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Probabilistic Graphical Models, Spring 2012

Problem Set 4: Structure learning & exact inference
Due: Monday, March 11, 2013 by 5pm (electronically)

For the following questions, you may use the programming language of your choice. You are al-
lowed to use basic graph packages (e.g., for representing and working with directed or undirected
graphs), but are not permitted to use any graphical model or probabilistic inference packages.
E-mail a zip file of your full assignment, including a PDF file called “solutions.pdf”
with your written solutions, separate output files (see question 2), and all of the
code that you wrote, to Li.

1. The Alarm Bayesian network [I], shown in Figure |1, was an alarm message system for
patient monitoring that was designed in 1989 as a case study for applying Bayesian net-
works to medical diagnosis. The Alarm Bayesian network is provided in the file “alarm.bif”
(the format should be self-explanatory). Since writing code to parse this input file can be
time-consuming, we also provide Python and Matlab code that you can (optionally) use
to load the Bayesian network.

This question will explore variable elimination as applied to the Alarm BN. Implement
the sum-product variable elimination algorithm from class (also described in Section 9.3
of Koller & Friedman). Do not implement pruning of inactive variables. Use the min-fill
heuristic (see page 314) to choose an elimination ordering. Note that you do not need to
make this query-specific, i.e. it should be performed only once on the whole graph and
then this elimination order should be used for all queries.

(a) What is the elimination ordering found by the min-fill heuristic? How many fill edges
were added?

(b) What is the induced width of the graph with respect to the ordering found by min-fill?
List the variables in the largest clique.
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Figure 1: ALARM (“A Logical Alarm Reduction Mechanism”) Bayesian network. [I]
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(a) Input image

Figure 2: Using context within object detection for computer vision. [2]

Compute the value of the following queries (report up to 4 significant digits):

(¢) p(StrokeVolume = High | Hypovolemia = True, ErrCauter = True, PVSat = Normal,
Disconnect = True, MinVolSet = Low)

(d) p(HRBP = Normal | LVEDVolume = Normal, Anaphylaxis = False, Press = Zero,
VentTube = Zero, BP = High)

(e) p(LVFailure = False | Hypovolemia = True, MinVolSet = Low, VentLung = Normal,
BP = Normal)

(f) p(PVSAT = Normal, CVP = Normal | LVEDVolume = High, Anaphylaxis = False,
Press = Zero)

2. When trying to do object detection from computer images, context can be very helpful. For
example, if “car” and “road” are present in an image, then it is likely that “building” and
“sky” are present as well (see Figure . In recent work, a tree-structured Markov random
field (see Figure was shown to be particularly useful for modeling the prior distribution
of what objects are present in images and using this to improve object detection [2].

In question, you will replicate some of the results from [2]. It is not necessary to read this
paper to complete this assignmentEl

IThat said, please see http://people.csail.mit.edu/myungjin/HContext.html| if you are curious for more
details. We omit the spatial prior and the global image features, and use only the co-occurences prior and the
local detector outputs (b;, ¢;k,and s; from [2]’s Figure 3).

Figure 3: Pairwise MRF of object class presences in images [2]. Red edges denote negative
correlations between classes. The thickness of each edge represents the strength of the link. You
will be learning this MRF in question 2(a).


http://people.csail.mit.edu/myungjin/HContext.html
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(a) Structure Learning of tree-structured MRFs: the Chow-Liu Algorithm.
In this question you will implement the Chow-Liu algorithm (1968) for maximum
likelihood learning of tree-structured Markov random fields [3].

Let T denote the edges of a tree-structured pairwise Markov random field with vertices
V. For the special case of trees, it can be shown any distribution pr(x) corresponding
to a Markov random field over T admits a factorization of the form:

prx) = ] p”“% s [T prte). (1)

ajer PrEIPT(s) oy

where pr(z;,2;) and pr(x;) denote pairwise and singleton marginals of the distribu-
tion pr, respectively.

The goal of learning is to find the tree-structured distribution py(x) that maximizes
the log-likelihood of the training data D = {x}:

mj@x max Z log pr(x;67).
x€D

We will show in a later lecture that, for a fixed structure 7', the maximum likeli-
hood parameters for a MRF will have a property called moment matching, meaning
that the learned distribution will have marginals pr(z;,z;) equal to the empirical
marginals p(z;,z;) computed from the data D, ie. p(x;,z;) = count(z;,x;)/|D|
where count(z;,x;) is the number of data points in D with X; = z; and X; = ;.
Thus, using the factorization from Eq. [1} the learning task is reduced to solving

max Z log p xl,x] ) H p(z5)
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We can simplify the quantity being maximized over T as follows (let N = |D|):

S log{ x“mﬂ ] Zlog[pxj 1)
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where I5(X;, X;) =3, ; (s, z;) log % is the empirical mutual information
of variables X; and X}, and Hp(X;) is the empirical entropy of variable X;. Since
the entropy terms are not a function of T, these can be ignored for the purpose of
finding the maximum likelihood tree structure. We conclude that the maximum
likelihood tree can be obtained by finding the maximum-weight spanning

tree in a complete graph with edge weights I;(X;, X;) for each edge (i, j).
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Figure 4: Kitchen Figure 5: Office

The Chow-Liu algorithm then consists of the following two steps:

i. Compute each edge weight based on the empirical mutual information.
ii. Find a maximum spanning tree (MST) via Kruskal or Prim’s Algorithm.

p(xi,xj)

@) for each

iii. Output a pairwise MRF with edge potentials ¢;;(z;,z;) =
(i,7) € T and node potentials ¢;(x;) = p(x;).

We have one random variable X; € {0, 1} for each object type (e.g., “car” or “road”)
specifying whether this object is present in a given image. For this problem, you
are provided with a matrix of dimension N x M where N = 4367 is the number of
images in the training set and M = 111 is the number of object types. This data
is in the file “chowliu-input.txt”, and the file “names.txt” specifies the object names
corresponding to each column.

Implement the Chow-Liu algorithm described above to learn the maximum likelihood
tree-structured MRF from the data provided. Your code should output the MRF in
the standard UAI format described here:

http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php

(see “kitchen.uai” and “office.uai” for two examples of files in this format).

In this question, you will implement both the sum-product and max-product belief
propagation algorithms for exact inference in tree-structured Markov random fields.
It is OK to special-case your code for (tree-structured) binary pairwise MRFs.

You will use your algorithms to do inference in two CRF's corresponding to two images,
one of a kitchen scene (see Figure [4)) and the other of an office scene (see Figure [5)).
The two input files (“kitchen.uai” and “office.uai”) are in UAI format (see above).
Each CRF describes the conditional distribution p(by, . ..,b111,¢ | s), where b; € {0,1}
denotes the presence or absence of objects of type 4 in the image (the corresponding
object names are given in the file “names.txt”), the variables ¢ = {c;;} where ¢;, €
{0, 1} specify whether location k in the image contains object ¢, and s are features of
the image. The evidence (i.e. the s variables) is already subsumed into the edge and
node potentials, and so only the b and c variables are represented in the provided
MRFs (that is, you can treat this as a regular MRF).


http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php
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You can sanity check your implementation of sum-product belief propagation by run-
ning it on the UALI file that you output in part (a). The single-node marginals should
be precisely the same as the empirical marginals p(z;) that you computed from the
data. Note that this corresponds to the context prior, p(by,...,b111), which makes up
only part of the CRF used for object recognition.

For each of the below questions, report the answer only for variables 1 through 111
(the object presence variables b), and use the names (e.g., “wall”) that are provided.

i. For each of the two images, what is the MAP assignment, i.e. argmaxy cp(b,c|s)?
Just report which objects are present in the image (i.e., names(4) for which b; = 1)
according to the MAP assignment.

ii. Use the sum-product algorithm to compute the single-node marginals. For each
of the two images, what objects are present with probability greater than 0.8 (i.e.,
names(i) for which p(b; =1 |s) > 0.8)?

iii. For the two images, what objects are present with probability greater than 0.67
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