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Bayesian networks

Reminder of last lecture

o A Bayesian network is specified by a directed acyclic graph
G = (V, E) with:
© One node j € V for each random variable X;
@ One conditional probability distribution (CPD) per node, p(x; | Xpa(i)).
specifying the variable's probability conditioned on its parents’ values
@ Corresponds 1-1 with a particular factorization of the joint
distribution:
p(x1, ... xn) = H P(Xi | Xpai))
ievV
@ Powerful framework for designing algorithms to perform probability
computations
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Example

@ Consider the following Bayesian network:
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@ What is its joint distribution?

p(x1,-..Xn)

p(du i,g,S, I)
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D-separation ( “directed separated”) in Bayesian networks

@ Algorithm to calculate whether X L Z | Y by looking at graph
separation

@ Look to see if there is active path between X and Y when variables
Y are observed:

s SO

@ If no such path, then X and Z are d-separated with respect to Y

@ d-separation reduces statistical independencies (hard) to connectivity
in graphs (easy)

@ Important because it allows us to quickly prune the Bayesian network,
finding just the relevant variables for answering a query
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Independence maps

o Let /(G) be the set of all conditional independencies implied by the
directed ayclic graph (DAG) G

@ Let /(p) denote the set of all conditional independencies that hold for
the joint distribution p.

e A DAG G is an I-map (independence map) of a distribution p if
1(G) < I(p)

e A fully connected DAG G is an I-map for any distribution, since
1(G) =0 C I(p) for all p

@ G is a minimal I-map for p if the removal of even a single edge
makes it not an I-map
e A distribution may have several minimal I-maps
e Each corresponds to a specific node-ordering

e G is a perfect map (P-map) for distribution p if /(G) = I(p)
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Equivalent structures

o Different Bayesian network structures can be equivalent in that they
encode precisely the same conditional independence assertions (and
thus the same distributions)

@ Which of these are equivalent?

(a) (b) (c) (d)
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Equivalent structures

o Different Bayesian network structures can be equivalent in that they
encode precisely the same conditional independence assertions (and
thus the same distributions)

@ Which of these are equivalent?

Wy W

@ A causal network is a Bayesian network with an explicit requirement
that the relationships be causal
e Bayesian networks are not the same as causal networks
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What are some frequently used graphical models?
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Quick Medical Reference (decision theoretic)

(Miller et al. '86, Shwe et al. '91)

diseases
dl dn

findings I

o Joint distribution factors as p(f,d) = [[; p(d;) [[; p(fi | d)
p(d; = 1) is the prior probability of having disease j
@ Model assumes the following independencies: d; L d;, fi L f;|d

@ Common findings can be caused by hundreds of diseases — too many
parameters required to specify the CPD p(f; | d) as a table

David Sontag (NYU) Graphical Models Lecture 2, February 2, 2012 9 /36



Quick Medical Reference (decision theoretic)

(Miller et al. '86, Shwe et al. '91)

diseases
d] dn

f] findings

@ Instead, we use a noisy-or parameterization:

p(fi=0]d)=(1—-qo) [] (1—qy)?

jEPa(i)

e gj = p(fi = 1| d; = 1) is the probability that the disease j, if present,
could alone cause the finding to have a positive outcome

@ gio = p(fi=1| L) is the “leak” probability — the probability that the
finding is caused by something other than the diseases in the model
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Hidden Markov models

S
OO0 o909 Q¢

@ Frequently used for speech recognition and part-of-speech tagging
@ Joint distribution factors as:

T

p(y;x) = p(y1)p(xa | y1) [ p(ye | ye-1)p(xe | ye)
t=2

o p(y1) is the distribution for the starting state

o p(y: | ye—1) is the transition probability between any two states
o p(x: | yt) is the emission probability

@ What are the conditional independencies here?
Yi L{Ys ..., Y} | Y2
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Hidden Markov models
Y, Y, Yg A Y5 Y
X4 X, Xg Xy Xg Xg
@ Joint distribution factors as:

T

p(y,x) = p(y1)p(xa | 1) [ ] p(ve | ye-1)p(xe | ye)
t=2

e A homogeneous HMM uses the same parameters (/3 and a below)
for each transition and emission distribution (parameter sharing):

T
P(Y;x) = p(y1)c,y H Byt yem1 e,y
=2

How many parameters need to be learned?
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Mixture of Gaussians

@ The N-dim. multivariate normal distribution, N'(u, X), has density:

1 1 _
p(x) = WGXP ( - E(X — )T (x — M))

@ Suppose we have k Gaussians given by i, and X, and a distribution
0 over the numbers 1,... k

@ Mixture of Gaussians distribution p(y, x) given by

© Sampley ~ 0 (specifies which Gaussian to use)
@ Sample x ~ N(py,X,)
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Mixture of Gaussians

@ The marginal distribution over x looks like:

@

06
1

00

N, 7]

-+ Np,.0%]
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Latent Dirichlet allocation (LDA)

@ Topic models are powerful tools for exploring large data sets and for
making inferences about the content of documents

Documents Topics
politics religion sports
_—> president hindu baseball
obama judiasm soccer
washington ethics basketball
religion buddhism football

@ Many applications in information retrieval, document summarization,
and classification

New document What is this document about?

weather .50

> finance .49
sports .01

Words wy, ..., Wy Distribution of topics

@ LDA is one of the simplest and most widely used topic models
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Generative model for a document in LDA

© Sample the document’s topic distribution 6 (aka topic vector)
0 ~ Dirichlet(aq.7)

where the {at}tT:l are fixed hyperparameters. Thus 6 is a distribution
over T topics with mean 0y = a;/ >, ap

@ For i =1 to N, sample the topic z of the /'th word

z,-\@ ~ 9

© ... and then sample the actual word w; from the z;'th topic
W,"Z,‘, cer OV Bz,-

where {3:}]_, are the topics (a fixed collection of distributions on
words)
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Generative model for a document in LDA

@ Sample the document’s topic distribution 6 (aka topic vector)
0 ~ Dirichlet(aq.7)

where the {a;}/_; are hyperparameters. The Dirichlet density is:
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Generative model for a document in LDA

© ... and then sample the actual word w; from the z;'th topic
wj|zi, ... ~ Bz

where {8;}/]_; are the topics (a fixed collection of distributions on

words)
Documents Topics
Dpolitics .0100 religion .0500 sports .0105
president .0095 hindu .0092 baseball .0100
> obama .0090 judiasm .0080 soccer .0055
washington .0085 ethics .0075 basketball .0050

v religion .0060 buddhism .0016 football .0045

ﬂt:{p(w|z:t)}
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Example of using LDA
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(Blei, Introduction to Probabilistic Topic Models, 2011)
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“Plate” notation for LDA model

Dirichlet
(6%
l hyperparameters
9 Topic distribution
d for document

Topic-word
Topic of word i of doc d

distributions 2 \ i
Wid Word

Variables within a plate are replicated in a conditionally independent manner
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Comparison of mixture and admixture models

Dirichlet
«
1 hyperparameters
0 Prior distribution P Topic distribution
over topics d for document
Topic-word l Topic-word l
distributions A 24 Topic of doc d distributions B \ Zid Topic of word i of doc d
Word Wid Word
i=1toN
d=1to D

@ Model on left is a mixture model

o Called multinomial naive Bayes (a word can appear multiple times)
e Document is generated from a single topic

e Model on right (LDA) is an admixture model
e Document is generated from a distribution over topics
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e Bayesian networks given by (G, P) where P is specified as a set of
local conditional probability distributions associated with G's nodes

@ One interpretation of a BN is as a generative model, where variables
are sampled in topological order

Local and global independence properties identifiable via
d-separation criteria

Computing the probability of any assignment is obtained by
multiplying CPDs

o Bayes’ rule is used to compute conditional probabilities

e Marginalization or inference is often computationally difficult

Examples (will show up again): naive Bayes, hidden Markov
models, latent Dirichlet allocation
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Bayesian networks have limitations

@ Recall that G is a perfect map for distribution p if /(G) = I(p)

@ Theorem: Not every distribution has a perfect map as a DAG

(By counterexample.) There is a distribution on 4 variables where the only
independencies are A L C | {B,D} and B L D | {A, C}. This cannot be
represented by any Bayesian network.

(a) (b)
Both (a) and (b) encode (A L C|B, D), but in both cases (B £ DI|A, C). O
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@ Let's come up with an example of a distribution p satisfying
ALC|{B,D}and B LD|{A C}

e A=Alex’s hair color (red, green, blue)
B=Bob's hair color
C=Catherine's hair color
D=David’s hair color

@ Alex and Bob are friends, Bob and Catherine are friends, Catherine
and David are friends, David and Alex are friends

@ Friends never have the same hair color!
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Bayesian networks have limitations

@ Although we could represent any distribution as a fully connected BN,
this obscures its structure

@ Alternatively, we can introduce “dummy"” binary variables Z and work
with a conditional distribution:

@ This satisfiess A L C | {B,D,Z} and B L D |{A,C,Z}
@ Returning to the previous example, we would set:

p(Zi=1]a,d)=1ifa#d, andOifa=d

Z1 is the observation that Alice and David have different hair colors
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Undirected graphical models

@ An alternative representation for joint distributions is as an undirected
graphical model

@ As in BNs, we have one node for each random variable

@ Rather than CPDs, we specify (non-negative) potential functions over sets
of variables associated with cliques C of the graph,

1
p(xl, s 7Xn) = ? H ¢c(xc)
ceC
Z is the partition function and normalizes the distribution:

Z=3%" [ ¢

X1y..nXn c€C

o Like CPD’s, ¢.(xc) can be represented as a table, but it is not normalized

@ Also known as Markov random fields (MRFs) or Markov networks
Potential functions are also called factors
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Hair color example as a MRF

@ We now have an undirected graph:

0;0

@ The joint probability distribution is parameterized as

p(a, b,c,d) = %¢AB(37 b)psc(b, c)pcp(c, d)pap(a, d) dpa(a)ps(b)dc(c)én(d)

@ Pairwise potentials enforce that no friend has the same hair color:
oag(a,b) =0if a=b, and 1 otherwise
@ Single-node potentials specify an affinity for a particular hair color, e.g.
¢p("red") =0.6, ¢p("blue”)=0.3, ¢p(“green”)=0.1
The normalization Z makes the potentials scale invariant! Equivalent to

¢p(“red") =6, ¢p("blue") =3, ¢p(“green”) =1
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Markov network structure implies conditional independencies

@ Let G be the undirected graph where we have one edge for every pair
of variables that appear together in a potential

o Conditional independence is given by graph separation!

Xa
Xc

@ Xp L Xc | Xg if there is no path from a € A to ¢ € C after removing
all variables in B
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@ Returning to hair color example, its undirected graphical model is:

0’0

@ Since removing A and C leaves no path from D to B, we have
D1 B|{A C}

@ Similarly, since removing D and B leaves no path from A to C, we
have A L C | {D, B}

@ No other independencies implied by the graph
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Markov blanket

o A set U is a Markov blanket of X if X ¢ U and if U is a minimal set
of nodes such that X L (¥ —{X} -U)|U

@ In undirected graphical models, the Markov blanket of a variable is
precisely its neighbors in the graph:

@ In other words, X is independent of the rest of the nodes in the graph
given its immediate neighbors
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Proof of independence through separation

e We will show that A L C | B for the following distribution:

O——O©

p(a, b,c) = %quB(a, b)¢ec(b, c)

o First, we show that p(a | b) can be computed using only ¢ag(a, b):
plal b) = P2

2 2 da(a, b)dec(b,2)

2252 0a8(3, b)psc(b, @)

__9aB(a b)Y . d8c(b,E)  ¢as(a b)

225048(3,b) e dpc(b,€) 30, 0as(4,b)

@ More generally, the probability of a variable conditioned on its Markov
blanket depends only on potentials involving that node
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Proof of independence through separation

e We will show that A L C | B for the following distribution:

O——O©

p(a, b,c) = %quB(a, b)¢sc(b, c)

p(a; c, b) _ pag(a; b)psc(b, c)
Za,e p(a, b, &) Za,e ¢aB(3, b)psc(b, €)
da(a, b)dpc (b, c)
>3 9a8(3,b) >z dBc(b, €)
= p(a| b)p(c|b)

O

v
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Higher-order potentials

@ The examples so far have all been pairwise MRFs, involving only
node potentials ¢;(X;) and pairwise potentials ¢; ;(X;, X;)
@ Often we need higher-order potentials, e.g.

d(x,y,2) =x®y® z,

where X, Y, Z are binary and ® is the XOR function, enforcing that
an odd number of the variables take the value 1

@ Although Markov networks are useful for understanding
independencies, they hide much of the distribution’s structure:

Does this have pairwise potentials, or one potential for all 4 variables?
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Factor graphs

@ G does not reveal the structure of the distribution: maximum cliques vs.
subsets of them

@ A factor graph is a bipartite undirected graph with variable nodes and factor
nodes. Edges are only between the variable nodes and the factor nodes

@ Each factor node is associated with a single potential, whose scope is the set
of variables that are neighbors in the factor graph

Markov network

@ The distribution is same as the MRF — this is just a different data structure
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Example: Low-density parity-check codes

@ Error correcting codes for transmitting a message over a noisy channel
(invented by Galleger in the 1960's, then re-discovered in 1996)

fo fy fe

@ Each of the top row factors enforce that its variables have even parity:
fA(Yl, Y2, Y3, Y4) =1if Yl ® Y2 & Y3 & Y4 = 07 and 0 otherwise

@ Thus, the only assignments Y with non-zero probability are the following
(called codewords): 3 bits encoded using 6 bits

000000, 011001, 110010, 101011, 111100, 100101, 001110, 010111
o fi(Yi, X;) = p(Xi | Yi), the likelihood of a bit flip according to noise model
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Probabilistic inference

@ The decoding problem for LDPCs is to find

argmax, p(y | x)

This is called the maximum a posteriori (MAP) assignment

@ Since Z and p(x) are constants with respect to the choice of y, can
equivalently solve (taking the log of p(y, x)):

argmax, Z 0c(xc),

ceC

where 6.(xc) = log ¢c(xc)
@ This is a discrete optimization problem!

e For general factor graphs, this is NP-hard to solve
o Next week, you will see a general technique for approximately solving it
called dual decomposition
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