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Bayesian networks
Reminder of last lecture

A Bayesian network is specified by a directed acyclic graph
G = (V ,E ) with:

1 One node i ∈ V for each random variable Xi

2 One conditional probability distribution (CPD) per node, p(xi | xPa(i)),
specifying the variable’s probability conditioned on its parents’ values

Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x1, . . . xn) =
∏

i∈V
p(xi | xPa(i))

Powerful framework for designing algorithms to perform probability
computations
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Example

Consider the following Bayesian network:

Grade

Letter

SAT

IntelligenceDifficulty

d1d0

0.6 0.4

i1i0

0.7 0.3

i0

i1

s1s0

0.95

0.2

0.05

0.8

g1

g2

g2

l1l 0

0.1

0.4

0.99

0.9

0.6

0.01

i0,d0

i0,d1

i0,d0

i0,d1

g2 g3g1

0.3

0.05

0.9

0.5

0.4

0.25

0.08

0.3

0.3

0.7

0.02

0.2

What is its joint distribution?

p(x1, . . . xn) =
∏

i∈V
p(xi | xPa(i))

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)
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D-separation (“directed separated”) in Bayesian networks

Algorithm to calculate whether X ⊥ Z | Y by looking at graph
separation

Look to see if there is active path between X and Y when variables
Y are observed:

X Y Z X Y Z

(a) (b)

If no such path, then X and Z are d-separated with respect to Y

d-separation reduces statistical independencies (hard) to connectivity
in graphs (easy)

Important because it allows us to quickly prune the Bayesian network,
finding just the relevant variables for answering a query
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Independence maps

Let I (G ) be the set of all conditional independencies implied by the
directed ayclic graph (DAG) G

Let I (p) denote the set of all conditional independencies that hold for
the joint distribution p.

A DAG G is an I-map (independence map) of a distribution p if
I (G ) ⊆ I (p)

A fully connected DAG G is an I-map for any distribution, since
I (G ) = ∅ ⊆ I (p) for all p

G is a minimal I-map for p if the removal of even a single edge
makes it not an I-map

A distribution may have several minimal I-maps
Each corresponds to a specific node-ordering

G is a perfect map (P-map) for distribution p if I (G ) = I (p)
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Equivalent structures

Different Bayesian network structures can be equivalent in that they
encode precisely the same conditional independence assertions (and
thus the same distributions)

Which of these are equivalent?

Y

(a) (b) (c) (d)

X

Z Z

X Y

X

Z

Y Z

X Y
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Equivalent structures

Different Bayesian network structures can be equivalent in that they
encode precisely the same conditional independence assertions (and
thus the same distributions)

Which of these are equivalent?

W

V X

Y

Z

W

V X

Y

Z

A causal network is a Bayesian network with an explicit requirement
that the relationships be causal

Bayesian networks are not the same as causal networks
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What are some frequently used graphical models?

David Sontag (NYU) Graphical Models Lecture 2, February 2, 2012 8 / 36



Quick Medical Reference (decision theoretic)
(Miller et al. ’86, Shwe et al. ’91)

!"#$%#$#&

'(!"()#&

diseases

findings

d1 dn

f
1 fm

Joint distribution factors as p(f,d) =
∏

j p(dj)
∏

i p(fi | d)
p(dj = 1) is the prior probability of having disease j

Model assumes the following independencies: di ⊥ dj , fi ⊥ fj | d
Common findings can be caused by hundreds of diseases – too many
parameters required to specify the CPD p(fi | d) as a table
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Quick Medical Reference (decision theoretic)
(Miller et al. ’86, Shwe et al. ’91)

!"#$%#$#&

'(!"()#&

diseases

findings

d1 dn

f
1 fm

Instead, we use a noisy-or parameterization:

p(fi = 0 | d) = (1− qi0)
∏

j∈Pa(i)

(1− qij)
dj

qij = p(fi = 1 | dj = 1) is the probability that the disease j , if present,
could alone cause the finding to have a positive outcome
qi0 = p(fi = 1 | L) is the “leak” probability – the probability that the
finding is caused by something other than the diseases in the model
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Hidden Markov models

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6

Frequently used for speech recognition and part-of-speech tagging

Joint distribution factors as:

p(y, x) = p(y1)p(x1 | y1)
T∏

t=2

p(yt | yt−1)p(xt | yt)

p(y1) is the distribution for the starting state
p(yt | yt−1) is the transition probability between any two states
p(xt | yt) is the emission probability

What are the conditional independencies here? For example,
Y1 ⊥ {Y3, . . . ,Y6} | Y2
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Hidden Markov models

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6

Joint distribution factors as:

p(y, x) = p(y1)p(x1 | y1)
T∏

t=2

p(yt | yt−1)p(xt | yt)

A homogeneous HMM uses the same parameters (β and α below)
for each transition and emission distribution (parameter sharing):

p(y, x) = p(y1)αx1,y1

T∏

t=2

βyt ,yt−1αxt ,yt

How many parameters need to be learned?
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Mixture of Gaussians

The N-dim. multivariate normal distribution, N (µ,Σ), has density:

p(x) =
1

(2π)N/2|Σ|1/2 exp
(
− 1

2
(x− µ)TΣ−1(x− µ)

)

Suppose we have k Gaussians given by µk and Σk , and a distribution
θ over the numbers 1, . . . , k

Mixture of Gaussians distribution p(y , x) given by
1 Sample y ∼ θ (specifies which Gaussian to use)
2 Sample x ∼ N (µy ,Σy )

David Sontag (NYU) Graphical Models Lecture 2, February 2, 2012 13 / 36



Mixture of Gaussians

The marginal distribution over x looks like:
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Latent Dirichlet allocation (LDA)

Topic models are powerful tools for exploring large data sets and for
making inferences about the content of documents
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Many applications in information retrieval, document summarization,
and classification

Complexity+of+Inference+in+Latent+Dirichlet+Alloca6on+
David+Sontag,+Daniel+Roy+
(NYU,+Cambridge)+

W66+
Topic+models+are+powerful+tools+for+exploring+large+data+sets+and+for+making+
inferences+about+the+content+of+documents+

Documents+ Topics+
poli6cs+.0100+

president+.0095+
obama+.0090+

washington+.0085+
religion+.0060+

Almost+all+uses+of+topic+models+(e.g.,+for+unsupervised+learning,+informa6on+
retrieval,+classifica6on)+require+probabilis)c+inference:+

New+document+ What+is+this+document+about?+

Words+w1,+…,+wN+ ✓Distribu6on+of+topics+

�t =
�

p(w | z = t)
 

…+

religion+.0500+
hindu+.0092+

judiasm+.0080+
ethics+.0075+

buddhism+.0016+

sports+.0105+
baseball+.0100+
soccer+.0055+

basketball+.0050+
football+.0045+

…+ …+

weather+ .50+
finance+ .49+
sports+ .01+

LDA is one of the simplest and most widely used topic models
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Generative model for a document in LDA

1 Sample the document’s topic distribution θ (aka topic vector)

θ ∼ Dirichlet(α1:T )

where the {αt}Tt=1 are fixed hyperparameters. Thus θ is a distribution
over T topics with mean θt = αt/

∑
t′ αt′

2 For i = 1 to N, sample the topic zi of the i ’th word

zi |θ ∼ θ

3 ... and then sample the actual word wi from the zi ’th topic

wi |zi , ... ∼ βzi
where {βt}Tt=1 are the topics (a fixed collection of distributions on
words)
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Generative model for a document in LDA

1 Sample the document’s topic distribution θ (aka topic vector)

θ ∼ Dirichlet(α1:T )

where the {αt}Tt=1 are hyperparameters.The Dirichlet density is:

p(θ1, . . . , θT ) ∝
T∏

t=1

θαt−1
t

θ1 θ2

log Pr(θ)

α1 = α2 =

θ1 θ2

log Pr(θ)

α1 = α2 =

David Sontag (NYU) Graphical Models Lecture 2, February 2, 2012 17 / 36



Generative model for a document in LDA

3 ... and then sample the actual word wi from the zi ’th topic

wi |zi , ... ∼ βzi

where {βt}Tt=1 are the topics (a fixed collection of distributions on
words)

Complexity+of+Inference+in+Latent+Dirichlet+Alloca6on+
David+Sontag,+Daniel+Roy+
(NYU,+Cambridge)+

W66+
Topic+models+are+powerful+tools+for+exploring+large+data+sets+and+for+making+
inferences+about+the+content+of+documents+

Documents+ Topics+
poli6cs+.0100+

president+.0095+
obama+.0090+

washington+.0085+
religion+.0060+

Almost+all+uses+of+topic+models+(e.g.,+for+unsupervised+learning,+informa6on+
retrieval,+classifica6on)+require+probabilis)c+inference:+

New+document+ What+is+this+document+about?+

Words+w1,+…,+wN+ ✓Distribu6on+of+topics+

�t =
�

p(w | z = t)
 

…+
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hindu+.0092+

judiasm+.0080+
ethics+.0075+

buddhism+.0016+

sports+.0105+
baseball+.0100+
soccer+.0055+

basketball+.0050+
football+.0045+

…+ …+

weather+ .50+
finance+ .49+
sports+ .01+
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Example of using LDA

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

Figure 1: The intuitions behind latent Dirichlet allocation. We assume that some
number of “topics,” which are distributions over words, exist for the whole collection (far left).
Each document is assumed to be generated as follows. First choose a distribution over the
topics (the histogram at right); then, for each word, choose a topic assignment (the colored
coins) and choose the word from the corresponding topic. The topics and topic assignments
in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from
data.

model assumes the documents arose. (The interpretation of LDA as a probabilistic model is
fleshed out below in Section 2.1.)

We formally define a topic to be a distribution over a fixed vocabulary. For example the
genetics topic has words about genetics with high probability and the evolutionary biology
topic has words about evolutionary biology with high probability. We assume that these
topics are specified before any data has been generated.1 Now for each document in the
collection, we generate the words in a two-stage process.

1. Randomly choose a distribution over topics.

2. For each word in the document

(a) Randomly choose a topic from the distribution over topics in step #1.

(b) Randomly choose a word from the corresponding distribution over the vocabulary.

This statistical model reflects the intuition that documents exhibit multiple topics. Each
document exhibits the topics with different proportion (step #1); each word in each document

1Technically, the model assumes that the topics are generated first, before the documents.

3

θd

z1d

zNd

β1

βT

(Blei, Introduction to Probabilistic Topic Models, 2011)
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“Plate” notation for LDA model

α Dirichlet 
hyperparameters

i = 1 to N

d = 1 to D

θd

wid

zid

Topic distribution
for document

Topic of word i of doc d

Word

βTopic-word
distributions

Variables within a plate are replicated in a conditionally independent manner
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Comparison of mixture and admixture models

i = 1 to N

d = 1 to D

wid

Prior distribution
over topics

Topic of doc d

Word

βTopic-word
distributions

θ

zd

α Dirichlet 
hyperparameters

i = 1 to N

d = 1 to D

θd

wid

zid

Topic distribution
for document

Topic of word i of doc d

Word

βTopic-word
distributions

Model on left is a mixture model
Called multinomial naive Bayes (a word can appear multiple times)
Document is generated from a single topic

Model on right (LDA) is an admixture model
Document is generated from a distribution over topics
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Summary

Bayesian networks given by (G ,P) where P is specified as a set of
local conditional probability distributions associated with G ’s nodes

One interpretation of a BN is as a generative model, where variables
are sampled in topological order

Local and global independence properties identifiable via
d-separation criteria

Computing the probability of any assignment is obtained by
multiplying CPDs

Bayes’ rule is used to compute conditional probabilities
Marginalization or inference is often computationally difficult

Examples (will show up again): naive Bayes, hidden Markov
models, latent Dirichlet allocation
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Bayesian networks have limitations

Recall that G is a perfect map for distribution p if I (G ) = I (p)

Theorem: Not every distribution has a perfect map as a DAG

Proof.

(By counterexample.) There is a distribution on 4 variables where the only
independencies are A ⊥ C | {B,D} and B ⊥ D | {A,C}. This cannot be
represented by any Bayesian network.

(a) (b)

Both (a) and (b) encode (A ⊥ C |B,D), but in both cases (B 6⊥ D|A,C ).
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Example

Let’s come up with an example of a distribution p satisfying
A ⊥ C | {B,D} and B ⊥ D | {A,C}
A=Alex’s hair color (red, green, blue)
B=Bob’s hair color
C=Catherine’s hair color
D=David’s hair color

Alex and Bob are friends, Bob and Catherine are friends, Catherine
and David are friends, David and Alex are friends

Friends never have the same hair color!
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Bayesian networks have limitations

Although we could represent any distribution as a fully connected BN,
this obscures its structure

Alternatively, we can introduce “dummy” binary variables Z and work
with a conditional distribution:

A

D B

C

Z1 Z2

Z3Z4

This satisfies A ⊥ C | {B,D,Z} and B ⊥ D | {A,C ,Z}
Returning to the previous example, we would set:

p(Z1 = 1 | a, d) = 1 if a 6= d , and 0 if a = d

Z1 is the observation that Alice and David have different hair colors
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Undirected graphical models

An alternative representation for joint distributions is as an undirected
graphical model

As in BNs, we have one node for each random variable

Rather than CPDs, we specify (non-negative) potential functions over sets
of variables associated with cliques C of the graph,

p(x1, . . . , xn) =
1

Z

∏

c∈C

φc(xc)

Z is the partition function and normalizes the distribution:

Z =
∑

x̂1,...,x̂n

∏

c∈C

φc(x̂c)

Like CPD’s, φc(xc) can be represented as a table, but it is not normalized

Also known as Markov random fields (MRFs) or Markov networks
Potential functions are also called factors
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Hair color example as a MRF

We now have an undirected graph:

The joint probability distribution is parameterized as

p(a, b, c , d) =
1

Z
φAB(a, b)φBC (b, c)φCD(c , d)φAD(a, d) φA(a)φB(b)φC (c)φD(d)

Pairwise potentials enforce that no friend has the same hair color:

φAB(a, b) = 0 if a = b, and 1 otherwise

Single-node potentials specify an affinity for a particular hair color, e.g.

φD(“red”) = 0.6, φD(“blue”) = 0.3, φD(“green”) = 0.1

The normalization Z makes the potentials scale invariant! Equivalent to

φD(“red”) = 6, φD(“blue”) = 3, φD(“green”) = 1
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Markov network structure implies conditional independencies

Let G be the undirected graph where we have one edge for every pair
of variables that appear together in a potential

Conditional independence is given by graph separation!

XA

XB

XC

XA ⊥ XC | XB if there is no path from a ∈ A to c ∈ C after removing
all variables in B
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Example

Returning to hair color example, its undirected graphical model is:

Since removing A and C leaves no path from D to B, we have
D ⊥ B | {A,C}
Similarly, since removing D and B leaves no path from A to C , we
have A ⊥ C | {D,B}
No other independencies implied by the graph

David Sontag (NYU) Graphical Models Lecture 2, February 2, 2012 29 / 36



Markov blanket

A set U is a Markov blanket of X if X /∈ U and if U is a minimal set
of nodes such that X ⊥ (X − {X} −U) | U

In undirected graphical models, the Markov blanket of a variable is
precisely its neighbors in the graph:

X

In other words, X is independent of the rest of the nodes in the graph
given its immediate neighbors
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Proof of independence through separation

We will show that A ⊥ C | B for the following distribution:

BA C

p(a, b, c) =
1

Z
φAB(a, b)φBC (b, c)

First, we show that p(a | b) can be computed using only φAB(a, b):

p(a | b) =
p(a, b)

p(b)

=
1
Z

∑
ĉ φAB(a, b)φBC (b, ĉ)

1
Z

∑
â,ĉ φAB(â, b)φBC (b, ĉ)

=
φAB(a, b)

∑
ĉ φBC (b, ĉ)∑

â φAB(â, b)
∑

ĉ φBC (b, ĉ)
=

φAB(a, b)∑
â φAB(â, b)

.

More generally, the probability of a variable conditioned on its Markov
blanket depends only on potentials involving that node
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Proof of independence through separation

We will show that A ⊥ C | B for the following distribution:

BA C

p(a, b, c) =
1

Z
φAB(a, b)φBC (b, c)

Proof.

p(a, c | b) =
p(a, c, b)∑
â,ĉ p(â, b, ĉ)

=
φAB(a, b)φBC (b, c)∑
â,ĉ φAB(â, b)φBC (b, ĉ)

=
φAB(a, b)φBC (b, c)∑

â φAB(â, b)
∑

ĉ φBC (b, ĉ)

= p(a | b)p(c | b)
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Higher-order potentials

The examples so far have all been pairwise MRFs, involving only
node potentials φi (Xi ) and pairwise potentials φi ,j(Xi ,Xj)

Often we need higher-order potentials, e.g.

φ(x , y , z) = x ⊗ y ⊗ z ,

where X ,Y ,Z are binary and ⊗ is the XOR function, enforcing that
an odd number of the variables take the value 1

Although Markov networks are useful for understanding
independencies, they hide much of the distribution’s structure:

A

C

B

D

Does this have pairwise potentials, or one potential for all 4 variables?
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Factor graphs

G does not reveal the structure of the distribution: maximum cliques vs.
subsets of them

A factor graph is a bipartite undirected graph with variable nodes and factor
nodes. Edges are only between the variable nodes and the factor nodes

Each factor node is associated with a single potential, whose scope is the set
of variables that are neighbors in the factor graph

A

C

B

D

A

C

B

D

A

C

B

D

Markov network

Factor graphs

The distribution is same as the MRF – this is just a different data structure
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Example: Low-density parity-check codes

Error correcting codes for transmitting a message over a noisy channel
(invented by Galleger in the 1960’s, then re-discovered in 1996)

Y2Y1 Y3 Y4 Y5 Y6

fA fB fC

f1 f2 f3 f4 f5 f6

X2X1 X3 X4 X5 X6

Each of the top row factors enforce that its variables have even parity:

fA(Y1,Y2,Y3,Y4) = 1 if Y1 ⊗ Y2 ⊗ Y3 ⊗ Y4 = 0, and 0 otherwise

Thus, the only assignments Y with non-zero probability are the following
(called codewords): 3 bits encoded using 6 bits

000000, 011001, 110010, 101011, 111100, 100101, 001110, 010111

fi (Yi ,Xi ) = p(Xi | Yi ), the likelihood of a bit flip according to noise model
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Probabilistic inference

The decoding problem for LDPCs is to find

argmaxyp(y | x)

This is called the maximum a posteriori (MAP) assignment

Since Z and p(x) are constants with respect to the choice of y, can
equivalently solve (taking the log of p(y, x)):

argmaxy

∑

c∈C
θc(xc),

where θc(xc) = log φc(xc)

This is a discrete optimization problem!

For general factor graphs, this is NP-hard to solve
Next week, you will see a general technique for approximately solving it
called dual decomposition
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