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Today’s lecture

1 MAP inference as an integer linear program

2 Linear programming relaxations for MAP inference

3 Efficiently solving the dual
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MAP as an integer linear program (ILP)

MAP as a discrete optimization problem is

arg max
x

∑

i∈V
θi (xi ) +

∑

ij∈E
θij(xi , xj).

To turn this into an integer linear program, we introduce variables

1 µi (xi ), one for each i ∈ V and state xi
2 µij(xi , xj), one for each edge ij ∈ E and pair of states xi , xj

The objective function is then

max
µ

∑

i∈V

∑

xi

θi (xi )µi (xi ) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

What is the dimension of µ, if binary variables?
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Visualization of feasible µ vectors

Marginal polytope!
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Figure 2-1: Illustration of the marginal polytope for a Markov random field with three nodes
that have states in {0, 1}. The vertices correspond one-to-one with global assignments to
the variables in the MRF. The marginal polytope is alternatively defined as the convex hull
of these vertices, where each vertex is obtained by stacking the node indicator vectors and
the edge indicator vectors for the corresponding assignment.

2.2 The Marginal Polytope

At the core of our approach is an equivalent formulation of inference problems in terms of
an optimization over the marginal polytope. The marginal polytope is the set of realizable
mean vectors µ that can arise from some joint distribution on the graphical model:

M(G) =
�

µ ∈ Rd | ∃ θ ∈ Rd s.t. µ = EPr(x;θ)[φ(x)]
�

(2.7)

Said another way, the marginal polytope is the convex hull of the φ(x) vectors, one for each
assignment x ∈ χn to the variables of the Markov random field. The dimension d of φ(x) is
a function of the particular graphical model. In pairwise MRFs where each variable has k
states, each variable assignment contributes k coordinates to φ(x) and each edge assignment
contributes k2 coordinates to φ(x). Thus, φ(x) will be of dimension k|V | + k2|E|.

We illustrate the marginal polytope in Figure 2-1 for a binary-valued Markov random
field on three nodes. In this case, φ(x) is of dimension 2 · 3 + 22 · 3 = 18. The figure shows
two vertices corresponding to the assignments x = (1, 1, 0) and x� = (0, 1, 0). The vector
φ(x) is obtained by stacking the node indicator vectors for each of the three nodes, and then
the edge indicator vectors for each of the three edges. φ(x�) is analogous. There should be
a total of 9 vertices (the 2-dimensional sketch is inaccurate in this respect), one for each
assignment to the MRF.

Any point inside the marginal polytope corresponds to the vector of node and edge
marginals for some graphical model with the same sufficient statistics. By construction, the

17
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What are the constraints?

Force every “cluster” of variables to choose a local assignment:

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µij(xi , xj) ∈ {0, 1} ∀ij ∈ E , xi , xj∑

xi ,xj

µij(xi , xj) = 1 ∀ij ∈ E

Enforce that these local assignments are globally consistent:

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj
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MAP as an integer linear program (ILP)

MAP(θ) = max
µ

∑

i∈V

∑

xi

θi (xi )µi (xi ) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

subject to:

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

Many extremely good off-the-shelf solvers, such as CPLEX and Gurobi
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Linear programming relaxation for MAP

Integer linear program was:

MAP(θ) = max
µ

∑

i∈V

∑

xi

θi (xi )µi (xi ) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

subject to

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

Relax integrality constraints, allowing the variables to be between 0 and 1:

µi (xi ) ∈ [0, 1] ∀i ∈ V , xi
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Linear programming relaxation for MAP

Linear programming relaxation is:

LP(θ) = max
µ

∑

i∈V

∑

xi

θi (xi )µi (xi ) +
∑

ij∈E

∑

xi ,xj

θij(xi , xj)µij(xi , xj)

µi (xi ) ∈ [0, 1] ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

Linear programs can be solved efficiently!

Since the LP relaxation maximizes over a larger set of solutions, its value
can only be larger!

MAP(θ) ≤ LP(θ)
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Dual decomposition

Consider the original discrete optimization problem:

MAP(θ) = max
x

∑

i∈V
θi (xi ) +

∑

ij∈E
θij(xi , xj).

If we push the maximizations inside the sums, the value can only increase:

MAP(θ) ≤
∑

i∈V
max
xi

θi (xi ) +
∑

ij∈E
max
xi ,xj

θij(xi , xj)

Recall from your homework that you can always reparameterize a
distribution by operations like

θnewi (xi ) = θoldi (xi ) + f (xi )

θnewij (xi , xj) = θoldij (xi , xj)− f (xi )

for any function f (xi ), without changing the distribution
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Dual decomposition

Define:

θ̃i (xi ) = θi (xi ) +
∑

ij∈E
δj→i (xi )

θ̃ij(xi , xj) = θij(xi , xj)− δj→i (xi )− δi→j(xj)

It is easy to verify that
∑

i

θi (xi ) +
∑

ij∈E
θij(xi , xj) =

∑

i

θ̃i (xi ) +
∑

ij∈E
θ̃ij(xi , xj) ∀x

Thus, we have that:

MAP(θ) = MAP(θ̃) ≤
∑

i∈V
max
xi

θ̃i (xi ) +
∑

ij∈E
max
xi ,xj

θ̃ij(xi , xj)

Every value of δ gives a different upper bound on the value of the MAP!

The tightest upper bound can be obtained by minimizing the r.h.s. with
respect to δ!
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Dual decomposition

We obtain the following dual linear program: L(δ) =

∑

i∈V
max
xi

(
θi (xi ) +

∑

ij∈E
δj→i (xi )

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi )− δi→j(xj)

)
,

DUAL-LP(θ) = min
δ

L(δ)

We showed two ways of upper bounding the value of the MAP assignment:

MAP(θ) ≤ LP(θ) (1)

MAP(θ) ≤ DUAL-LP(θ) ≤ L(δ) (2)

The dual LP allows us to upper bound the value of the MAP assignment
without solving a LP to optimality

Although we derived these linear programs in seemingly very different ways,
in turns out that:

LP(θ) = DUAL-LP(θ)
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Linear programming duality

(Dual) LP relaxation!

Optimal assignment!
(Primal) LP relaxation!

θ
µ∗

x*! Marginal polytope!

MAP(θ) ≤ LP(θ) = DUAL-LP(θ) ≤ L(δ)
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Solving the dual efficiently

Many ways to solve the dual linear program, i.e. minimize with respect to δ:

∑

i∈V
max
xi

(
θi (xi ) +

∑

ij∈E
δj→i (xi )

)
+
∑

ij∈E
max
xi ,xj

(
θij(xi , xj)− δj→i (xi )− δi→j(xj)

)
,

One option is to use the subgradient method, as you saw in Lecture 3

Can also solve using block coordinate-descent, which gives algorithms
that look very much like max-sum belief propagation:
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Max-product linear programming (MPLP) algorithm

Input: A set of factors θi (xi ), θij(xi , xj)

Output: An assignment x1, . . . , xn that approximates the MAP

Algorithm:

Initialize δi→j(xj) = 0, δj→i (xi ) = 0, ∀ij ∈ E , xi , xj

Iterate until small enough change in L(δ):

For each edge ij ∈ E (sequentially), perform the updates:

δj→i (xi ) = −1

2
δ−ji (xi ) +

1

2
max
xj

[
θij(xi , xj) + δ−ij (xj)

]
∀xi

δi→j(xj) = −1

2
δ−ij (xj) +

1

2
max
xi

[
θij(xi , xj) + δ−ji (xi )

]
∀xj

where δ−ji (xi ) = θi (xi ) +
∑

ik∈E ,k 6=j δk→i (xi )

Return xi ∈ arg maxx̂i θ̃
δ
i (x̂i )
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Other approaches to solve MAP

Local search

Greedily search over the space of assignments
Start from an arbitrary assignment (e.g., random). Iterate:
Choose a variable. Change a new state for this variable to maximize
the value of the resulting assignment

Branch-and-bound

Exhaustive search over space of assignments, pruning branches that
can be provably shown not to contain a MAP assignment
Can use the LP relaxation or its dual to obtain upper bounds
Lower bound obtained from value of any assignment found along the
way

Branch-and-cut (most powerful method; used by CPLEX)

Same as branch-and-bound, except spend more time getting tighter
bounds
Adds cutting-planes to cut off fractional solutions of the LP relaxation,
making the upper bound tighter
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