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Probabilistic Graphical Models, Spring 2013

Problem Set 5: Approximate MAP inference
Due: Thursday, March 28, 2012 at 3pm (electronically)

For the following question, you may use the programming language of your choice. You are al-
lowed to use basic graph packages (e.g., for representing and working with directed or undirected
graphs), but are not permitted to use any graphical model or probabilistic inference packages.

E-mail a PDF of your full assignment, including all code written, to Li.

In Lecture 6 we discussed how to use dual decomposition to perform approximate MAP
inference in discrete-valued graphical models. This approach allows one to obtain an upper
bound on the value of the MAP assignment, and in many real-world problems actually succeeds
in finding the exact MAP assignment, with a certificate of optimality.

Implement the max-product linear programming (MPLP) algorithm from class (also
described in Section 1.5 of [1]). This algorithm is analogous to the max-sum belief propagation
algorithm that you implemented in PS 3, and makes use of the log of the potential functions.
Use as the stopping criterion a difference in the dual objective of .0002 (i.e., terminate when
L(8™ — L(6%) < 0.0002, where each iteration ¢ — ¢ 4+ 1 corresponds to one pass through all
factors). Your code should perform local decoding (i.e., finding the assignment x given by
x; € argmaxg, 09(2;)) at every iteration (not just in the last one), printing both the value of the
integer solution found (that is, (x)), the value of the dual objective (L(4)), and the difference of
these (known as the integrality gap). You should also keep track of the best integer assignment

found so far; at termination, this will be your approximate MAP solution.

Although MPLP can be used with any factor graph, in this assignment you are allowed to
special-case your code for pairwise MRF's (i.e., the factors will only be on single-node variables
and pairs of variables). Thus, the set F' from Figure 1.4 of [I] will correspond precisely to the
set of edge potentials. Use a schedule (i.e., an ordering of the messages) corresponding to the
order of the edge potentials provided in the original UAI file. Do not special-case your code for
binary variables — problem 2 below involves inference with non-binary variables.

1. MPLP can be shown to always be exact (i.e., have zero integrality gap once the algorithm
has converged) for any tree-structured graphical model.

Run your algorithm on the two object detection CRF's given in PS 4 question
2(b), and attach the output (i.e. the per-iteration values of the integer solution found,
dual objective, and integrality gap). You should confirm that you found the same MAP
assignment as you did using the max-sum belief propagation algorithm in PS 4. How many
iterations did MPLP take to find the MAP assignment?

(Note that the running time of belief propagation is roughly equivalent to one iteration of
that of MPLP.)

2. In this question, we apply MPLP to solve a key task in structural biology. The side-
chain placement problem involves finding the three-dimensional configuration of rotamers
given the backbone structure of a protein. This problem can be formulated as finding the
MAP configuration of a pairwise model [4] B].
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Figure 1: (a) Cow actin binding protein (PDB code “lpne”). (b) A closer view of its 6 C-
terminal residues. Given the protein backbone (black) and the amino acid sequence, side-chain
prediction is the problem of predicting the native side-chain conformation (gray). (c) Problem
representation as a graphical model. Figure and caption from [3].

We have provided you with the CRFs corresponding to the side-chain placement problem
for two different proteins, “2dri” and “lexm”. These files end in “UAILLG”, denoting that
they use the logarithm of the potential functions (we do not exponentiate because of
potential numerical errors; this is what the algorithm needs anyway).

Run MPLP on both files, and attach the output. For “2dri”, you will find that there
is no integrality gap. At what iteration do you first find the MAP assignment via local
decoding? For “lexm”, after running MPLP to convergence, what is the value of the best
assignment found, and what is the integrality gap?ﬂ
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LIf instead of stopping we had attempted to tighten the LP relaxation, the resulting algorithm almost always
finds the MAP assignment [2].



