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Probabilistic Graphical Models, Spring 2012

Problem Set 4: Structure learning & exact inference
Due: Monday, March 11, 2013 by 5pm (electronically)

For the following questions, you may use the programming language of your choice. You are al-
lowed to use basic graph packages (e.g., for representing and working with directed or undirected
graphs), but are not permitted to use any graphical model or probabilistic inference packages.

E-mail a zip file of your full assignment, including a PDF file called “solutions.pdf”
with your written solutions, separate output files (see question 2), and all of the
code that you wrote, to Li.

1. The Alarm Bayesian network [1], shown in Figure 1, was an alarm message system for
patient monitoring that was designed in 1989 as a case study for applying Bayesian net-
works to medical diagnosis. The Alarm Bayesian network is provided in the file “alarm.bif”
(the format should be self-explanatory). Since writing code to parse this input file can be
time-consuming, we also provide Python and Matlab code that you can (optionally) use
to load the Bayesian network.

This question will explore variable elimination as applied to the Alarm BN. Implement
the sum-product variable elimination algorithm from class (also described in Section 9.3
of Koller & Friedman). Do not implement pruning of inactive variables. Use the min-fill
heuristic (see page 314) to choose an elimination ordering. Note that you do not need to
make this query-specific, i.e. it should be performed only once on the whole graph and
then this elimination order should be used for all queries.

(a) What is the elimination ordering found by the min-fill heuristic? How many fill edges
were added?

(b) What is the induced width of the graph with respect to the ordering found by min-fill?
List the variables in the largest clique.

Figure 1: ALARM (“A Logical Alarm Reduction Mechanism”) Bayesian network. [1]
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Figure 2: Using context within object detection for computer vision. [2]

Compute the value of the following queries (report up to 4 significant digits):

(c) p(StrokeVolume = High | Hypovolemia = True, ErrCauter = True, PVSat = Normal,
Disconnect = True, MinVolSet = Low)

(d) p(HRBP = Normal | LVEDVolume = Normal, Anaphylaxis = False, Press = Zero,
VentTube = Zero, BP = High)

(e) p(LVFailure = False | Hypovolemia = True, MinVolSet = Low, VentLung = Normal,
BP = Normal)

(f) p(PVSAT = Normal, CVP = Normal | LVEDVolume = High, Anaphylaxis = False,
Press = Zero)

2. When trying to do object detection from computer images, context can be very helpful. For
example, if “car” and “road” are present in an image, then it is likely that “building” and
“sky” are present as well (see Figure 2). In recent work, a tree-structured Markov random
field (see Figure 3) was shown to be particularly useful for modeling the prior distribution
of what objects are present in images and using this to improve object detection [2].

In question, you will replicate some of the results from [2]. It is not necessary to read this
paper to complete this assignment.1

1That said, please see http://people.csail.mit.edu/myungjin/HContext.html if you are curious for more
details. We omit the spatial prior and the global image features, and use only the co-occurences prior and the
local detector outputs (bi, cik, and sik from [2]’s Figure 3).
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Figure 7. Model learned for SUN 09. Red edges denote negative correlation between classes. The thickness of each edge represents the

strength of the link.

!"#$%&'$
&'()*+

!"#$%&!'"( )*+,) -,+-. ,-./0 )/+*. )*+*. 0.+**
12343&"( 0,+0) 0.+/5 0.+06 00+5. 01.-/ 0*+/6
12#7( ,+5- .+/0 .+*5 ,+8. ,.-/ )/+80
1$!9( ,-+*0 20./1 ,8+5. ,8+6. ,8+). )*+,8
1$99&"( )-+88 )0+0* )0+)* )0+/. -3.*/ 8.+0,
1:; ,4.45 -0+*- -6+5* -*+,. -*+/. 8/+*5
3!#( 8/+., 86+/8 86+/8 8/+.. *4.5/ 60+50
3!9( ,8+/- ,6+/) 24.3, ,0+,. ,)+8. 8*+6.
3<!2#( ,6+., ,/+5, 24.2- ,6+-. ,6+.. 85+.*
3$= 24.-* ,*+./ ,*+)) ,6+/. ,/+/. -6+*5

72'2'>9!1&"( ),+., )-+,* ))+5- ))+*. -*.// -.+0*
7$>( ,.+/- ,,+)6 2-.*, ,,+,. ,,+/. 86+))
<$#;"( 8-+)) 80+-) *5.-3 8-+*. 80+.. 65+08

?$9$#12@"( 8.+)/ 8.+55 *2.45 -/+-. -5+8. 05+65
%"#;$'( -0+86 -8+// -0+86 -0+). ,0.0/ 0*+5)

%$99"7%&!'9( ,8+5. 21.00 ,0+6/ ,8+.. ,0+). 8-+/0
;<""%( ,5+-/ ),+// -2.42 ,6+5. ,6+,. -0+,-
;$A! -/.01 ,5+8- ).+8. ,5+-. ).+,. 8)+6/
9#!2'( -/+/8 -/+8- ,4.4/ -,+5. -8+). 6,+-0

9B?$'29$#( -/+.. -8+)/ -0+/0 ,5.,/ -0+8. 08+*/
CDEFCGE( )6+/. )/+,5 -5.50 )6+8, )/+,. 8/+*8

)*+ !67'89":$;6<=( !"#$%&'$ >&#: 96':$?:

Table 1. Average precision-recall. Baseline) baseline detector [5];

Gist) baseline and gist [20]; Context) our context model; [4]) re-

sults from [4] (the baseline in [4] is the same as our baseline, but

performances slightly differ); Bound) Maximal APR that can be

achieved given current max recall.

the baseline detector and not for learning the tree model.

In this experiment we use 107 object detectors. These
detectors span from regions (e.g., road, sky, buildings) to
well defined objects (e.g., car, sofa, refrigerator, sink, bowl,
bed) and highly deformable objects (e.g., river, towel, cur-
tain). The database contains 4317 test images. Objects have
a large range of difficulties due to variations in shape, but
also in sizes and frequencies. The distribution of objects in
the test set follows a power law (the number of instances for
object k is roughly 1/k) as shown in Figure 2.

Context learned from training images Figure 7 shows
the learned tree relating the 107 objects. A notable differ-
ence from the tree learned for PASCAL 07 (Figure 4) is that
the proportion of positive correlations is larger. In the tree
learned from PASCAL 07, 10 out of 19 edges, and 4 out
of the top 10 strongest edges have negative relationships.
In contrast, 25 out of 106 edges and 7 out of 53 (≈ 13%)
strongest edges in the SUN tree model have negative rela-
tionships. In PASCAL 07, most objects are related by re-
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Figure 5. Image annotation results for PASCAL 07 and SUN 09.

a-b) Percentage of images in which the top N most confident de-

tections are all correct. The numbers on top of the bars indicate

the number of images that contain at least N ground-truth object

instances. c-d) Percentage of images in which the top N most con-

fident object presence predictions are all correct. The numbers on

top of the bars indicate the number of images that contain at least

N different ground-truth object categories.
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Figure 6. Improvement of context model over the baseline. Object

categories are sorted by the improvement in the localization task.

pulsion because most images contain only few categories.
In SUN 09, there is a lot more opportunities to learn posi-
tive correlations between objects. From the learned tree, we
can see that some objects take the role of dividing the tree

Figure 3: Pairwise MRF of object class presences in images [2]. Red edges denote negative
correlations between classes. The thickness of each edge represents the strength of the link. You
will be learning this MRF in question 2(a).

http://people.csail.mit.edu/myungjin/HContext.html
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(a) Structure Learning of tree-structured MRFs: the Chow-Liu Algorithm.
In this question you will implement the Chow-Liu algorithm (1968) for maximum
likelihood learning of tree-structured Markov random fields [3].

Let T denote the edges of a tree-structured pairwise Markov random field with vertices
V . For the special case of trees, it can be shown any distribution pT (x) corresponding
to a Markov random field over T admits a factorization of the form:

pT (x) =
∏

(i,j)∈T

pT (xi, xj)

pT (xi)pT (xj)

∏
j∈V

pT (xj), (1)

where pT (xi, xj) and pT (xi) denote pairwise and singleton marginals of the distribu-
tion pT , respectively.

The goal of learning is to find the tree-structured distribution pT (x) that maximizes
the log-likelihood of the training data D = {x}:

max
T

max
θT

∑
x∈D

log pT (x; θT ).

We will show in a later lecture that, for a fixed structure T , the maximum likeli-
hood parameters for a MRF will have a property called moment matching, meaning
that the learned distribution will have marginals pT (xi, xj) equal to the empirical
marginals p̂(xi, xj) computed from the data D, i.e. p̂(xi, xj) = count(xi, xj)/|D|
where count(xi, xj) is the number of data points in D with Xi = xi and Xj = xj .
Thus, using the factorization from Eq. 1, the learning task is reduced to solving

max
T

∑
x∈D

log

 ∏
(i,j)∈T

p̂(xi, xj)

p̂(xi)p̂(xj)

∏
j∈V

p̂(xj)

 .
We can simplify the quantity being maximized over T as follows (let N = |D|):

=
∑
x∈D

( ∑
(i,j)∈T

log

[
p̂(xi, xj)

p̂(xi)p̂(xj)

]
+
∑
j∈V

log [p̂(xj)]
)

=
∑

(i,j)∈T

∑
x∈D

log

[
p̂(xi, xj)

p̂(xi)p̂(xj)

]
+
∑
j∈V

∑
x∈D

log [p̂(xj)]

=
∑

(i,j)∈T

∑
xi,xj

Np̂(xi, xj) log

[
p̂(xi, xj)

p̂(xi)p̂(xj)

]
+
∑
j∈V

∑
xi

Np̂(xi) log [p̂(xj)]

= N
( ∑

(i,j)∈T

Ip̂(Xi, Xj)−
∑
j∈V

Hp̂(Xj)
)
,

where Ip̂(Xi, Xj) =
∑
xi,xj

p̂(xi, xj) log
p̂(xi,xj)
p̂(xi)p̂(xj)

is the empirical mutual information

of variables Xi and Xj , and Hp̂(Xi) is the empirical entropy of variable Xi. Since
the entropy terms are not a function of T , these can be ignored for the purpose of
finding the maximum likelihood tree structure. We conclude that the maximum
likelihood tree can be obtained by finding the maximum-weight spanning
tree in a complete graph with edge weights Ip̂(Xi, Xj) for each edge (i, j).
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Figure 4: Kitchen Figure 5: Office

The Chow-Liu algorithm then consists of the following two steps:

i. Compute each edge weight based on the empirical mutual information.

ii. Find a maximum spanning tree (MST) via Kruskal or Prim’s Algorithm.

iii. Output a pairwise MRF with edge potentials φij(xi, xj) =
p̂(xi,xj)
p̂(xi)p̂(xj)

for each

(i, j) ∈ T and node potentials φi(xi) = p̂(xi).

We have one random variable Xi ∈ {0, 1} for each object type (e.g., “car” or “road”)
specifying whether this object is present in a given image. For this problem, you
are provided with a matrix of dimension N ×M where N = 4367 is the number of
images in the training set and M = 111 is the number of object types. This data
is in the file “chowliu-input.txt”, and the file “names.txt” specifies the object names
corresponding to each column.

Implement the Chow-Liu algorithm described above to learn the maximum likelihood
tree-structured MRF from the data provided. Your code should output the MRF in
the standard UAI format described here:

http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php

(see “kitchen.uai” and “office.uai” for two examples of files in this format).

(b) In this question, you will implement both the sum-product and max-product belief
propagation algorithms for exact inference in tree-structured Markov random fields.
It is OK to special-case your code for (tree-structured) binary pairwise MRFs.

You will use your algorithms to do inference in two CRFs corresponding to two images,
one of a kitchen scene (see Figure 4) and the other of an office scene (see Figure 5).
The two input files (“kitchen.uai” and “office.uai”) are in UAI format (see above).

Each CRF describes the conditional distribution p(b1, . . . , b111, c | s), where bi ∈ {0, 1}
denotes the presence or absence of objects of type i in the image (the corresponding
object names are given in the file “names.txt”), the variables c = {cik} where cik ∈
{0, 1} specify whether location k in the image contains object i, and s are features of
the image. The evidence (i.e. the s variables) is already subsumed into the edge and
node potentials, and so only the b and c variables are represented in the provided
MRFs (that is, you can treat this as a regular MRF).

http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php
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You can sanity check your implementation of sum-product belief propagation by run-
ning it on the UAI file that you output in part (a). The single-node marginals should
be precisely the same as the empirical marginals p̂(xi) that you computed from the
data. Note that this corresponds to the context prior, p(b1, . . . , b111), which makes up
only part of the CRF used for object recognition.

For each of the below questions, report the answer only for variables 1 through 111
(the object presence variables b), and use the names (e.g., “wall”) that are provided.

i. For each of the two images, what is the MAP assignment, i.e. arg maxb,c p(b, c | s)?
Just report which objects are present in the image (i.e., names(i) for which bi = 1)
according to the MAP assignment.

ii. Use the sum-product algorithm to compute the single-node marginals. For each
of the two images, what objects are present with probability greater than 0.8 (i.e.,
names(i) for which p(bi = 1 | s) ≥ 0.8)?

iii. For the two images, what objects are present with probability greater than 0.6?
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