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One of the most exciting advances in machine learning (AI, signal
processing, coding, control, . . .) in the last decades
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How can we gain global insight based on local observations?
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Key idea

1 Represent the world as a collection of random variables X1, . . . ,Xn

with joint distribution p(X1, . . . ,Xn)

2 Learn the distribution from data

3 Perform “inference” (compute conditional distributions
p(Xi | X1 = x1, . . . ,Xm = xm))
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Reasoning under uncertainty

As humans, we are continuously making predictions under uncertainty

Classical AI and ML research ignored this phenomena

Many of the most recent advances in technology are possible because
of this new, probabilistic, approach
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Applications: Deep question answering
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Applications: Machine translation
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Applications: Speech recognition
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Applications: Stereo vision

output: disparity!input: two images!
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Key challenges

1 Represent the world as a collection of random variables X1, . . . ,Xn

with joint distribution p(X1, . . . ,Xn)

How does one compactly describe this joint distribution?
Directed graphical models (Bayesian networks)
Undirected graphical models (Markov random fields, factor graphs)

2 Learn the distribution from data

Maximum likelihood estimation. Other estimation methods?
How much data do we need?
How much computation does it take?

3 Perform “inference” (compute conditional distributions
p(Xi | X1 = x1, . . . ,Xm = xm))
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Syllabus overview

We will study Representation, Inference & Learning

First in the simplest case

Only discrete variables
Fully observed models
Exact inference & learning

Then generalize

Continuous variables
Partially observed data during learning (hidden variables)
Approximate inference & learning

Learn about algorithms, theory & applications
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Logistics

Class webpage:
http://cs.nyu.edu/~dsontag/courses/pgm12/

Sign up for mailing list!
Draft slides posted before each lecture

Book: Probabilistic Graphical Models: Principles and Techniques by
Daphne Koller and Nir Friedman, MIT Press (2009)

Office hours: Tuesday 5-6pm and by appointment. 715 Broadway,
12th floor, Room 1204

Grading: problem sets (70%) + final exam (30%)

Grader is Chris Alberti (chris.alberti@gmail.com)
6-7 assignments (every 2 weeks). Both theory and programming
First homework out today, due Feb. 9 at 5pm
See collaboration policy on class webpage
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Quick review of probability
Reference: Chapter 2 and Appendix A

What are the possible outcomes?
Coin toss: Ω = {”heads”, “tails”}
Die: Ω = {1, 2, 3, 4, 5, 6}
An event is a subset of outcomes S ⊆ Ω:
Examples for die: {1, 2, 3}, {2, 4, 6}, . . .
We measure each event using a probability function
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Probability function

Assign non-negative weight, p(ω), to each outcome such that∑
ω∈Ω

p(ω) = 1

Coin toss: p(“head”) + p(“tail”) = 1
Die: p(1) + p(2) + p(3) + p(4) + p(5) + p(6) = 1

Probability of event S ⊆ Ω:

p(S) =
∑
ω∈S

p(ω)

Example for die: p({2, 4, 6}) = p(2) + p(4) + p(6)

Claim: p(S1 ∪ S2) = p(S1) + p(S2)− p(S1 ∩ S2)
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Independence of events

Two events S1,S2 are independent if

p(S1 ∩ S2) = p(S1)p(S2)
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Conditional probability

Let S1,S2 be events, p(S2) > 0.

p(S1 | S2) =
p(S1 ∩ S2)

p(S2)

Claim 1:
∑

ω∈S p(ω | S) = 1

Claim 2: If S1 and S2 are independent, then p(S1 | S2) = p(S1)
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Two important rules

1 Chain rule Let S1, . . .Sn be events, p(Si ) > 0.

p(S1 ∩ S2 ∩ · · · ∩ Sn) = p(S1)p(S2 | S1) · · · p(Sn | S1, . . . ,Sn−1)

2 Bayes’ rule Let S1,S2 be events, p(S1) > 0 and p(S2) > 0.

p(S1 | S2) =
p(S1 ∩ S2)

p(S2)
=

p(S2 | S1)p(S1)

p(S2)
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Discrete random variables

Often each outcome corresponds to a setting of various attributes
(e.g., “age”, “gender”, “hasPneumonia”, “hasDiabetes”)

A random variable X is a mapping X : Ω→ D

D is some set (e.g., the integers)
Induces a partition of all outcomes Ω

For some x ∈ D, we say

p(X = x) = p({ω ∈ Ω : X (ω) = x})

“probability that variable X assumes state x”

Notation: Val(X ) = set D of all values assumed by X
(will interchangeably call these the “values” or “states” of variable X )

p(X ) is a distribution:
∑

x∈Val(X ) p(X = x) = 1
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Multivariate distributions

Instead of one random variable, have random vector

X(ω) = [X1(ω), . . . ,Xn(ω)]

Xi = xi is an event. The joint distribution

p(X1 = x1, . . . ,Xn = xn)

is simply defined as p(X1 = x1 ∩ · · · ∩ Xn = xn)

We will often write p(x1, . . . , xn) instead of p(X1 = x1, . . . ,Xn = xn)

Conditioning, chain rule, Bayes’ rule, etc. all apply
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Working with random variables

For example, the conditional distribution

p(X1 | X2 = x2) =
p(X1,X2 = x2)

p(X2 = x2)
.

This notation means
p(X1 = x1 | X2 = x2) = p(X1=x1,X2=x2)

p(X2=x2) ∀x1 ∈ Val(X1)

Two random variables are independent, X1 ⊥ X2, if

p(X1 = x1,X2 = x2) = p(X1 = x1)p(X2 = x2)

for all values x1 ∈ Val(X1) and x2 ∈ Val(X2).
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Example

Consider three binary-valued random variables

X1,X2,X3 Val(Xi ) = {0, 1}

Let outcome space Ω be the cross-product of their states:

Ω = Val(X1)×Val(X2)×Val(X3)

Xi (ω) is the value for Xi in the assignment ω ∈ Ω
Specify p(ω) for each outcome ω ∈ Ω by a big table:

x1 x2 x3 p(x1, x2, x3)
0 0 0 .11
0 0 1 .02

...
1 1 1 .05

How many parameters do we need to specify?

23 − 1
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Marginalization

Suppose X and Y are random variables with distribution p(X ,Y )
X : Intelligence, Val(X ) = {“Very High”, “High”}
Y : Grade, Val(Y ) = {“a”, “b”}

Joint distribution specified by:

X

Y

vh h

a 0.7 0.15

b 0.1 0.05

p(Y = a) = ?= 0.85

More generally, suppose we have a joint distribution p(X1, . . . ,Xn).
Then,

p(Xi = xi ) =
∑
x1

∑
x2

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xn

p(x1, . . . , xn)
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Conditioning

Suppose X and Y are random variables with distribution p(X ,Y )
X : Intelligence, Val(X ) = {“Very High”, “High”}
Y : Grade, Val(Y ) = {“a”, “b”}

X

Y

vh h

a 0.7 0.15

b 0.1 0.05

Can compute the conditional probability

p(Y = a | X = vh) =
p(Y = a,X = vh)

p(X = vh)

=
p(Y = a,X = vh)

p(Y = a,X = vh) + p(Y = b,X = vh)

=
0.7

0.7 + 0.1
= 0.875.
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Example: Medical diagnosis

Variable for each symptom (e.g. “fever”, “cough”, “fast breathing”,
“shaking”, “nausea”, “vomiting”)

Variable for each disease (e.g. “pneumonia”, “flu”, “common cold”,
“bronchitis”, “tuberculosis”)

Diagnosis is performed by inference in the model:

p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

One famous model, Quick Medical Reference (QMR-DT), has 600
diseases and 4000 findings
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Representing the distribution

Naively, could represent multivariate distributions with table of
probabilities for each outcome (assignment)

How many outcomes are there in QMR-DT? 24600

Estimation of joint distribution would require a huge amount of data

Inference of conditional probabilities, e.g.

p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

would require summing over exponentially many variables’ values

Moreover, defeats the purpose of probabilistic modeling, which is to
make predictions with previously unseen observations
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Structure through independence

If X1, . . . ,Xn are independent, then

p(x1, . . . , xn) = p(x1)p(x2) · · · p(xn)

2n entries can be described by just n numbers (if |Val(Xi )| = 2)!

However, this is not a very useful model – observing a variable Xi

cannot influence our predictions of Xj

If X1, . . . ,Xn are conditionally independent given Y , denoted as
Xi ⊥ X−i | Y , then

p(y , x1, . . . , xn) = p(y)p(x1 | y)
n∏

i=2

p(xi | x1, . . . , xi−1, y)

= p(y)p(x1 | y)
n∏

i=2

p(xi | y).

This is a simple, yet powerful, model
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Example: naive Bayes for classification

Classify e-mails as spam (Y = 1) or not spam (Y = 0)
Let 1 : n index the words in our vocabulary (e.g., English)
Xi = 1 if word i appears in an e-mail, and 0 otherwise
E-mails are drawn according to some distribution p(Y ,X1, . . . ,Xn)

Suppose that the words are conditionally independent given Y . Then,

p(y , x1, . . . xn) = p(y)
n∏

i=1

p(xi | y)

Estimate the model with maximum likelihood. Predict with:

p(Y = 1 | x1, . . . xn) =
p(Y = 1)

∏n
i=1 p(xi | Y = 1)∑

y={0,1} p(Y = y)
∏n

i=1 p(xi | Y = y)

Are the independence assumptions made here reasonable?

Philosophy: Nearly all probabilistic models are “wrong”, but many are
nonetheless useful
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Bayesian networks
Reference: Chapter 3

A Bayesian network is specified by a directed acyclic graph
G = (V ,E ) with:

1 One node i ∈ V for each random variable Xi

2 One conditional probability distribution (CPD) per node, p(xi | xPa(i)),
specifying the variable’s probability conditioned on its parents’ values

Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x1, . . . xn) =
∏
i∈V

p(xi | xPa(i))

Powerful framework for designing algorithms to perform probability
computations

David Sontag (NYU) Graphical Models Lecture 1, January 26, 2012 28 / 37



Example

Consider the following Bayesian network:

Grade

Letter

SAT

IntelligenceDifficulty

d1d0

0.6 0.4

i1i0

0.7 0.3

i0

i1

s1s0

0.95

0.2

0.05

0.8

g1

g2

g2

l1l 0

0.1

0.4

0.99

0.9

0.6

0.01

i0,d0

i0,d1

i0,d0

i0,d1

g2 g3g1

0.3

0.05

0.9

0.5

0.4

0.25

0.08

0.3

0.3

0.7

0.02

0.2

What is its joint distribution?

p(x1, . . . xn) =
∏
i∈V

p(xi | xPa(i))

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)
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More examples

naive Bayes Medical diagnosis

Y

X1 X2 X3 Xn. . .

Features

Label

   

!"#$%#$#&

'(!"()#&

diseases

findings

d1 dn

f
1 fm

Evidence is denoted by shading in a node

Can interpret Bayesian network as a generative process. For
example, to generate an e-mail, we

1 Decide whether it is spam or not spam, by samping y ∼ p(Y )
2 For each word i = 1 to n, sample xi ∼ p(Xi | Y = y)
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Bayesian network structure implies conditional
independencies!

Grade

Letter

SAT

IntelligenceDifficulty

The joint distribution corresponding to the above BN factors as

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)

However, by the chain rule, any distribution can be written as

p(d , i , g , s, l) = p(d)p(i | d)p(g | i , d)p(s | i , d , g)p(l | g , d , i , g , s)

Thus, we are assuming the following additional independencies:
D ⊥ I , S ⊥ {D,G} | I , L ⊥ {I ,D,S} | G . What else?
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Bayesian network structure implies conditional
independencies!

Generalizing the above arguments, we obtain that a variable is
independent from its non-descendants given its parents

Common parent – fixing B decouples A and C

!
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Cascade – knowing B decouples A and C

!
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V-structure – Knowing C couples A and B

!
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This important phenomona is called explaining away and is what
makes Bayesian networks so powerful
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A simple justification (for common parent)

!
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We’ll show that p(A,C | B) = p(A | B)p(C | B) for any distribution
p(A,B,C ) that factors according to this graph structure, i.e.

p(A,B,C ) = p(B)p(A | B)p(C | B)

Proof.

p(A,C | B) =
p(A,B,C )

p(B)
= p(A | B)p(C | B)
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D-separation (“directed separated”) in Bayesian networks

Algorithm to calculate whether X ⊥ Z | Y by looking at graph
separation

Look to see if there is active path between X and Y when variables
Y are observed:

(a)

X

Y

Z X

Y

Z

(b)

(a)

X

Y

Z

(b)

X

Y

Z
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D-separation (“directed separated”) in Bayesian networks

Algorithm to calculate whether X ⊥ Z | Y by looking at graph
separation

Look to see if there is active path between X and Y when variables
Y are observed:

(a)

X

Y

Z X

Y

Z

(b)

(a)

X

Y

Z

(b)

X

Y

Z
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D-separation (“directed separated”) in Bayesian networks

Algorithm to calculate whether X ⊥ Z | Y by looking at graph
separation

Look to see if there is active path between X and Y when variables
Y are observed:

X Y Z X Y Z

(a) (b)

If no such path, then X and Z are d-separated with repsect to Y

d-separation reduces statistical independencies (hard) to connectivity
in graphs (easy)

Important because it allows us to quickly prune the Bayesian network,
finding just the relevant variables for answering a query
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D-separation example 1

1X

2X

3X

X 4

X 5

X6

1X

2X

3X

X 4

X 5

X6
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D-separation example 2

1X

2X

3X

X 4

X 5

X6

1X

2X

3X

X 4

X 5

X6
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Summary

Bayesian networks given by (G ,P) where P is specified as a set of
local conditional probability distributions associated with G ’s nodes

One interpretation of a BN is as a generative model, where variables
are sampled in topological order

Local and global independence properties identifiable via
d-separation criteria

Computing the probability of any assignment is obtained by
multiplying CPDs

Bayes’ rule is used to compute conditional probabilities
Marginalization or inference is often computationally difficult
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