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Today's lecture

@ Running-time analysis of elimination algorithm (treewidth)
Done on blackboard

@ Sum-product Belief Propagation (BP)
Done on blackboard

© MAP inference as an ILP (integer linear program)
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MAP infi ce

@ Recall the MAP inference task,
1
argmaxp(x),  p(x) = 5 [] delxe)
ceC

(we assume any evidence has been subsumed into the potentials, as
discussed in the last lecture)

@ Since the normalization term is simply a constant, this is equivalent to
arg max H dc(xc)
ceC
(called the max-product inference task)

@ Furthermore, since log is monotonic, letting .(xc) = Ig ¢c(xc), we have that
this is equivalent to

arg max Z 0c(xc)

ceC

(called max-sum)
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Can apply variable elimination!

@ Suppose we have a simple chain, A— B— C — D, and we want to find
the MAP assignment,

maxd quAB(a, b)qf)BC(b7 C)¢CD(C7 d)

a,b,c,

@ Just as we did before, we can push the maximizations inside to obtain:
max oas(a, b) max oBc(b, c) max ocp(c, d)
or, equivalently,

max0ag(a, b) + maxfpc(b,c) + max Ocp(c,d)
C

a,b

@ To find the actual maximizing assignment, we do a traceback (or keep
back pointers)
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Max-product variable elimination

Procedure Max-Product-VE (
®, /I Set of factors over X
< Il Ordering on X

)
1 Let Xi,..., X\ be an ordering of X such that
2 Xi<X;iffi<j
3 fori=1,....k
4 (@, ¢x,) < Max-Product-Eliminate-Var(®, X;)
5 x* « Traceback-MAP({¢x, : i=1,...,k})
6 return *,®  // ® contains the probability of the MAP
Procedure Max-Product-Eliminate-Var (
P, /] Set of factors
Z Il Variable to be eliminated
)
1 '« {pec® : Zc Scope[¢]}
2 D -
3 P~ Héed” ]
4 T ¢ maxz Y
5 return (®” U {7}, v)
Procedure Traceback-MAP (
{ox, : i=1,....k}
)
1 fori=Fk,...,1
2 i (@) (Scopelo,] — (X))
3 1l The maximizing assignment to the variables eliminated after
Xi
4 ¢ argmax,, ¢x, (i, u;)
5 /I @} is chosen so as to maximize the corresponding entry in
the factor, relative to the previous choices u;
6 return z*
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Max-product belief propagation (for tree-structured MRFs)

@ Same as sum-product belief propagation except that the messages are
now:

mjsi(x) = max 6 ()i g) ][ mis ()
keN()\i

@ After passing all messages, can compute single node max-marginals,
mi(x;) = ¢i(x) H mji(x;) o f)p«'i\XP(XV\hXi)
Vi
JeN()

o If the MAP assignment x* is unique, can find it by locally decoding
each of the single node max-marginals, i.e.

x; = arg max mj(x;)
Xi
o If the MAP assignment is not unique, can either:

@ Randomly perturb the objective functions to make MAP unique, or
@ Use the traceback method shown on previous slide
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Exactly solving MAP, beyond trees

@ MAP as a discrete optimization problem is

arg mxaxz 0:(x;) + Z 0ij(xi, x;)

iev iicE

@ Very general discrete optimization problem — many hard combinatorial
optimization problems can be written as this (e.g., 3-SAT)

@ Studied in operations research communities, theoretical computer science, Al
(constraint satisfaction, weighted SAT), etc.

@ Very fast moving field, both for theory and heuristics
@ For some special cases of €, polynomial-time algorithms known:

o Trees; binary variables with sub-modular edge potentials; planar Ising
model with u = 0; matching problems; ...
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MAP as an integer linear program (ILP)

@ MAP as a discrete optimization problem is

arg max Z 0:(x;) + Z i (xi, x;).
icv ij€E
@ To turn this into an integer linear program, we introduce variables

© ui(x;), one for each i € V and state x;
@ uij(xi, x;), one for each edge jj € E and pair of states x;, x;

@ The objective function is then

mixz D 00 mi() + YD 05, )i (xi, x;)

eV X jEE xi,X;

@ What do the constraints need to be? We want to enforce that every choice
of u corresponds one-to-one with an assignment x
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MAP as an integer linear program (ILP)

msz D 000 mi0a) + > D 050x0, %) i (%, %)

ievV xi jEE Xi,X;j

@ Subject to pi(x) € {0,1} VieV,x

pilais) € {01} Vil € Evx
and

1 VieV

> nilx)

D mila) = 1 VieE

Xi s Xj
@ We also need the edge variables 11 to be consistent with the node variables:

wita) = D milxig) Vij € E,x

wi) = > wilxi,x) Vij € E,x;
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Visualization of feasible y vectors

<— Assignment for X,

. |
® Marginal polytope 0
(I) (Wainwright & Jordan, '03) ? <— Assignment for X,
o I / | | «— Assignment for X,
"=1o 0
0 (I) <— Edge assignment for
0 .
| A=1o XX
0 0
0 1 0 | «— Edge assignment for
o IO
0 PRGN 0 I
I valid marginal probabilities 0
0 0 | «— Edge assignment for
0 X, =1 (IJ XXy
|
[ 0] i E 0] X,=0
st %m0 A
XZ =] X3= 0
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MAP as an integer linear program (ILP)

MAP(&) = m’?XZ Z 9,‘(X,')/L,'(X,') + Z Z aij(xivxj),uij(xi,)g)

eV X jE€E xi\xj
subject to:

i (i) {0,1} Vie V,x
> pilx) = 1 VieVv

Xi

m

pilx) = > milxi,x) Vi€ E,x

pig) = ZMU(Xiy)(j) Vij € E, x
@ Many extremely good off-the-shelf solvers, such as CPLEX and Gurobi
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