In addition to your answers, hand in all code that you write for this assignment.

GA.3033-006 Problem Set 6 4

Bonus questions (optional):

(d) Structured SVM: A different approach to structured prediction is to solve a struc-
tural SVM optimization problem. As we discussed in class, this has several advantages
including a clear objective function (based on hinge loss, which is an upper bound on
0-1 loss) and max-margin regularization. Learn a structural SVM, and compare your
results to those learned by the averaged structured perceptron algorithm. Choose the
regularization parameter C by using a hold-out set of the last 100 sentences from the
training data.

Although there are many algorithms for optimizing the structured SVM objective, we
suggest using SVMstruct,

http://svmlight.joachims.org/svm_struct.html

which is based on the cutting-plane approach. This code offers a Python, Matlab,
and C++ interface for implementing the required functions (namely, MAP inference
and loss-augmented MAP inference).

(e) Features: The accuracy of the CRF model is limited by the features used. Consider
defining some of your own features and adding them to the existing set of features. Re-
run the evaluation using your new features. Can you find new features that lead to a
reduction in POS tag prediction error? If the features that you add make the CRF no
longer chain-structured, you can use your MPLP implementation to do (approximate)
MAP inference.

The amount of extra credit will be commensurate with the quality of your implementation
and your analysis of the results. If you answer any of the bonus questions, please also
submit all code electronically to the course instructors, with instructions on how to run.

Acknowledgement: This question is based on an assignment developed at UMass Amherst
by Ben Marlin, Andrew McCallum, Sameer Singh and Michael Wick.

