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Approximate marginal inference

@ Given the joint p(xi,...,x,) represented as a graphical model, how
do we perform marginal inference, e.g. to compute p(x1)?

@ We showed in Lecture 5 that doing this exactly is NP-hard

o Nearly all approximate inference algorithms are either:

© Monte-carlo methods (e.g., likelihood reweighting, MCMC)
@ Variational algorithms (e.g., mean-field, TRW, loopy belief
propagation)

@ These next two lectures will be on variational methods
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Variational methods

@ Goal: Approximate difficult distribution p(x) with a new distribution
q(x) such that:

@ p(x) and g(x) are “close”
@ Computation on g(x) is easy

@ How should we measure distance between distributions?

@ The Kullback-Leibler divergence (KL-divergence) between two
distributions p and q is defined as

D(pllq) = ZP

(measures the expected number of extra bits required to describe
samples from p(x) using a code based on q instead of p)

@ As you showed in your homework, D(p || g) > 0 for all p, g, with
equality if and only if p =g
@ Notice that KL-divergence is asymmetric
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KL-divergence (see Section 8.5 of K&F)

D(pllq) = Z p(x) |og

@ Suppose p is the true distribution we wish to do inference with

@ What is the difference between the solution to
argmin D(pl|q)
(called the M-projection of g onto p) and
argmin D(q||p)

(called the I-projection)?

@ These two will differ only when g is minimized over a restricted set of
probability distributions Q = {q1, ...}, and in particular when p & Q
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KL-divergence — M-projection

q" = argmin D(p||q) = XX:P(X) log 58.

For example, suppose that p(z) is a 2D Gaussian and Q is the set of all
Gaussian distributions with diagonal covariance matrices:
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KL-divergence — |-projection

* = argmin = x) lo @
q" = arg min D(q]lp) ijq( log -

For example, suppose that p(z) is a 2D Gaussian and Q is the set of all
Gaussian distributions with diagonal covariance matrices:
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KL-divergence (single Gaussian)

In this simple example, both the M-projection and I-projection find an
approximate q(x) that has the correct mean (i.e. Ep[z] = Eq4[z]):
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What if p(x) is multi-modal?
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KL-divergence — M-projection (mixture of Gaussians)

q" = arg min D(pllq) = Z p(x) log 583'

Now suppose that p(x) is mixture of two 2D Gaussians and Q is the set of
all 2D Gaussian distributions (with arbitrary covariance matrices):

p=Blue, g=Red

M-projection yields distribution g(x) with the correct mean and covariance.
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KL-divergence — I-projection (mixture of Gaussians)

q" = argmin D(q||p) = > q(x)log ZE:;-

2)

&7

p=Blue, g=Red (two equivalently good solutions!)

Unlike the M-projection, the I-projection does not necessarily yield the
correct moments.
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Finding the M-projection is the same as exact inference

M-projection is:
q" = argmin D(pllq) = ZP

@ Recall the definition of probability distributions in the exponential family:

q(x;n) = h(x) exp{n - f(x) —In Z(n)}

f(x) are called the sufficient statistics

In the exponential family, there is a one-to-one correspondance between
distributions g(x;n) and marginal vectors E4[f(x)]

Suppose that Q is an exponential family (p(x) can be arbitrary)

It can be shown (see Thm 8.6) that the expected sufficient statistics, with
respect to g*(x), are exactly the corresponding marginals under p(x):

Eg- [F(0)] = E,[F(x)]

@ Thus, solving for the M-projection is just as hard as the original inference
problem
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Most variational inference algorithms make use of the I-projection
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Variational methods

@ Suppose that we have an arbitrary graphical model:

p(x; )— I_I(bcxC exp(ZG xc) —InZ(0 )

ceC

@ All of the approaches begin as follows:

= x n@
D(qllp) = Zx:q( )| ()

1
= 72 ) In p(x Zq(x)lnm

X

= Z )(D " 0e(xe) = In Z(6)) — H(q(x))

ceC
= —ZZq(x (xc +Z )InZ(0) — H(q(x))
ceC x
= =Y Eglfc(xc)] +In Z(6) — H(q(x)).
ceC
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Variational approach

e Since D(q||p) > 0, we have
=D Eqlbc(xc)] +1n Z(8) — H(a(x)) > 0,
ceC
which implies that

InZ(0) > 3 Eqlbc(xc)] + H(q(x)).

ceC

@ Thus, any approximating distribution g(x) gives a lower bound on the
log-partition function

e Recall that D(q||p) = 0 if and only if p = q.Thus, if we allow
ourselves to optimize over all distributions, we have:

InZ(6) = max 3" Eqloc(xe)] + H(a(x).

ceC
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Mean-field algorithms

InZ(6) = max > Eqglfe(xo)] + H(a(x)).

ceC

@ Although this function is concave and thus in theory should be easy
to optimize, we need some compact way of representing g(x)

@ Mean-field algorithms assume a factored representation of the joint

distribution:
a(x) = ] ai(x)
ievV
@ The objective function to use for variational inference then becomes:

DN Oe(xe) [J i)+ Hia)

max
i(xi) >0, . qi(x;)=1 ; ‘
{ai(xi)=0, 3=, ai(xi)=1} ceC x icc ey

o Key difficulties: (1) highly non-convex optimization problem, and (2)
factored distribution is usually too big of an approximation
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Convex relaxation

InZ(6) = max 3" Eqlf(xc)] + H(q(x)).
ceC

@ Assume that p(x) is in the exponential family, and let f(x) be its sufficient
statistic vector

@ Let Q be the exponential family with sufficient statistics f(x)
@ Define pg = E4[f(x)] be the marginals of g(x)
@ We can re-write the objective as
InZz(0) = m;\x Z Z GC(XC)MZ(XC) + H(pg),
ceC Xc

where we define H(uq) to be the entropy of the maximum entropy
distribution with marginals /4

@ Next, instead of optimizing over distributions g(x), optimize over valid
marginal vectors . We obtain:

InZ(6) = Teaéz D Oe(xe)pe(xe) + H(p)
ceC Xc
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Convex relaxation

InZ(0) =max> > Oclxc)e(xe) + H(n)

ceC Xc

@ We still haven't achieved anything, because:
© The marginal polytope M is complex to describe (in general,
exponentially many vertices and facets)
@ H(w) is very difficult to compute or optimize over
@ We now make two approximations:

@ We replace M with a relaxation of the marginal polytope, e.g. the local
consistency constraints M, B
© We replace H(u) with a concave function H(u) which upper bounds

H(u), ie. H(u) < H(p)

@ As a result, we obtain the following upper bound on the log-partition
function, which is concave and easy to optimize:

InZ(6) < S‘e% Z ZHC(XC)MC(XC) + F/(M)

ceC Xc
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Local consistency polytope (same as from Lecture 7!)

@ Force every “cluster” of variables to choose a local assignment:
wi(x;) > 0 VieV,x
ZM' ) = 1 VieVv

#U(Xivxj) > 0 VU € E7Xi7Xj
> pilxi,x) = 1 Vi€E
X,',Xj
@ Enforce that these local assignments are globally consistent:

pi(x) = > pi(xi,x) Vi€ E,x;

wilg) = > pilxi.x) Vij € E,x;
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Tree reweighted entropy

One particularly powerful concave entropy approximation is the tree-reweighted
approximation from Jaakkola, Wainwright, & Wilsky (2005)

f f f f
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Obtaining true bounds on the marginals

We showed how to obtain upper and lower bounds on the partition function

These can be used to obtain upper and lower bounds on marginals

Let Z(0,,) denote the partition function of the distribution on Xy\; where
X,' = X

Suppose that L,, < Z(0,,) < Uy
@ Then,

2o PO (xw i, X))
D 2oy, XP(O(xwi» X))
2(6,)
25, Z(05)
Us;

p(xi;0) =

IN

Ly,
Uz

% i

@ Similarly, p(x;; 0) > >
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