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Today's lecture

@ MAP inference as an integer linear program
@ Linear programming relaxations for MAP inference
© Efficiently solving the dual
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MAP as an integer linear program (ILP)

@ MAP as a discrete optimization problem is

arg max Z 0:(x;) + Z i (xi, xj).

iev iicE

@ To turn this into an integer linear program, we introduce variables

© 1i(x;), one for each i € V and state x;
@ uij(xi, x;), one for each edge jj € E and pair of states x;, x;

@ The objective function is then
msz D 000 mi0a) + Y > 05(xi, ) i (%, x;)

eV X jEE xi,X;

@ What is the dimension of u, if binary variables?
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Visualization of feasible y vectors
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What are the constraints?

@ Force every “cluster” of variables to choose a local assignment:
,u;(x,-) < {0, 1} VieV,x
Z,LL,'(X,’) =1 VieV
Xi
wij(Xi, x;) {0,1} Vij € E, xi,x;
Domilxixg) = 1 VijeE

X Xj

m

@ Enforce that these local assignments are globally consistent:

pi(x) = > pi(xi,x) Vi€ E,x;
Xj

nix) = > milxix) Vi€ Ex
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MAP as an integer linear program (ILP)

MAP(&) = m’?XZ Z 9,‘(X,')/L,'(X,') + Z Z aij(xivxj),uij(xi,)g)

eV X jE€E xi\xj
subject to:

i (i) {0,1} Vie V,x
> pilx) = 1 VieVv

Xi

m

pilx) = > milxi,x) Vi€ E,x

pig) = ZMU(Xiy)(j) Vij € E, x
@ Many extremely good off-the-shelf solvers, such as CPLEX and Gurobi
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Linear programming relaxation for MAP

Integer linear program was:
MAP(#) = max DO 00 mi0a) + XY 050, x:) i (i, X;)
ievV xi IJEE Xi,X;j
subject to
pi(xi) {0,1} VieV,x
Z/,L,'(X,') = 1 VieV

Xi

m

pil) = > milxi,x) Vi€ E,x
Xj
ui(x) = ZHU(Xian) Vij € E, x;

Relax integrality constraints, allowing the variables to be between 0 and 1:

pi(xi) € [0,1] VieV,x
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Linear programming relaxation for MAP

Linear programming relaxation is:

LP(0) = mixZZH,-(x,-)u,-(x,-) )0 050x0, ) i (x> %)

eV x jEE xi,X;

m

i (i) [0,1] VieV,x

> pilx) = 1 VieVv

pilx) = > milxix) Vi€ Ex
Xj

ni(x) = ZMU(X:',XJ‘) Vij € E, x;

@ Linear programs can be solved efficiently!

@ Since the LP relaxation maximizes over a larger set of solutions, its value

can only be larger!
MAP(9) < LP(9)
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Dual decomposition

@ Consider the original discrete optimization problem:

MAP(9) = mxaxz 0i(xi) + Z i (xi, xj).

iev iicE

@ If we push the maximizations inside the sums, the value can only increase:

MAP(0) <Y " max0;i(x;) + > max;(xi, x)
iev ¥ jice

@ Recall from your homework that you can always reparameterize a

distribution by operations like

0 () = 690x) + ()
0 (ag) = 0009) — F(x)

for any function f(x;), without changing the distribution
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Dual decomposition

@ Define:
0i(x) = ei(Xi)‘f‘Z(sjai(Xi)
jeE

05(xi, %)) = 05(xi, %) — 6j—i(x) = 0ij(x7)

@ It is easy to verify that

ZQ (xi) +Z€U (xi, %) Z@ X,)—i—ZG,J (xi,x;) Vx

ijeE ijeE

@ Thus, we have that:

MAP(#) = MAP(0) < Z max 8;(x;) + Z max@,j(x;,)g)

iev jege

@ Every value of § gives a different upper bound on the value of the MAP!
@ The tightest upper bound can be obtained by minimizing the r.h.s. with

respect to 4!
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Dual decomposition

@ We obtain the following dual linear program: L(d) =
> max (6:00) + 3 5i(x) ) + Z max (051 ) = 6ji() = 611(9) )
iev iicE

DUAL-LP(6) = min L(5)

@ We showed two ways of upper bounding the value of the MAP assignment:

MAP(9) < LP(9) (1)
MAP(A) < DUAL-LP(9) < L(6) (2)

@ The dual LP allows us to upper bound the value of the MAP assignment
without solving a LP to optimality

@ Although we derived these linear programs in seemingly very different ways,
in turns out that:
LP(0) = DUAL-LP(0)
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Linear programming duality

1, (Dual) LP relaxation
(Primal) LP relaxation
Optimal assignment
X" TG Marginal polytope

MAP() < LP(6) = DUAL-LP(0) < L(5)
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Solving the dual efficiently

@ Many ways to solve the dual linear program, i.e. minimize with respect to §:

>~ max (6:00) + Y bl )+Zmax (6506 %) = 8j+i(x) = Gi5(x) ),

iev iicE
@ One option is to use the subgradient method, as you saw in Lecture 3

@ Can also solve using block coordinate-descent, which gives algorithms
that look very much like max-sum belief propagation:

AL
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Max-product linear programming (MPLP) algorithm

Input: A set of factors 6;(x;), 0;(xi, x;)
Output: An assignment xi, ..., x, that approximates the MAP
Algorithm:

@ Initialize §;,j(x;) =0, 6&ji(x) =0, Vij€ E, x;,x

@ lterate until small enough change in L(6):

For each edge ij € E (sequentially), perform the updates:

1 __; 1 _i

disi(xi) = —551.J(x;)+§mx?x[0;j(x;,><j)—|—5j (XJ)] Vx;
1, 1 _

6iig) = =507 06) + 5 max [0505.9) + 0,7 (x)] ¥y

where 6;7(x;) = 0i(x;) + Y iker kzj Ok—i(xi)
@ Return x; € arg maxg, 69 (%;)
David Sontag (NYU)
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Other approaches to solve MAP

@ Local search
o Greedily search over the space of assignments
o Start from an arbitrary assignment (e.g., random). lterate:
o Choose a variable. Change a new state for this variable to maximize
the value of the resulting assignment
@ Branch-and-bound
o Exhaustive search over space of assignments, pruning branches that
can be provably shown not to contain a MAP assignment
o Can use the LP relaxation or its dual to obtain upper bounds
o Lower bound obtained from value of any assignment found along the
way
@ Branch-and-cut (most powerful method; used by CPLEX)
e Same as branch-and-bound, except spend more time getting tighter
bounds
e Adds cutting-planes to cut off fractional solutions of the LP relaxation,
making the upper bound tighter
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