Probabilistic Graphical Models

David Sontag
New York University
Lecture 2, February 2, 2012

Bayesian networks

- A Bayesian network is specified by a directed acyclic graph $G=(V, E)$ with:
(1) One node $i \in V$ for each random variable X_{i}
(2) One conditional probability distribution (CPD) per node, $p\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right)$, specifying the variable's probability conditioned on its parents' values
- Corresponds 1-1 with a particular factorization of the joint distribution:

$$
p\left(x_{1}, \ldots x_{n}\right)=\prod_{i \in V} p\left(x_{i} \mid \mathbf{x}_{\operatorname{Pa}(i)}\right)
$$

- Powerful framework for designing algorithms to perform probability computations

Example

- Consider the following Bayesian network:

- What is its joint distribution?

$$
\begin{aligned}
p\left(x_{1}, \ldots x_{n}\right) & =\prod_{i \in V} p\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right) \\
p(d, i, g, s, l) & =p(d) p(i) p(g \mid i, d) p(s \mid i) p(I \mid g)
\end{aligned}
$$

D-separation ("directed separated") in Bayesian networks

- Algorithm to calculate whether $X \perp Z \mid \mathbf{Y}$ by looking at graph separation
- Look to see if there is active path between X and Y when variables \mathbf{Y} are observed:

(a)

(b)
- If no such path, then X and Z are \mathbf{d}-separated with respect to \mathbf{Y}
- d-separation reduces statistical independencies (hard) to connectivity in graphs (easy)
- Important because it allows us to quickly prune the Bayesian network, finding just the relevant variables for answering a query

Independence maps

- Let $I(G)$ be the set of all conditional independencies implied by the directed ayclic graph (DAG) G
- Let $I(p)$ denote the set of all conditional independencies that hold for the joint distribution p.
- A DAG G is an I-map (independence map) of a distribution p if $I(G) \subseteq I(p)$
- A fully connected DAG G is an I-map for any distribution, since $I(G)=\emptyset \subseteq I(p)$ for all p
- G is a minimal I-map for p if the removal of even a single edge makes it not an I-map
- A distribution may have several minimal I-maps
- Each corresponds to a specific node-ordering
- G is a perfect map (P-map) for distribution p if $I(G)=I(p)$

Equivalent structures

- Different Bayesian network structures can be equivalent in that they encode precisely the same conditional independence assertions (and thus the same distributions)
- Which of these are equivalent?

(a)

(b)

(c)

(d)

Equivalent structures

- Different Bayesian network structures can be equivalent in that they encode precisely the same conditional independence assertions (and thus the same distributions)
- Which of these are equivalent?

- A causal network is a Bayesian network with an explicit requirement that the relationships be causal
- Bayesian networks are not the same as causal networks

What are some frequently used graphical models?

Quick Medical Reference (decision theoretic)

(Miller et al. '86, Shwe et al. '91)

- Joint distribution factors as $p(\mathbf{f}, \mathbf{d})=\prod_{j} p\left(d_{j}\right) \prod_{i} p\left(f_{i} \mid \mathbf{d}\right)$ $p\left(d_{j}=1\right)$ is the prior probability of having disease j
- Model assumes the following independencies: $d_{i} \perp d_{j}, \quad f_{i} \perp f_{j} \mid \mathbf{d}$
- Common findings can be caused by hundreds of diseases - too many parameters required to specify the CPD $p\left(f_{i} \mid \mathbf{d}\right)$ as a table

Quick Medical Reference (decision theoretic)

(Miller et al. '86, Shwe et al. '91)

- Instead, we use a noisy-or parameterization:

$$
p\left(f_{i}=0 \mid \mathbf{d}\right)=\left(1-q_{i 0}\right) \prod_{j \in \operatorname{Pa}(i)}\left(1-q_{i j}\right)^{d_{j}}
$$

- $q_{i j}=p\left(f_{i}=1 \mid d_{j}=1\right)$ is the probability that the disease j, if present, could alone cause the finding to have a positive outcome
- $q_{i 0}=p\left(f_{i}=1 \mid L\right)$ is the "leak" probability - the probability that the finding is caused by something other than the diseases in the model

Hidden Markov models

- Frequently used for speech recognition and part-of-speech tagging
- Joint distribution factors as:

$$
p(\mathbf{y}, \mathbf{x})=p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) \prod_{t=2}^{T} p\left(y_{t} \mid y_{t-1}\right) p\left(x_{t} \mid y_{t}\right)
$$

- $p\left(y_{1}\right)$ is the distribution for the starting state
- $p\left(y_{t} \mid y_{t-1}\right)$ is the transition probability between any two states
- $p\left(x_{t} \mid y_{t}\right)$ is the emission probability
- What are the conditional independencies here? For example, $Y_{1} \perp\left\{Y_{3}, \ldots, Y_{6}\right\} \mid Y_{2}$

Hidden Markov models

- Joint distribution factors as:

$$
p(\mathbf{y}, \mathbf{x})=p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) \prod_{t=2}^{T} p\left(y_{t} \mid y_{t-1}\right) p\left(x_{t} \mid y_{t}\right)
$$

- A homogeneous HMM uses the same parameters (β and α below) for each transition and emission distribution (parameter sharing):

$$
p(\mathbf{y}, \mathbf{x})=p\left(y_{1}\right) \alpha_{x_{1}, y_{1}} \prod_{t=2}^{T} \beta_{y_{t}, y_{t-1}} \alpha_{x_{t}, y_{t}}
$$

How many parameters need to be learned?

Mixture of Gaussians

- The \mathcal{N}-dim. multivariate normal distribution, $\mathcal{N}(\mu, \Sigma)$, has density:

$$
p(\mathbf{x})=\frac{1}{(2 \pi)^{N / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)
$$

- Suppose we have k Gaussians given by μ_{k} and Σ_{k}, and a distribution θ over the numbers $1, \ldots, k$
- Mixture of Gaussians distribution $p(y, \mathbf{x})$ given by
(1) Sample $y \sim \theta \quad$ (specifies which Gaussian to use)
(2) Sample $x \sim \mathcal{N}\left(\mu_{y}, \Sigma_{y}\right)$

Mixture of Gaussians

- The marginal distribution over \mathbf{x} looks like:

Latent Dirichlet allocation (LDA)

- Topic models are powerful tools for exploring large data sets and for making inferences about the content of documents

Documents

Topics

 baseball soccer basketball football

- Many applications in information retrieval, document summarization, and classification

New document

Words $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{N}}$

What is this document about?
weather . 50
finance . 49
sports . 01
Distribution of topics θ

- LDA is one of the simplest and most widely used topic models

Generative model for a document in LDA

(1) Sample the document's topic distribution θ (aka topic vector)

$$
\theta \sim \operatorname{Dirichlet}\left(\alpha_{1: T}\right)
$$

where the $\left\{\alpha_{t}\right\}_{t=1}^{T}$ are fixed hyperparameters. Thus θ is a distribution over T topics with mean $\theta_{t}=\alpha_{t} / \sum_{t^{\prime}} \alpha_{t^{\prime}}$
(2) For $i=1$ to N, sample the topic z_{i} of the i 'th word

$$
z_{i} \mid \theta \sim \theta
$$

(3) \ldots and then sample the actual word w_{i} from the z_{i} 'th topic

$$
w_{i} \mid z_{i}, \ldots \sim \beta_{z_{i}}
$$

where $\left\{\beta_{t}\right\}_{t=1}^{T}$ are the topics (a fixed collection of distributions on words)

Generative model for a document in LDA

(1) Sample the document's topic distribution θ (aka topic vector)

$$
\theta \sim \operatorname{Dirichlet}\left(\alpha_{1: T}\right)
$$

where the $\left\{\alpha_{t}\right\}_{t=1}^{T}$ are hyperparameters. The Dirichlet density is:

$$
p\left(\theta_{1}, \ldots, \theta_{T}\right) \propto \prod_{t=1}^{T} \theta_{t}^{\alpha_{t}-1}
$$

Generative model for a document in LDA

(3) ... and then sample the actual word w_{i} from the z_{i} 'th topic

$$
w_{i} \mid z_{i}, \ldots \sim \beta_{z_{i}}
$$

where $\left\{\beta_{t}\right\}_{t=1}^{T}$ are the topics (a fixed collection of distributions on words)

Documents

Topics

Example of using LDA

Topics

Documents

Topic proportions and assignments

(Blei, Introduction to Probabilistic Topic Models, 2011)

"Plate" notation for LDA model

Variables within a plate are replicated in a conditionally independent manner

Comparison of mixture and admixture models

- Model on left is a mixture model
- Called multinomial naive Bayes (a word can appear multiple times)
- Document is generated from a single topic
- Model on right (LDA) is an admixture model
- Document is generated from a distribution over topics

Summary

- Bayesian networks given by (G, P) where P is specified as a set of local conditional probability distributions associated with G 's nodes
- One interpretation of a BN is as a generative model, where variables are sampled in topological order
- Local and global independence properties identifiable via d-separation criteria
- Computing the probability of any assignment is obtained by multiplying CPDs
- Bayes' rule is used to compute conditional probabilities
- Marginalization or inference is often computationally difficult
- Examples (will show up again): naive Bayes, hidden Markov models, latent Dirichlet allocation

Bayesian networks have limitations

- Recall that G is a perfect map for distribution p if $I(G)=I(p)$
- Theorem: Not every distribution has a perfect map as a DAG

Proof.

(By counterexample.) There is a distribution on 4 variables where the only independencies are $A \perp C \mid\{B, D\}$ and $B \perp D \mid\{A, C\}$. This cannot be represented by any Bayesian network.

(a)

(b)

Both (a) and (b) encode ($A \perp C \mid B, D$), but in both cases $(B \not \perp D \mid A, C)$.

Example

- Let's come up with an example of a distribution p satisfying $A \perp C \mid\{B, D\}$ and $B \perp D \mid\{A, C\}$
- $A=A l e x$'s hair color (red, green, blue)
$B=$ Bob's hair color
$C=$ Catherine's hair color
$D=$ David's hair color
- Alex and Bob are friends, Bob and Catherine are friends, Catherine and David are friends, David and Alex are friends
- Friends never have the same hair color!

Bayesian networks have limitations

- Although we could represent any distribution as a fully connected BN, this obscures its structure
- Alternatively, we can introduce "dummy" binary variables \mathbf{Z} and work with a conditional distribution:

- This satisfies $A \perp C \mid\{B, D, \mathbf{Z}\}$ and $B \perp D \mid\{A, C, \mathbf{Z}\}$
- Returning to the previous example, we would set:

$$
p\left(Z_{1}=1 \mid a, d\right)=1 \text { if } a \neq d, \text { and } 0 \text { if } a=d
$$

Z_{1} is the observation that Alice and David have different hair colors

Undirected graphical models

- An alternative representation for joint distributions is as an undirected graphical model
- As in BNs, we have one node for each random variable
- Rather than CPDs, we specify (non-negative) potential functions over sets of variables associated with cliques C of the graph,

$$
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{c \in C} \phi_{c}\left(\mathbf{x}_{c}\right)
$$

Z is the partition function and normalizes the distribution:

$$
Z=\sum_{\hat{x}_{1}, \ldots, \hat{x}_{n}} \prod_{c \in C} \phi_{c}\left(\hat{\mathbf{x}}_{c}\right)
$$

- Like CPD's, $\phi_{c}\left(\mathbf{x}_{c}\right)$ can be represented as a table, but it is not normalized
- Also known as Markov random fields (MRFs) or Markov networks Potential functions are also called factors

Hair color example as a MRF

- We now have an undirected graph:

- The joint probability distribution is parameterized as
$p(a, b, c, d)=\frac{1}{Z} \phi_{A B}(a, b) \phi_{B C}(b, c) \phi_{C D}(c, d) \phi_{A D}(a, d) \phi_{A}(a) \phi_{B}(b) \phi_{C}(c) \phi_{D}(d)$
- Pairwise potentials enforce that no friend has the same hair color:

$$
\phi_{A B}(a, b)=0 \text { if } a=b, \quad \text { and } 1 \text { otherwise }
$$

- Single-node potentials specify an affinity for a particular hair color, e.g.

$$
\phi_{D}(\text { "red" })=0.6, \quad \phi_{D}(\text { "blue" })=0.3, \quad \phi_{D}(\text { "green" })=0.1
$$

The normalization Z makes the potentials scale invariant! Equivalent to

$$
\phi_{D}(\text { "red" })=6, \quad \phi_{D}(\text { "blue" })=3, \quad \phi_{D}(\text { "green" })=1
$$

Markov network structure implies conditional independencies

- Let G be the undirected graph where we have one edge for every pair of variables that appear together in a potential
- Conditional independence is given by graph separation!

- $X_{\mathbf{A}} \perp X_{\mathbf{C}} \mid X_{\mathbf{B}}$ if there is no path from $a \in \mathbf{A}$ to $c \in \mathbf{C}$ after removing all variables in \mathbf{B}

Example

- Returning to hair color example, its undirected graphical model is:

- Since removing A and C leaves no path from D to B, we have $D \perp B \mid\{A, C\}$
- Similarly, since removing D and B leaves no path from A to C, we have $A \perp C \mid\{D, B\}$
- No other independencies implied by the graph

Markov blanket

- A set \mathbf{U} is a Markov blanket of X if $X \notin \mathbf{U}$ and if \mathbf{U} is a minimal set of nodes such that $X \perp(\mathcal{X}-\{X\}-\mathbf{U}) \mid \mathbf{U}$
- In undirected graphical models, the Markov blanket of a variable is precisely its neighbors in the graph:

- In other words, X is independent of the rest of the nodes in the graph given its immediate neighbors

Proof of independence through separation

- We will show that $A \perp C \mid B$ for the following distribution:
A C
- First, we show that $p(a \mid b)$ can be computed using only $\phi_{A B}(a, b)$:

$$
\begin{aligned}
p(a \mid b) & =\frac{p(a, b)}{p(b)} \\
& =\frac{\frac{1}{Z} \sum_{\hat{c}} \phi_{A B}(a, b) \phi_{B C}(b, \hat{c})}{\frac{1}{Z} \sum_{\hat{a}, \hat{c}} \phi_{A B}(\hat{a}, b) \phi_{B C}(b, \hat{c})} \\
& =\frac{\phi_{A B}(a, b) \sum_{\hat{c}} \phi_{B C}(b, \hat{c})}{\sum_{\hat{a}} \phi_{A B}(\hat{a}, b) \sum_{\hat{c}} \phi_{B C}(b, \hat{c})}=\frac{\phi_{A B}(a, b)}{\sum_{\hat{a}} \phi_{A B}(\hat{a}, b)} .
\end{aligned}
$$

- More generally, the probability of a variable conditioned on its Markov blanket depends only on potentials involving that node

Proof of independence through separation

- We will show that $A \perp C \mid B$ for the following distribution:

Proof.

$$
\begin{aligned}
p(a, c \mid b)=\frac{p(a, c, b)}{\sum_{\hat{a}, \hat{c}} p(\hat{a}, b, \hat{c})} & =\frac{\phi_{A B}(a, b) \phi_{B C}(b, c)}{\sum_{\hat{a}, \hat{c}} \phi_{A B}(\hat{a}, b) \phi_{B C}(b, \hat{c})} \\
& =\frac{\phi_{A B}(a, b) \phi_{B C}(b, c)}{\sum_{\hat{a}} \phi_{A B}(\hat{a}, b) \sum_{\hat{c}} \phi_{B C}(b, \hat{c})} \\
& =p(a \mid b) p(c \mid b)
\end{aligned}
$$

Higher-order potentials

- The examples so far have all been pairwise MRFs, involving only node potentials $\phi_{i}\left(X_{i}\right)$ and pairwise potentials $\phi_{i, j}\left(X_{i}, X_{j}\right)$
- Often we need higher-order potentials, e.g.

$$
\phi(x, y, z)=x \otimes y \otimes z
$$

where X, Y, Z are binary and \otimes is the XOR function, enforcing that an odd number of the variables take the value 1

- Although Markov networks are useful for understanding independencies, they hide much of the distribution's structure:

Does this have pairwise potentials, or one potential for all 4 variables?

Factor graphs

- G does not reveal the structure of the distribution: maximum cliques vs. subsets of them
- A factor graph is a bipartite undirected graph with variable nodes and factor nodes. Edges are only between the variable nodes and the factor nodes
- Each factor node is associated with a single potential, whose scope is the set of variables that are neighbors in the factor graph

Markov network

- The distribution is same as the MRF - this is just a different data structure

Example: Low-density parity-check codes

- Error correcting codes for transmitting a message over a noisy channel (invented by Galleger in the 1960's, then re-discovered in 1996)

- Each of the top row factors enforce that its variables have even parity:

$$
f_{A}\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)=1 \text { if } Y_{1} \otimes Y_{2} \otimes Y_{3} \otimes Y_{4}=0, \text { and } 0 \text { otherwise }
$$

- Thus, the only assignments \mathbf{Y} with non-zero probability are the following (called codewords): 3 bits encoded using 6 bits

000000, 011001, 110010, 101011, 111100, 100101, 001110, 010111

- $f_{i}\left(Y_{i}, X_{i}\right)=p\left(X_{i} \mid Y_{i}\right)$, the likelihood of a bit flip according to noise model

Probabilistic inference

- The decoding problem for LDPCs is to find

$$
\operatorname{argmax}_{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x})
$$

This is called the maximum a posteriori (MAP) assignment

- Since Z and $p(\mathbf{x})$ are constants with respect to the choice of \mathbf{y}, can equivalently solve (taking the \log of $p(\mathbf{y}, \mathbf{x})$):

$$
\operatorname{argmax}_{\mathbf{y}} \sum_{c \in C} \theta_{c}\left(\mathbf{x}_{c}\right),
$$

where $\theta_{c}\left(\mathbf{x}_{c}\right)=\log \phi_{c}\left(\mathbf{x}_{c}\right)$

- This is a discrete optimization problem!
- For general factor graphs, this is NP-hard to solve
- Next week, you will see a general technique for approximately solving it called dual decomposition

