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Today’s lecture

1 Running-time analysis of elimination algorithm (treewidth)
Done on blackboard

2 Sum-product Belief Propagation (BP)
Done on blackboard

3 MAP inference as an ILP (integer linear program)
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MAP inference

Recall the MAP inference task,

arg max
x

p(x), p(x) =
1

Z

∏

c∈C

φc(xc)

(we assume any evidence has been subsumed into the potentials, as
discussed in the last lecture)

Since the normalization term is simply a constant, this is equivalent to

arg max
x

∏

c∈C

φc(xc)

(called the max-product inference task)

Furthermore, since log is monotonic, letting θc(xc) = lg φc(xc), we have that
this is equivalent to

arg max
x

∑

c∈C

θc(xc)

(called max-sum)
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Can apply variable elimination!

Suppose we have a simple chain, A−B −C −D, and we want to find
the MAP assignment,

max
a,b,c,d

φAB(a, b)φBC (b, c)φCD(c, d)

Just as we did before, we can push the maximizations inside to obtain:

max
a,b

φAB(a, b) max
c
φBC (b, c) max

d
φCD(c , d)

or, equivalently,

max
a,b

θAB(a, b) + max
c
θBC (b, c) + max

d
θCD(c , d)

To find the actual maximizing assignment, we do a traceback (or keep
back pointers)
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Max-product variable elimination
13.2. Variable Elimination for (Marginal) MAP 557

Algorithm 13.1 Variable elimination algorithm for MAP. The algorithm can be used both in
its max-product form, as shown, or in its max-sum form, replacing factor product with factor
addition.

Procedure Max-Product-VE (
Φ, // Set of factors over X

≺ // Ordering on X

)
1 Let X1, . . . , Xk be an ordering of X such that
2 Xi ≺ Xj iff i < j
3 for i = 1, . . . , k
4 (Φ, φXi) ← Max-Product-Eliminate-Var(Φ, Xi)
5 x∗ ← Traceback-MAP({φXi : i = 1, . . . , k})
6 return x∗,Φ // Φ contains the probability of the MAP

Procedure Max-Product-Eliminate-Var (
Φ, // Set of factors
Z // Variable to be eliminated

)
1 Φ′ ← {φ ∈ Φ : Z ∈ Scope[φ]}
2 Φ′′ ← Φ − Φ′

3 ψ ← ∏
φ∈Φ′ φ

4 τ ← maxZ ψ
5 return (Φ′′ ∪ {τ}, ψ)

Procedure Traceback-MAP (
{φXi

: i = 1, . . . , k}
)

1 for i = k, . . . , 1
2 ui ← (x∗

i+1, . . . , x
∗
k)〈Scope[φXi ] − {Xi}〉

3 // The maximizing assignment to the variables eliminated after
Xi

4 x∗
i ← arg maxxi

φXi
(xi,ui)

5 // x∗
i is chosen so as to maximize the corresponding entry in

the factor, relative to the previous choices ui

6 return x∗

As we have discussed, the result of the computation is a max-marginal MaxMargP̃Φ
(Xi) over

the final uneliminated variable, Xi. We can now choose the maximizing value x∗
i for Xi.

Importantly, from the definition of max-marginals, we are guaranteed that there exists some
assignment ξ∗ consistent with x∗

i . But how do we construct such an assignment?
We return once again to our simple example:

Example 13.3 Consider the network of example 13.1, but now assume that we wish to find the actual assignment
a∗, b∗ = arg maxA,B P (A, B). As we discussed, we first compute the internal maximization
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Max-product belief propagation (for tree-structured MRFs)

Same as sum-product belief propagation except that the messages are
now:

mj→i (xi ) = max
xj

φj(xj)φij(xi , xj)
∏

k∈N(j)\i
mk→j(xj)

After passing all messages, can compute single node max-marginals,

mi (xi ) = φi (xi )
∏

j∈N(i)

mj→i (xi ) ∝ max
xV\i

p(xV \i , xi )

If the MAP assignment x∗ is unique, can find it by locally decoding
each of the single node max-marginals, i.e.

x∗i = arg max
xi

mi (xi )

If the MAP assignment is not unique, can either:
1 Randomly perturb the objective functions to make MAP unique, or
2 Use the traceback method shown on previous slide
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Exactly solving MAP, beyond trees

MAP as a discrete optimization problem is

arg max
x

∑

i∈V

θi (xi ) +
∑

ij∈E

θij(xi , xj)

Very general discrete optimization problem – many hard combinatorial
optimization problems can be written as this (e.g., 3-SAT)

Studied in operations research communities, theoretical computer science, AI
(constraint satisfaction, weighted SAT), etc.

Very fast moving field, both for theory and heuristics

For some special cases of θ, polynomial-time algorithms known:

Trees; binary variables with sub-modular edge potentials; planar Ising
model with u = 0; matching problems; ...
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MAP as an integer linear program (ILP)

MAP as a discrete optimization problem is

arg max
x

∑

i∈V

θi (xi ) +
∑

ij∈E

θij(xi , xj).

To turn this into an integer linear program, we introduce variables

1 µi (xi ), one for each i ∈ V and state xi
2 µij(xi , xj), one for each edge ij ∈ E and pair of states xi , xj

The objective function is then

max
µ

∑

i∈V

∑

xi

θi (xi )µi (xi ) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

What do the constraints need to be? We want to enforce that every choice
of µ corresponds one-to-one with an assignment x
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MAP as an integer linear program (ILP)

max
µ

∑

i∈V

∑

xi

θi (xi )µi (xi ) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

Subject to
µi (xi ) ∈ {0, 1} ∀i ∈ V , xi

µij(xi , xj) ∈ {0, 1} ∀ij ∈ E , xi , xj

and ∑

xi

µi (xi ) = 1 ∀i ∈ V

∑

xi ,xj

µij(xi , xj) = 1 ∀ij ∈ E

We also need the edge variables µij to be consistent with the node variables:

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj
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Visualization of feasible µ vectors

Marginal polytope!
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Figure 2-1: Illustration of the marginal polytope for a Markov random field with three nodes
that have states in {0, 1}. The vertices correspond one-to-one with global assignments to
the variables in the MRF. The marginal polytope is alternatively defined as the convex hull
of these vertices, where each vertex is obtained by stacking the node indicator vectors and
the edge indicator vectors for the corresponding assignment.

2.2 The Marginal Polytope

At the core of our approach is an equivalent formulation of inference problems in terms of
an optimization over the marginal polytope. The marginal polytope is the set of realizable
mean vectors µ that can arise from some joint distribution on the graphical model:

M(G) =
�

µ ∈ Rd | ∃ θ ∈ Rd s.t. µ = EPr(x;θ)[φ(x)]
�

(2.7)

Said another way, the marginal polytope is the convex hull of the φ(x) vectors, one for each
assignment x ∈ χn to the variables of the Markov random field. The dimension d of φ(x) is
a function of the particular graphical model. In pairwise MRFs where each variable has k
states, each variable assignment contributes k coordinates to φ(x) and each edge assignment
contributes k2 coordinates to φ(x). Thus, φ(x) will be of dimension k|V | + k2|E|.

We illustrate the marginal polytope in Figure 2-1 for a binary-valued Markov random
field on three nodes. In this case, φ(x) is of dimension 2 · 3 + 22 · 3 = 18. The figure shows
two vertices corresponding to the assignments x = (1, 1, 0) and x� = (0, 1, 0). The vector
φ(x) is obtained by stacking the node indicator vectors for each of the three nodes, and then
the edge indicator vectors for each of the three edges. φ(x�) is analogous. There should be
a total of 9 vertices (the 2-dimensional sketch is inaccurate in this respect), one for each
assignment to the MRF.

Any point inside the marginal polytope corresponds to the vector of node and edge
marginals for some graphical model with the same sufficient statistics. By construction, the

17
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MAP as an integer linear program (ILP)

MAP(θ) = max
µ

∑

i∈V

∑

xi

θi (xi )µi (xi ) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

subject to:

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

Many extremely good off-the-shelf solvers, such as CPLEX and Gurobi
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