Probabilistic Graphical Models

David Sontag

New York University

Lecture 10, April 3, 2012

Summary so far

- Representation of directed and undirected networks
- Inference in these networks:
 - Variable elimination
 - Exact inference in trees via message passing
 - MAP inference via dual decomposition
 - Marginal inference via variational methods
 - Marginal inference via Monte Carlo methods
- The rest of this course:
 - Learning Bayesian networks (today)
 - Learning Markov random fields
 - Structured prediction
 - Decision-making under uncertainty
 - Advanced topics (if time)
- Today we will refresh your memory about what learning is

How to acquire a model?

- Possible things to do:
 - Use expert knowledge to determine the graph and the potentials.
 - Use learning to determine the potentials, i.e., parameter learning.
 - Use learning to determine the graph, i.e., **structure learning**.
- Manual design is difficult to do and can take a long time for an expert.
- We usually have access to a set of examples from the distribution we wish to model, e.g., a set of images segmented by a labeler.
- We call this task of constructing a model from a set of instances model learning.

More rigorous definition

- Lets assume that the domain is governed by some underlying distribution p^* , which is induced by some network model $\mathcal{M}^* = (\mathcal{G}^*, \theta^*)$
- ullet We are given a dataset ${\mathcal D}$ of M samples from p^*
- The standard assumption is that the data instances are independent and identically distributed (IID)
- We are also given a family of models \mathcal{M} , and our task is to learn some model $\hat{\mathcal{M}} \in \mathcal{M}$ (i.e., in this family) that defines a distribution $p_{\hat{\mathcal{M}}}$
- We can learn model parameters for a fixed structure, or both the structure and model parameters
- We might be interested in returning a single model, a set of hypothesis that are likely, a probability distribution over models, or even a confidence of the model we return

Goal of learning

- The goal of learning is to return a model $\hat{\mathcal{M}}$ that precisely captures the distribution p^* from which our data was sampled
- This is in general not achievable because of
 - computational reasons
 - limited data only provides a rough approximation of the true underlying distribution
- ullet We need to select $\hat{\mathcal{M}}$ to construct the "best" approximation to \mathcal{M}^*
- What is "best"?

What is "best"?

This depends on what we want to do

- Density estimation: we are interested in the full distribution (so later we can compute whatever conditional probabilities we want)
- 2 Specific prediction tasks: we are using the distribution to make a prediction
- 3 Structure or knowledge discovery: we are interested in the model itself

1) Learning as density estimation

- We want to learn the full distribution so that later we can answer *any* probabilistic inference query
- In this setting we can view the learning problem as density estimation
- ullet We want to construct $\hat{\mathcal{M}}$ as "close" as possible to p^*
- How do we evaluate "closeness"?
- KL-divergence (in particular, the M-projection) is one possibility:

$$\mathbf{D}(p^*||\hat{p}) = \mathbf{E}_{\mathsf{x} \sim p^*} \left[\log \left(rac{p^*(\mathsf{x})}{\hat{p}(\mathsf{x})}
ight)
ight]$$

Expected log-likelihood

• We can simplify this somewhat:

$$\mathbf{D}(p^*||\hat{p}) = \mathbf{E}_{\mathbf{x} \sim p^*} \left[\log \left(\frac{p^*(\mathbf{x})}{\hat{p}(\mathbf{x})} \right) \right] = \mathbf{H}(p) - \mathbf{E}_{\mathbf{x} \sim p^*} \left[\log \hat{p}(\mathbf{x}) \right]$$

- The first term does not depend on \hat{p} .
- Then, finding the minimal M-projection is equivalent to maximizing the expected log-likelihood

$$\mathbf{E}_{\mathbf{x} \sim p^*} \left[\log \hat{p}(\mathbf{x}) \right]$$

- Asks that \hat{p} assign high probability to instances sampled from p^* , so as to reflect the true distribution
- Because of log, samples ${\bf x}$ where $\hat{p}({\bf x})\approx 0$ weigh heavily in objective
- Although we can now compare models, since we are not computing $\mathbf{H}(p)$, we don't know how close we are to the optimum
- Problem: In general we do not know p^* .

Maximum likelihood

Approximate the expected log-likelihood

$$\mathbf{E}_{\mathbf{x} \sim p^*} \left[\log \hat{p}(\mathbf{x}) \right]$$

with the empirical log-likelihood:

$$\mathbf{E}_{\mathcal{D}}\left[\log \hat{p}(\mathbf{x})\right] = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log \hat{p}(\mathbf{x})$$

• Maximum likelihood learning is then:

$$\max_{\hat{\mathcal{M}}} \ \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \log \hat{p}(\mathbf{x})$$

2) Likelihood, Loss and Risk

- We now generalize this by introducing the concept of a loss function
- A loss function $loss(\mathbf{x},\mathcal{M})$ measures the loss that a model \mathcal{M} makes on a particular instance \mathbf{x}
- Assuming instances are sampled from some distribution p^* , our goal is to find the model that minimizes the **expected loss** or **risk**,

$$\mathbf{E}_{\mathbf{x} \sim p^*} [loss(\mathbf{x}, \mathcal{M})]$$

What is the loss function which corresponds to density estimation? Log-loss,

$$loss(\mathbf{x}, \hat{\mathcal{M}}) = -\log \hat{p}(\mathbf{x}).$$

 $m{p}^*$ is unknown, but we can approximate the expectation using the empirical average, i.e., **empirical risk**

$$\mathbf{E}_{\mathcal{D}}\left[\mathit{loss}(\mathbf{x},\hat{\mathcal{M}})\right] = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \mathit{loss}(\mathbf{x},\hat{\mathcal{M}})$$

Example: conditional log-likelihood

- Suppose we want to predict a set of variables Y given some others X,
 e.g., for segmentation or stereo vision
- We concentrate on predicting p(Y|X), and use a **conditional** loss function

$$loss(\mathbf{x}, \mathbf{y}, \hat{\mathcal{M}}) = -\log \hat{p}(\mathbf{y} \mid \mathbf{x}).$$

- Since the loss function only depends on $\hat{p}(\mathbf{y} \mid \mathbf{x})$, suffices to estimate the conditional distribution, not the joint
- This is the objective function we use to train conditional random fields (CRFs), which we discussed in Lecture 4

Example: structured prediction

• In **structured prediction**, given **x** we predict **y** by:

$$\operatorname*{argmax}_{\mathbf{y}}\hat{p}(\mathbf{y}|\mathbf{x})$$

- What loss function should we use to measure error in this setting?
- One reasonable choice would be the **classification error**:

$$\mathsf{E}_{(\mathsf{x},\mathsf{y})\sim \rho^*}\left[1\!\!1\{\ \exists \mathsf{y}'\neq \mathsf{y} \text{ s.t. } \hat{\rho}(\mathsf{y}'|\mathsf{x})\geq \hat{\rho}(\mathsf{y}|\mathsf{x})\ \}\right]$$

which is the probability over all (x, y) pairs sampled from p^* that our classifier selects the right labels

• We will go into much more detail on this in two lectures

Consistency

ullet To summarize, our learning **goal** is to choose a model $\hat{\mathcal{M}}$ that minimizes the risk (expected loss)

$$\mathbf{E}_{\mathbf{x} \sim P^*} \left[\mathit{loss}(\mathbf{x}, \hat{\mathcal{M}}) \right]$$

• We don't know p^* , so we instead minimize the empirical risk

$$\mathbf{E}_{\mathcal{D}}\left[\mathit{loss}(\mathbf{x},\hat{\mathcal{M}})
ight] = rac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \mathit{loss}(\mathbf{x},\hat{\mathcal{M}})$$

• For many reasonable loss functions (including log-loss), one can show the following **consistency** property: as $|\mathcal{D}| \to \infty$,

$$\arg\min_{\hat{\mathcal{M}}} \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} loss(\mathbf{x}, \hat{\mathcal{M}}) = \arg\min_{\hat{\mathcal{M}}} \mathbf{E}_{\mathbf{x} \sim P^*} \left[loss(\mathbf{x}, \hat{\mathcal{M}}) \right]$$

• In particular, if $\mathcal{M}^* \in \mathcal{M}$, then given a sufficiently large training set, we will find it by minimizing the empirical risk

Empirical Risk and Overfitting

- Empirical risk minimization can easily overfit the data
- For example, consider the case of N random binary variables, and M number of training examples, e.g., N = 100, M = 1000
- Thus, we typically restrict the hypothesis space of distributions that we search over

Bias-Variance trade off

- If the hypothesis space is very limited, it might not be able to represent p^* , even with unlimited data
- This type of limitation is called bias, as the learning is limited on how close
 it can approximate the target distribution
- If we select a highly expressive hypothesis class, we might represent better the data
- When we have small amount of data, multiple models can fit well, or even better than the true model
- ullet Moreover, small perturbations on ${\mathcal D}$ will result in very different estimates
- This limitation is call the variance.
- There is an inherent bias-variance trade off when selecting the hypothesis class
- Error in learning due to both things: bias and variance.

How to avoid overfitting?

- Hard constraints, e.g. by selecting a less expressive hypothesis class:
 - Bayesian networks with at most *d* parents
 - Pairwise MRFs (instead of arbitrary higher-order potentials)
- Soft preference for simpler models: Occam Razor.
- Augment the objective function with regularization:

$$objective(\mathbf{x}, \mathcal{M}) = loss(\mathbf{x}, \mathcal{M}) + R(\mathcal{M})$$

• Can evaluate generalization performance using cross-validation

Learning theory

- We hope that a model that achieves low training loss also achieves low expected loss (risk).
- We cannot guarantee with certainty the quality of our learned model.
- This is because the data is sample stochastically from P^* , and it might be unlucky sample.
- ullet The goal is to prove that the model is approximately correct: for most \mathcal{D} , the learning procedure returns a model whose error is low
- This question the study of generalization is at the core of learning theory

Summary of how to think about learning

Figure out what you care about, e.g. expected loss

$$\mathbf{E}_{\mathbf{x} \sim P^*} [loss(\mathbf{x}, \mathcal{M})]$$

Figure out how best to estimate this from what you have, e.g. regularized empirical loss

$$\mathbf{E}_{\mathcal{D}}\left[loss(\mathbf{x},\mathcal{M})\right] + R(\mathcal{M})$$

When used with log-loss, the regularization term can be interpreted as a prior distribution over models, $p(\mathcal{M}) \propto \exp(-R(\mathcal{M}))$ (called *maximum a posteriori (MAP) estimation*)

Figure out how to optimize over this objective function, e.g. the minimization

$$\min_{\mathcal{M}} \ \mathbf{E}_{\mathcal{D}} \left[loss(\mathbf{x}, \mathcal{M}) \right] + R(\mathcal{M})$$

ML estimation in Bayesian networks

- Suppose that we know the Bayesian network structure G
- Let $\theta_{x_i | \mathbf{x}_{pa(i)}}$ be the parameter giving the value of the CPD $p(x_i | \mathbf{x}_{pa(i)})$
- Maximum likelihood estimation corresponds to solving:

$$\max_{\theta} \frac{1}{M} \sum_{m=1}^{M} \log p(\mathbf{x}^{M}; \theta)$$

subject to the non-negativity and normalization constraints

• This is equal to:

$$\max_{\theta} \frac{1}{M} \sum_{m=1}^{M} \log p(\mathbf{x}^{M}; \theta) = \max_{\theta} \frac{1}{M} \sum_{m=1}^{M} \sum_{i=1}^{N} \log p(x_{i}^{M} \mid \mathbf{x}_{pa(i)}^{M}; \theta)$$
$$= \max_{\theta} \sum_{i=1}^{N} \frac{1}{M} \sum_{m=1}^{M} \log p(x_{i}^{M} \mid \mathbf{x}_{pa(i)}^{M}; \theta)$$

• The optimization problem decomposes into an independent optimization problem for each CPD! Has a simple closed-form solution.

3) Knowledge Discovery

- We hope that looking at the learned model we can discover something about p^* , e.g.
 - Nature of the dependencies, e.g., positive or negative correlation
 - What are the direct and indirect dependencies
- Simple statistical models (e.g., looking at correlations) can be used for the first
- But the learned network gives us much more information, e.g. conditional independencies, causal relationships
- In this setting we care about discovering the correct model \mathcal{M}^* , rather than a different model $\hat{\mathcal{M}}$ that induces a distribution similar to \mathcal{M}^* .
- Metric is in terms of the differences between \mathcal{M}^* and $\hat{\mathcal{M}}$.

This is not always achievable

- The true model might not be identifiable
 - e.g., Bayesian network with several I-equivalent structures.
 - In this case the best we can hope is to discover an I-equivalent structure.
 - Problem is worse when the amount of data is limited and the relationships are weak.
- When the number of variables is large relative to the amount of training data, pairs of variables can appear strongly correlated just by chance

Structure learning in Bayesian networks

- Score-based approaches
 - Given G, assume prior distribution for CPD parameters $\theta_{x_i|x_{pa(i)}}$ is Dirichlet (this is called the *Bayesian score*)
 - Choose G which maximizes the posterior

$$p(G \mid \mathcal{D}) \propto p(\mathcal{D} \mid G)p(G)$$

- To compute the first term (called the *marginal likelihood*), use the chain rule together with your solution to problem 5 of PS 2
- Obtain a combinatorial optimization problem over acyclic graphs extremely difficult to solve optimally
- Hypothesis testing based on conditional independence
 - Must make assumption that data is drawn from an I-map of the graph
 - Possible to learn structure with polynomial number of data points and polynomial computation time
 - Very brittle: if we say that $X_i \perp X_j | X_v$ and they in fact are not, the resulting structure can be very off

Bayesian prediction

Rather than choose 1 graph structure, learn the full posterior

$$p(G \mid \mathcal{D})$$

Then, compute expectations with respect to this, e.g.

$$p(x_1 = 1 \mid \mathcal{D}) = \sum_{G} p(G \mid \mathcal{D})p(x_1 = 1 \mid G, \mathcal{D})$$

 This inference task is very difficult to approximate – typically done using MCMC, but very slow