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Today: learning with partially observed data

Overview of EM (expectation maximization) algorithm

Application to mixture models

Derivation of EM algorithm

Variational EM

Application to learning parameters of LDA
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Maximum likelihood

Recall from last week, that the density estimation approach to
learning leads to maximizing the empirical log-likelihood

max
θ

1

|D|
∑
x∈D

log p(x; θ)

Suppose that our joint distribution is

p(X,Z; θ)

where our samples X are observed and the variables Z are never
observed in D
That is, D = {(0, 1, 0, ?, ?, ?), (1, 1, 1, ?, ?, ?), (1, 1, 0, ?, ?, ?), . . .}
Assume that the hidden variables are missing completely at random
(otherwise, we should explicitly model why the values are missing)
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Maximum likelihood

We can still use the same maximum likelihood approach. The
objective that we are maximizing is

`(θ) =
1

|D|
∑
x∈D

log
∑
z

p(x, z; θ)

Because of the sum over z, there is no longer a closed-form solution
for θ∗ in the case of Bayesian networks

Furthermore, the objective is no longer convex, and potentially can
have a different mode for every possible assignment z

One option is to apply (projected) gradient ascent to reach a local
maxima of `(θ)
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Expectation maximization

The expectation maximization (EM) algorithm is an alternative
approach to reach a local maximum of `(θ)

Particularly useful in settings where there exists a closed form solution
for θML if we had fully observed data

For example, in Bayesian networks, we have the closed form ML
solution

θML
xi |xpa(i) =

Nxi ,xpa(i)∑
x̂i
Nx̂i ,xpa(i)

where Nxi ,xpa(i) is the number of times that the (partial) assignment
xi , xpa(i) is observed in the training data
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Expectation maximization

Algorithm is as follows:

1 Write down the complete log-likelihood log p(x, z; θ) in such a way
that it is linear in z

2 Initialize θ0, e.g. at random or using a good first guess
3 Repeat until convergence:

θt+1 = arg max
θ

M∑
m=1

Ep(zm|xm;θt)[log p(xm,Z; θ)]

Notice that log p(xm,Z; θ) is a random function because Z is unknown

By linearity of expectation, objective decomposes into expectation
terms and data terms

“E” step corresponds to computing the objective (i.e., the
expectations)

“M” step corresponds to maximizing the objective
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Application to mixture models

i = 1 to N

d = 1 to D

wid

Prior distribution
over topics

Topic of doc d

Word

βTopic-word
distributions

θ

zd

α Dirichlet 
hyperparameters

i = 1 to N

d = 1 to D

θd

wid

zid

Topic distribution
for document

Topic of word i of doc d

Word

βTopic-word
distributions

Model on left is a mixture model
Document is generated from a single topic

Model on right (latent Dirichlet Allocation) is an admixture model
Document is generated from a distribution over topics
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EM for mixture models

i = 1 to N

d = 1 to D

wid

Prior distribution
over topics

Topic of doc d

Word

βTopic-word
distributions

θ

zd

The complete likelihood is p(w,Z; θ, β) =
∏D

d=1 p(wd ,Zd ; θ, β), where

p(wd ,Zd ; θ, β) = θZd

N∏
i=1

βZd ,wid

Trick #1: re-write this as

p(wd ,Zd ; θ, β) =
K∏

k=1

θ
1[Zd=k]
k

N∏
i=1

K∏
k=1

β
1[Zd=k]
k,wid
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EM for mixture models

Thus, the complete log-likelihood is:

log p(w,Z; θ, β) =
D∑

d=1

(
K∑

k=1

1[Zd = k] log θk +
N∑
i=1

K∑
k=1

1[Zd = k] log βk,wid

)

In the “E” step, we take the expectation of the complete log-likelihood with
respect to p(z | w; θt , βt), applying linearity of expectation, i.e.

Ep(z|w;θt ,βt)[log p(w, z; θ, β)] =

D∑
d=1

(
K∑

k=1

p(Zd = k | w; θt , βt) log θk +
N∑
i=1

K∑
k=1

p(Zd = k | w; θt , βt) log βk,wid

)

In the “M” step, we maximize this with respect to θ and β
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EM for mixture models

Just as with complete data, this maximization can be done in closed form

First, re-write expected complete log-likelihood from

D∑
d=1

(
K∑

k=1

p(Zd = k | w; θt , βt) log θk +
N∑
i=1

K∑
k=1

p(Zd = k | w; θt , βt) log βk,wid

)

to

K∑
k=1

log θk

D∑
d=1

p(Zd = k | wd ; θt , βt)+
K∑

k=1

W∑
w=1

log βk,w

D∑
d=1

Ndwp(Zd = k | wd ; θt , βt)

We then have that

θt+1
k =

∑D
d=1 p(Zd = k | wd ; θt , βt)∑K

k̂=1

∑D
d=1 p(Zd = k̂ | wd ; θt , βt)
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Derivation of EM algorithm

L(θ) l(θ|θn)

θn θn+1

L(θn) = l(θn|θn)
l(θn+1|θn)

L(θn+1)

L(θ)
l(θ|θn)

θ

Figure 2: Graphical interpretation of a single iteration of the EM algorithm:
The function l(θ|θn) is bounded above by the likelihood function L(θ). The
functions are equal at θ = θn. The EM algorithm chooses θn+1 as the value of θ
for which l(θ|θn) is a maximum. Since L(θ) ≥ l(θ|θn) increasing l(θ|θn) ensures
that the value of the likelihood function L(θ) is increased at each step.

We have now a function, l(θ|θn) which is bounded above by the likelihood
function L(θ). Additionally, observe that,

l(θn|θn) = L(θn) + ∆(θn|θn)

= L(θn) +
∑

z

P(z|X, θn) ln
P(X|z, θn)P(z|θn)

P(z|X, θn)P(X|θn)

= L(θn) +
∑

z

P(z|X, θn) ln
P(X, z|θn)

P(X, z|θn)

= L(θn) +
∑

z

P(z|X, θn) ln 1

= L(θn), (16)

so for θ = θn the functions l(θ|θn) and L(θ) are equal.
Our objective is to choose a values of θ so that L(θ) is maximized. We have

shown that the function l(θ|θn) is bounded above by the likelihood function L(θ)
and that the value of the functions l(θ|θn) and L(θ) are equal at the current
estimate for θ = θn. Therefore, any θ which increases l(θ|θn) will also increase
L(θ). In order to achieve the greatest possible increase in the value of L(θ), the
EM algorithm calls for selecting θ such that l(θ|θn) is maximized. We denote
this updated value as θn+1. This process is illustrated in Figure (2).

7

(Figure from tutorial by Sean Borman)
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Application to latent Dirichlet Allocation

α Dirichlet 
hyperparameters

i = 1 to N

d = 1 to D

θd

wid

zid

Topic distribution
for document

Topic of word i of doc d

Word

βTopic-word
distributions

Parameters are α and β

Both θd and zd are unobserved

The difficulty here is that inference is intractable

Could use Monte carlo methods to approximate the expectations
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Variational EM

Mean-field is ideally suited for this type of approximate inference together
with learning

Use the variational distribution

q(θd , zd |γd , φd) = q(θd | γd)
N∏

n=1

q(zn | φdn)

We then lower bound the log-likelihood using Jensen’s inequality:

log p(w | α, β) =
∑
d

log

∫ ∑
zd

p(θd , zd ,wd | α, β)dθd

=
∑
d

log

∫ ∑
zd

p(θd , zd ,wd | α, β)q(θ, z)

q(θ, z)
dθd

≥
∑
d

Eq[log p(θd , zd ,wd | α, β)]− Eq[log q(θ, z)].

Finally, we maximize the lower bound with respect to α, β, and q.
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