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Goal of learning
(Recall from Lecture 10. . .)

The goal of learning is to return a model M̂ that precisely captures a
distribution p∗ that we care about

This is in general not achievable because of

computational reasons
limited data only provides a rough approximation of the true underlying
distribution

We need to select M̂ to construct the ”best” approximation to M∗

Typically, we restrict ourselves to some model family to prevent overfitting

What is “best”?
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What is “best”?

This depends on what we want to do

1 Density estimation: we are interested in the full distribution (so later we can
compute whatever conditional probabilities we want)

2 Specific prediction tasks: we are using the distribution to make a prediction

3 Structure or knowledge discovery: we are interested in the model itself
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Density estimation for conditional models

Suppose we want to predict a set of variables Y given some others X, e.g.,
for segmentation or stereo vision

We concentrate on predicting p(Y|X), and use a conditional loss function

loss(x, y,M̂) = − log p̂(y | x).

Since the loss function only depends on p̂(y | x), suffices to estimate the
conditional distribution, not the joint

output: disparity!input: two images!
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Density estimation for conditional models

CRF: p(y | x) =
1

Z (x)

∏
c∈C

φc(x, yc), Z (x) =
∑

ŷ

∏
c∈C

φc(x, ŷc)

Parameterization as log-linear model:

Weights w ∈ Rd . Feature vectors fc(x, yc) ∈ Rd .
φc(x, yc ; w) = exp(w · fc(x, yc))

Empirical risk minimization with CRFs, i.e. minM̂ ED
[
loss(x, y,M̂)

]
:

wML = arg min
w

1

|D|
∑

(x,y)∈D

− log p(y | x; w)

= arg max
w

∑
(x,y)∈D

(∑
c

log φc(x, yc ; w)− logZ (x; w)
)

= arg max
w

w ·
( ∑

(x,y)∈D

∑
c

fc(x, yc)
)
−

∑
(x,y)∈D

logZ (x; w)
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Part-of-speech tagging

1. Background: Part-of-speech tagging

United flies some large jet

United1 flies2 some3 large4 jet5

N V D A N
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Graphical model formulation of POS tagging

Graphical model formulation

given:

• a sentence of length n and a tag set T

• one variable for each word, takes values in T

• edge potentials θ(i − 1, i , t �, t) for all i ∈ n, t, t � ∈ T

example:

United1 flies2 some3 large4 jet5

T = {A, D, N, V }

note: for probabilistic HMM θ(i − 1, i , t �, t) = log(p(wi |t)p(t|t �))
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Features for POS tagging

Edge potentials: Fully parameterize (T × T features and weights), i.e.

θi−1,i (t
′, t) = wT

t′,t

where the superscript “T” denotes that these are the weights for the
transitions

Node potentials: Introduce features for the presence or absence of certain
attributes of each word (e.g., initial letter capitalized, suffix is “ing”), for
each possible tag (T × #attributes features and weights)

Edge potential same for all edges. Same for node potentials.
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Structured prediction

In structured prediction, given x we predict y by:

argmax
y

p̂(y|x)

What loss function should we use to measure error in this setting?

One reasonable choice would be the classification error:

E(x,y)∼p∗ [1I{ ∃y′ 6= y s.t. p̂(y′|x) ≥ p̂(y|x) }]

which is the probability over all (x, y) pairs sampled from p∗ that our
classifier selects the right labels

If p∗ is in the model family, training with log-loss (density estimation) and
classification error would perform similarly (given sufficient data)

Otherwise, better to directly go for what we care about (classification error)
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Structured prediction

Consider the empirical risk for 0-1 loss (classification error):

1

|D|
∑

(x,y)∈D

1I{ ∃y′ 6= y s.t. p̂(y′|x) ≥ p̂(y|x) }

Each constraint p̂(y′|x) ≥ p̂(y|x) is equivalent to

w ·
∑
c

fc(x, y′c)− logZ (x; w) ≥ w ·
∑
c

fc(x, yc)− logZ (x; w)

The log-partition function cancels out on both sides. Re-arranging, we have:

w ·
(∑

c

fc(x, y′c)−
∑
c

fc(x, yc)

)
≥ 0

Said differently, the empirical risk is zero when ∀(x, y) ∈ D and y′ 6= y,

w ·
(∑

c

fc(x, yc)−
∑
c

fc(x, y′c)

)
> 0.
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Structured prediction

Empirical risk is zero when ∀(x, y) ∈ D and y′ 6= y,

w ·
(∑

c

fc(x, yc)−
∑
c

fc(x, y′c)

)
> 0.

In the simplest setting, learning corresponds to finding a weight vector w
that satisfies all of these constraints (when possible)

This is a linear program (LP)!

How many constraints does it have? |D| ∗ |Y| – exponentially many!

Thus, we must avoid explicitly representing this LP

This lecture is about algorithms for solving this LP (or some variant) in a
tractable manner
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Structured perceptron algorithm

Input: Training examples D = {(xm, ym)}
Let f(x, y) =

∑
c fc(x, yc). Then, the constraints that we want to satisfy are

w ·
(

f(xm, ym)− f(xm, y)
)
> 0, ∀y 6= ym

The perceptron algorithm uses MAP inference in its inner loop:

MAP(xm; w) = arg max
y∈Y

w · f(xm, y)

The maximization can often be performed efficiently by using the structure!

The perceptron algorithm is then:

1 Start with w = 0
2 While the weight vector is still changing:
3 For m = 1, . . . , |D|
4 y← MAP(xm; w)
5 w← w + f(xm, ym)− f(xm, y)
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Structured perceptron algorithm

If the training data is separable, the perceptron algorithm is guaranteed to
find a weight vector which perfectly classifies all of the data

When separable with margin γ, number of iterations is at most(
2R

γ

)2

,

where R = maxm,y ||f(xm, y)||2
In practice, one stops after a certain number of outer iterations (called
epochs), and uses the average of all weights

The averaging can be understood as a type of regularization to prevent
overfitting
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Allowing slack

We can equivalently write the constraints as

w ·
(

f(xm, ym)− f(xm, y)
)
≥ 1, ∀y 6= ym

Suppose there do not exist weights w that satisfy all constraints

Introduce slack variables ξm ≥ 0, one per data point, to allow for constraint
violations:

w ·
(

f(xm, ym)− f(xm, y)
)
≥ 1− ξm, ∀y 6= ym

Then, minimize the sum of the slack variables, minξ≥0
∑

m ξm, subject to
the above constraints
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Structural SVM (support vector machine)

min
w,ξ

∑
m

ξm + C ||w||2

subject to:

w ·
(

f(xm, ym)− f(xm, y)
)
≥ 1− ξm, ∀m, y 6= ym

ξm ≥ 0, ∀m

This is a quadratic program (QP). Solving for the slack variables in closed form,
we obtain

ξ∗m = max

(
0, max

y∈Y
1−w ·

(
f(xm, ym)− f(xm, y)

))
Thus, we can re-write the whole optimization problem as

min
w

∑
m

max

(
0, max

y∈Y
1−w ·

(
f(xm, ym)− f(xm, y)

))
+ C ||w||2
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Hinge loss

We can view max
(

0, maxy∈Y 1−w ·
(

f(xm, ym)− f(xm, y)
))

as a loss

function, called hinge loss

When w · f(xm, ym) ≥ w · f(xm, y) for all y (i.e., correct prediction), this
takes a value between 0 and 1

When ∃y such that w · f(xm, y) ≥ w · f(xm, ym) (i.e., incorrect prediction),
this takes a value ≥ 1

Thus, this always upper bounds the 0-1 loss!

Minimizing hinge loss is good because it also minimizes an upper bound on
the 0-1 loss (prediction error)
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Better Metrics

It doesn’t always make sense to penalize all incorrect predictions equally!

We can change the constraints to

w ·
(

f(xm, ym)− f(xm, y)
)
≥ ∆(y, ym)− ξm, ∀y,

where ∆(y, ym) ≥ 0 is a measure of how far the assignment y is from the
true assignment ym

This is called margin scaling

We assume that ∆(y, y) = 0, which allows us to say that the constraint
holds for all y, rather than just y 6= ym

A frequently used metric for MRFs is Hamming distance, where
∆(y, ym) =

∑
i∈V 1I[yi 6= ym

i ]
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Structural SVM with margin scaling

min
w

∑
m

max
y∈Y

(
∆(y, ym)−w ·

(
f(xm, ym)− f(xm, y)

))
+ C ||w||2

How to solve this? Many methods!

1 Stochastic subgradient method (Ratliff et al., 2007)

2 Cutting-plane algorithm (Tsochantaridis et al., 2005)

3 Dual Loss Primal Weights algorithm (Meshi et al., 2010)

David Sontag (NYU) Graphical Models Lecture 13, April 26, 2012 18 / 22



Stochastic subgradient method

min
w

∑
m

max
y∈Y

(
∆(y, ym)−w ·

(
f(xm, ym)− f(xm, y)

))
+ C ||w||2

Although this objective is convex, it is not differentiable everywhere

We can use a subgradient method to minimize (instead of gradient descent)

The subgradient of maxy∈Y ∆(y, ym)−w ·
(

f(xm, ym)− f(xm, y)
)

is

f(xm, ŷ)− f(xm, ym),

where ŷ is one of the maximizers with respect to the current weight vector
w, i.e.

ŷ = arg max
y∈Y

∆(y, ym) + w · f(xm, y)

This maximization is called loss-augmented MAP inference
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Loss-augmented inference

ŷ = arg max
y∈Y

∆(y, ym) + w · f(xm, y)

When ∆(y, ym) =
∑

i∈V 1I[yi 6= ym
i ], this corresponds to adding additional

single-node potentials

θi (yi ) = 1 if yi 6= ym, and 0 otherwise

If MAP inference was previously exactly solvable by a combinatorial
algorithm, loss-augmented MAP inference typically is too

The Hamming distance pushes the MAP solution away from the true
assignment ym
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Cutting-plane algorithm

min
w,ξ

∑
m

ξm + C ||w||2

subject to:

w ·
(

f(xm, ym)− f(xm, y)
)
≥ ∆(y, ym)− ξm, ∀m, y ∈ Ym

ξm ≥ 0, ∀m

Start with Ym = {ym}. Solve for the optimal w∗, ξ∗

Then, look to see if any of the unused constraints that are violated

To find a violated constraint for data point m, simply solve the
loss-augmented inference problem:

ŷ = arg max
y∈Y

∆(y, ym) + w · f(xm, y)

If ŷ ∈ Ym, do nothing. Otherwise, let Ym = Ym ∪ {ŷ}
Repeat until no new constraints are added. Then we are optimal!
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Cutting-plane algorithm

Can prove that, in order to solve the structural SVM up to ε (additive)
accuracy, takes a polynomial number of iterations

In practice, terminates very quickly
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