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Probabilistic Graphical Models, Spring 2013

Problem Set 2: Bayesian networks
Due: Thursday, February 14, 2013 at 5pm

1. Markov blanket. Let X = {X1, ..., Xn} be a set of random variables with distribution p
given by the following graph.

(a) Consider the variable X1. What is the minimal subset of the variables, A ⊆ X−{X1},
such that (X1 ⊥ X −A− {X1}|A)? Justify your answer.

(b) Now, generalize this to any BN defined by (G, p). Specifically, consider variable
Xi. What is the Markov blanket of Xi? Namely, the minimal subset of variables
A ⊆ X − {Xi} such that (Xi ⊥ X − A − {Xi} | A)? Prove that this subset is
necessary and sufficient.

(Hint: Think about the variables that Xi cannot possibly be conditionally indepen-
dent of, and then think some more).

2. Consider the following distribution over 3 binary variables X,Y, Z:

p(x, y, z) =
{ 1/12 x⊕ y ⊕ z = 0

1/6 x⊕ y ⊕ z = 1

where ⊕ denotes the XOR function.

Show that there is no directed acyclic graph G such that Id−sep(G) = I(p).

3. Exercise 3.11 from Koller & Friedman.
In addition: (c) What happens if the algorithm that you gave in part (b) is used to remove
the class variable in the naive Bayes model?
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Hint: Recall that the minimal I-map for a distribution is not necessarily unique, and some
may have more edges than others (minimal here does not mean the fewest number of edges).
Let I−A(G) ⊆ I(G) denote all independence statements that do not involve variable A.
Formally, we are looking for a graph Gnew such that I(Gnew) ⊆ I−A(G) and such that
removing any edge e from Gnew would make I(Gnew\e) 6⊆ I−A(G).

4. Exercise 3.15 from Koller & Friedman. Justify your answer, and list all of the I-equivalent
Bayesian networks (if any).

5. Exercise 3.2 from Koller & Friedman.

6. Consider the Markov model given by X1 → X2 → . . . → Xn−1 → Xn, where Xi ∈ {0, 1}.
The distributions p(X1), p(X2 | X1), . . . , p(Xn | Xn−1) are provided to us as tables.

(a) Give an algorithm to compute p(Xi = 1) for all i = 1 . . . n

(b) Give an algorithm to compute p(Xi = 1 | X1 = 1) for all i = 2 . . . n

(c) Give an algorithm to compute p(X1 = 1 | Xi = 1) for all i = 2 . . . n

(Hint: combine the results of (a) and (b))

All algorithms should have a running time that is O(n). This is our first example of a prob-
abilistic inference algorithm! Notice how you were able to take advantage of the graphical
model structure to come up with a more efficient algorithm than naive marginalization.


