Probabilistic Graphical Models

David Sontag

New York University

Lecture 5, February 22, 2012

David Sontag (NYU)

Graphical Models

Lecture 5, February 22, 2012

1/

35



Today's lecture

© Worst-case complexity of probabilistic inference
@ Elimination algorithm

@ Running-time analysis of elimination algorithm (treewidth)
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Probabilistic inference

@ Today we consider exact inference in graphical models

@ In particular, we focus on conditional probability queries,

p(Y,e)
p(Y|IE=¢e) =
YE=9 ="
(e.g., the probability of a patient having a disease given some observed

symptoms)

@ Let W =X —Y — E be the random variables that are neither the query nor
the evidence. Each of these joint distributions can be computed by
marginalizing over the other variables:

p(Y,e) = ZP(Y; e,w), p(e) = Zp(yve)
w y

@ Naively marginalizing over all unobserved variables requires an exponential
number of computations

@ Does there exist a more efficient algorithm?
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Computational complexity of probabilistic inference

@ Here we show that, unless P=NP, there does not exist a more efficient
algorithm

@ We show this by reducing 3-SAT, which is NP-hard, to probabilistic
inference in Bayesian networks

@ 3-SAT asks about the satisfiability of a logical formula defined on n literals

le ceey an e.g.
(VR VQBIAN(QV QY Q)

@ Each of the disjunction terms is called a clause, e.g.

Gi(g1,92,93) = ~q3V q2 V g3

In 3-SAT, each clause is defined on at most 3 literals.

@ Our reduction also proves that inference in Markov networks is NP-hard
(why?)
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Reducing satisfiability to MAP inference

@ Input: 3-SAT formula with n literals Qq,... @, and m clauses Ci,..., Cy,

@ One variable Q; € {0, 1} for each literal, p(Q; = 1) = 0.5.

@ One variable C; € {0,1} for each clause, whose parents are the literals used
in the clause. C; = 1 if the clause is satisfied, and 0 otherwise:

P(Ci =1 apagiy) = L[Ci(Apa(i))]
@ Variable X which is 1 if all clauses satisfied, and 0 otherwise:
p(Ai=1|pa(A)) = 1[pa(A)=1], fori=1,...,m—2
p(X=1|am-2,cm) = lam—2=1cn=1]
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Reducing satisfiability to MAP inference

@ Input: 3-SAT formula with n literals Qq,... @, and m clauses Ci,..., Cy,

@ p(g,c,a,X = 1) =0 for any assignment q which does not satisfy all clauses
e p(Q=q,C=1,A=1X=1)= 4 for any satisfying assignment q

@ Thus, we can find a satisfying assignment (whenever one exists) by
constructing this BN and finding the maximum a posteriori (MAP)
assignment:

argl;ﬂca;(p(Q =q,C=c,A=a|X=1)

@ This proves that MAP inference in Bayesian networks and MRFs is NP-hard
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Reducing satisfiability to marginal inference

@ Input: 3-SAT formula with n literals Qq,... @, and m clauses Ci,..., Cy,

e p(X=1)= chap(Q =q,C=c,A=a, X =1)is equal to the number
of satisfying assignments times

@ Thus, p(X =1) > 0 if and only if the formula has a satisfying assignment

@ This shows that marginal inference is also NP-hard
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Reducing satisfiability to approximate marginal inference

@ Might there exist polynomial-time algorithms that can approximately answer
marginal queries, i.e. for some ¢, find p such that

p—e<p(Y|E=e)<p+e 7
@ Suppose such an algorithm exists, for any € € (0, %) Consider the following:
Q StartwithE={ X =1}
Q@ Fori=1,...,n:
(3 ) Let g; = argmax, p(Q; =gq|E)
(%) E—~EU(Q =gq)
@ At termination, E is a satisfying assignment (if one exists). Pf by induction:

o In iteration i, if 3 satisfying assignment extending E for both g; = 0 and
gi = 1, then choice in line 3 does not matter

@ Otherwise, suppose 3 satisfying assignment extending E for g; = 1 but not
for g =0. Then, p(Qi=1|E)=1and p(Qi=0|E)=0

o Even if approximate inference returned p(Q; =1 | E) = 0.501 and
p(Qi = 0| E) = .499, we would still choose g; =1

@ Thus, it is even NP-hard to approximately perform marginal inference!
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Probabilistic inference in practice

@ NP-hardness simply says that there exist difficult inference problems

@ Real-world inference problems are not necessarily as hard as these worst-case
instances

@ The reduction from SAT created a very complex Bayesian network:

Some graphs are easy to do inference in! For example, inference in hidden

Markov models v ovm v v Y
9998
2999

1 2 3 4 5

Ye

sO—0

and other tree-structured graphs can be performed in linear time
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Variable elimination (VE)

@ Exact algorithm for probabilistic inference in any graphical model

@ Running time will depend on the graph structure

@ Uses dynamic programming to circumvent enumerating all
assignments

@ First we introduce the concept for computing marginal probabilities,
p(X;), in Bayesian networks

o After this, we will generalize to MRFs and conditional queries
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@ Suppose we have a simple chain, A— B — C — D, and we want to
compute p(D)

e p(D) is a set of values, {p(D = d),d € Val(D)}. Algorithm
computes sets of values at a time — an entire distribution

@ By the chain rule and conditional independence, the joint distribution
factors as

p(A, B, C,D) = p(A)p(B | A)p(C | B)p(D | €)

@ In order to compute p(D), we have to marginalize over A, B, C:

p(D)=> p(A=a,B=bC=c,D)

a,b,c
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Let's be a bit more explicit...

P(a') P |a') P(cH[b') P(d']|e)
+ P(a?) P |a®) P(c'|b) P(d*|eh)
+ P(a') P(#?|al) P2 P(d] )
+ P(a?) P#?|a®) Pt | V) P(d|eh)
+ P(a') P('|a') P(2 b)) P(d']|c?)
+ P(a®) P |a®) P(|b) P(d|eh)
+ P(at) P |al) P b)) Pd|eh)
+ P(a®) P(#?|a®) P(c*|b?) P(d'|e?)

P(a') P! [al) Pt |b) P(d*|eh)
+ P(a?) P |a®) Pt |b) P(d?|eh)
+ P(a*) P2 |a') Pt | 1) P(d®|eh)
+ P(a®) P(B*|a?) P(c'|B?) P(d|c")
+ P(al) P |al) P(2|BY) P(d?]R)
+ P(a®) P('|a?) P( b)) P(d®]|c?)
+ P(at) P#?|at) P(2 V) Pd|eh)
+ P(a®) P(p*|a?) P(?|b?) P(d®|c?)

@ There is structure to the summation, e.g., repeated P(c!|b)P(d*|c?)

@ Let's modify the computation to first compute
P(a')P(b'|a") + P(a*)P(b'|a)
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@ Let's modify the computation to first compute

P(aY)P(b*|a") + P(a*)P(b'|a?)

and

P(a")P(b%|a") + P(a*)P(b%]a%)

@ Then, we get

P(a')P(b'|at) + P(a?)P(b|a?)

Tl(bi)

@ We define 71 : Val(B) — R,
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Let's be a bit more explicit...

@ We now have

A

+++
o

‘won'e

TRRR

233N

+
+ 71
+
@ We can once more reverse the order of the product and the sum and get

(ra(6")P(c! | bY) + m(B?)P(c! [ 6)) P(d! | <))
+ ()P ) +n(b")P(e® [0)) P | )

@ There are still other repeated computations!
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Let's be a bit more explicit...

@ We define 1, : Val(C) — R, with

m(ct) = m(bY)P(ctb) + T (b?)P(ct|b?)
n(c®) = n(b")P(|b") + 11 (b%)P(?|b%)

@ Now we can compute the marginal p(D) as

ra(c') P(d'|eh)
+ Tg(cz) P(dl \CQ)

ra(c') P(d*|c')
+ 7a(c?) P(d?|c?)
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What did we just do?

@ Our goal was to compute

p(D) =" p(a, b,c,D) > p(a)p(b | a)p(c | b)p(D | c)

a,b,c a,b,c

> 3> p(D | c)p(c | b)p(b | a)p(a)
c b a

@ We can push the summations inside to obtain:

p(D) =3 (D[ )Y plc|5) S pl(b| 2)p(a)
R YR YU L
71(b)
@ Let's call 91(A, B) = P(A)P(B|A). Then, 71(B) = >, v1(a, B)
@ Similarly, let ¢»(B, C) = 71(B)P(C|B). Then, 7(C) =3, ¥1(b, C)

@ This procedure is dynamic programming: computation is inside out instead
of outside in
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Inference in a chain

@ Generalizing the previous example, suppose we have a chain
X1 — Xo — --- — X, where each variable has k states

@ In Problem Set 1, you gave an algorithm to compute p(X;), for k =2

@ For i =1 upto n—1, compute (and cache)

I+1 ZP i+1 | Xl I)

Each update takes k2 time (why?)
@ The total running time is O(nk?)

@ In comparison, naively marginalizing over all latent variables has complexity

O(k™

@ We did inference over the joint without ever explicitly constructing it!
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Summary so far

@ Worst-case analysis says that marginal inference is NP-hard
@ Even approximating it is NP-hard

@ In practice, due to the structure of the Bayesian network, we can cache
computations that are otherwise computed exponentially many times

@ This depends on our having a good variable elimination ordering
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Sum-product inference task

® We want to give an algorithm to compute p(Y) for BNs and MRFs
@ This can be reduced to the following sum-product inference task:
Compute T(Y) = Z H ¢(ZSCODE[¢]OZ7 yScope[dJ]ﬂY) V)h
z ¢ped
where @ is a set of factors or potentials

@ For a BN, @ is given by the conditional probability distributions for all
variables,

¢ = {dx 1 = {p(Xi | Xpa(x)) i
and where we sum over theset Z=X —-Y

@ For Markov networks, the factors ¢ correspond to the set of potentials
which we earlier called C

e Sum-product returns an unnormalized distribution, so we divide by

>y 7(y)
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Factor marginalization

o Let ¢(X,Y) be a factor where X is a set of variables and Y ¢ X

@ Factor marginalization of ¢ over Y (also called “summing out Y in ¢")
gives a new factor:

T(X) = ¢(X.Y)

For example,

a'| b'| '] 025
a'| b'| c?| 035
a'| b*| '] 0.08
a'| b2| 2| 016 a'| c'033
a?| b'| '] 005 a'| ¢ 051
a*| b' | 2| 007 a* | c'|0.05
at| b2t o a*| c* 007
a*| b2 2| o @ | '] 024
a| b | c|ols @ | c* 039
a| b | 2|02l
@ | b*| '] 0.09
a| b2 c?] 018
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Sum-product variable elimination

@ Order the variables Z (called the elimination ordering)
@ lteratively marginalize out variable Z;, one at a time
@ For each /,

@ Multiply all factors that have Z; in their scope, generating a new
product factor

© Marginalize this product factor over Z;, generating a smaller factor

© Remove the old factors from the set of all factors, and add the new one
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Algorithm 9.1 Sum-Produet Variable Elimination algorithm

Procedure Sum-Product-Variable-Elimination (

$. |/ Set of factors
Z. |/ Setof variables to be eliminated
< // Orderingon Z
)
1 Let Z1,...,Zg be an ordering of Z such that
2 Zi<Z; iff i< j
3 fori=1,...,k
1 ¢ — Sum-Product-Eliminate-Var(®, Z;)
5 9" lgea®
6 return ¢*
Procedure Sum-Product-Eliminate-Var (
®. /) Set of factors
Z |/ Variable to be eliminated
)
1 O'— {pe® : Ze Seope[d]}
9 O D — D
3 Ve Tlscar @
1 Te— Y0

return " U {7}
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Coherence

@ What is p(Job)? Joint distribution factorizes as:
p(C,D,1,G,S,L,H,J) = p(C)p(D|C)p(1)p(G|D, Np(LIG)P(S|I)P(JIS, L)p(H|J, G)
with factors
¢ = {(bc(c), ¢D(Ca D)a d”(l)? ¢G(G7 D, I)7 ¢L(L7 G)a
¢s(S,1),¢,(J,S, L), 6u(H, J, G)}
@ Let's do variable elimination with ordering {C, D, !, H, G, S, L} on the board!
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Elimination ordering

@ We can pick any order we want, but some orderings introduce factors with
much larger scope

Step | Variable Factors Variables New
eliminated used involved factor
1 C ¢c(C), ¢p(D,C) C,D (D)
2 D ¢a(G,I,D), 71(D) G.I,D | 7=(G,I)
3 I ¢1(I). $s(S, 1), 72(G,T) G,S,I | m(G,S)
4 H ¢u(H,G,J) H,G,J 74(G, J)
5 G 74(G, J), 13(G,S), (L, G) | G,J,L,S | 75(J,L,S)
6 S 75(J, L, S), ¢5(J, L, S) JL,S 76(J, L)
7 L 76(J, L) J L 77(J)
@ Alternative ordering...
Step Variable Factors Variables New
eliminated used involved factor
1 G ¢c(G,I,D), ¢.(L,G), pg(H,G,J) | G.I,D,L,J.H | 7(I,D,L,J . H)
2 I or(I), ¢s(S, 1), n(I,D,L,S,J,H) | S,I,D,L,J,H | 7o(D,L,S,J,H)
3 S ¢s(J,L,S), 2(D, L, S, J, H) D,L,S,J,H 73(D,L,J,H)
4 L 73(D,L,J,H) D, L,J H T4(D, J, H)
5 H T4(D, J, H) D, JJH 75(D,J)
6 c 75(D,J), ¢p(D,C) D, J,C (D, J)
7 D 76(D, J) D, J 7(J)
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How to introduce evidence?

@ Recall that our original goal was to answer conditional probability queries,

_ o p(Y.e)

Apply variable elimination algorithm to the task of computing P(Y,e)

Replace each factor ¢ € ® that has E N Scope[¢] # 0 with

¢,(xScope[¢]fE) = ¢(XScope[¢]fEa eEﬂScope[¢])

@ Then, eliminate the variables in X — Y — E. The returned factor ¢*(Y) is
p(Y,e)

To obtain the conditional p(Y | €), normalize the resulting product of
factors — the normalization constant is p(e)
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Sum-product VE for conditional distributions

Algorithm 9.2 Using Sum-Product-Variable-Elimination for computing conditional
probabilities.
Procedure Cond-Prob-VE (
Ko/

! A network over A’

" Set of query variables
E=e // Evidence

1 $ — Factors parameterizing K
2 Replace each ¢ € @ hy ¢[E = €]
: Select an elimination ordering <

3
4 Z— =X-Y -FE

5 ¢* — Sum-Product-Variable-Elimination(®, <, Z)
G @ = P yevay) ?(Y)
T return a, ¢*
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Running time of variable elimination

Step | Variable Factors Variables New
eliminated used involved factor
1 C oc(C), op(D,C) ¢, D (D)
2 D ¢c(G,I,D), 11(D) G.I,D (G, 1)
3 1 é1(1), ds(S,1), 72(G, 1) G,S,1 | (G, S)
1 H éu(H, G, J) H,G,J | 74(G,J)
5 G (G, ), 78(G, S), ¢L(L,G) | G, I L, 8 | 75(J. L, 8)
6 s 5(L L, S), ¢5(J, L, S) J,L,S | 7(JL)
7 L 76(J, L) JL 72(J)

@ Let n be the number of variables, and m the number of initial factors

@ At each step, we pick a variable X; and multiply all factors involving X;,
resulting in a single factor v;

@ Let N; be the number of entries in the factor ¢;, and let N, = max; N;
@ The running time of VE can be shown to be O(mN,,)

@ The primary concern is that N, can potentially be exponential in n
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Running time in graph-theoretic concepts

@ Let's try to analyze the complexity in terms of the graph structure

@ Go is the undirected graph with one node per variable, where there is an
edge (Xj, X;) if these appear together in the scope of some factor ¢

@ lIgnoring evidence, this is either the original MRF (for sum-product VE on
MRFs) or the moralized Bayesian network:

Coherence
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Elimination as graph transformation

When a variable X is eliminated,

@ We create a single factor ¢ that contains X and all of the variables Y with
which it appears in factors

@ We eliminate X from ), replacing it with a new factor 7 that contains all of
the variables Y, but not X. Let’s call the new set of factors ®x

How does this modify the graph, going from G¢ to G, 7
@ Constructing 1 generates edges between all of the variables Y € Y
@ Some of these edges were already in G, some are new
@ The new edges are called fill edges

@ The step of removing X from & to construct ®x removes X and all its
incident edges from the graph
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Coherence

(Elim. D) (Elim. 1)
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Induced graph

@ We can summarize the computation cost using a single graph that is the
union of all the graphs resulting from each step of the elimination

@ We call this the induced graph Zo -, where < is the elimination ordering
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Example

Coherence

Step Variable Factors Variables New
eliminated used mvolved factor
1 [= oc(C), ¢p(D,C) D (D)
2 D bc(G,I,D), 11(D) G, I,D T2(G,T)
3 I ¢r(I), ¢s(S,1), 72(G, 1) G,S.1 (G, 8)
4 H on(H,G,J) HGJ (G, J)
5 G (G, J), 73(G,S). (L, G) | G,J,L,S | 75(J,L,S)
6 S 75(J,L,S), ¢5(J L,S) JL.S 76(J, L)
7 L T6(J, L) J L 77(J)
L/ 1
(Induced graph) (Maximal Cliques)
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Properties of the induced graph

@ Theorem: Let Zy . be the induced graph for a set of factors ¢ and
ordering <, then

© Every factor generated during VE has a scope that is a clique in Zg -
@ Every maximal clique in Zg < is the scope of some intermediate factor
in the computation

(see book for proof)
@ Thus, N, is equal to the size of the largest clique in Zg -

@ The running time, O(mN,,), is exponential in the size of the largest clique
of the induced graph
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Example

i S
[(Gtereree
;

|

Step | Variable Factors Variables New
eliminated used involved factor
1 [ ¢c(C), ¢p(D,C) C,D T1(D)
2 D ¢a(G,1,D), 11(D) G, I,.D (G, I)
3 I or(I), ¢s(S,I), T2(G,I) G, 8,1 73(G, S)
1 H on(H,G,J) H,G.J | n(G,J)
5 G (G, ), 7a(G, S), dL(L,G) | G, L, S | 75(J, L, 8)
i s 75(J,L, S), ¢5(J. L, S) J.L,S 76(J, L)
A\ 7 L 76(J, L) JL 72(J)
(Maximal Cliques) (VE)
@ The maximal cliques in Zg - are
C, = {C/D}
C2 = {D7 /a G}
C3 = {Ga La 57 ‘/}

C, = {G,J.H}
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Induced width

@ We define the width of an induced graph to be the number of nodes in the
largest clique in the graph, minus 1

@ We define the induced width wi - to be the width of the graph Zx -
induced by applying VE to K using ordering <

@ The minimal induced width of a graph K is w& = min_ wi <
(also known as the treewidth of graph K)

The minimal induced width provides a bound on the best running time
achievable by VE on a distribution that factorizes over K

Unfortunately, finding the best elimination ordering (equivalently, computing
the minimal induced width) for a graph is NP-hard

In practice, heuristics (e.g., min-fill) are used to find a good elimination
ordering
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