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Probabilistic Graphical Models, Spring 2013

Problem Set 5: Approximate MAP inference
Due: Thursday, March 28, 2012 at 3pm (electronically)

For the following question, you may use the programming language of your choice. You are al-
lowed to use basic graph packages (e.g., for representing and working with directed or undirected
graphs), but are not permitted to use any graphical model or probabilistic inference packages.

E-mail a PDF of your full assignment, including all code written, to Li.

In Lecture 6 we discussed how to use dual decomposition to perform approximate MAP
inference in discrete-valued graphical models. This approach allows one to obtain an upper
bound on the value of the MAP assignment, and in many real-world problems actually succeeds
in finding the exact MAP assignment, with a certificate of optimality.

Implement the max-product linear programming (MPLP) algorithm from class (also
described in Section 1.5 of [1]). This algorithm is analogous to the max-sum belief propagation
algorithm that you implemented in PS 3, and makes use of the log of the potential functions.
Use as the stopping criterion a difference in the dual objective of .0002 (i.e., terminate when
L(δt+1 − L(δt) ≤ 0.0002, where each iteration t → t + 1 corresponds to one pass through all
factors). Your code should perform local decoding (i.e., finding the assignment x given by
xi ∈ arg maxx̂i θ̃

δ
i (x̂i)) at every iteration (not just in the last one), printing both the value of the

integer solution found (that is, θ(x)), the value of the dual objective (L(δ)), and the difference of
these (known as the integrality gap). You should also keep track of the best integer assignment
found so far; at termination, this will be your approximate MAP solution.

Although MPLP can be used with any factor graph, in this assignment you are allowed to
special-case your code for pairwise MRFs (i.e., the factors will only be on single-node variables
and pairs of variables). Thus, the set F from Figure 1.4 of [1] will correspond precisely to the
set of edge potentials. Use a schedule (i.e., an ordering of the messages) corresponding to the
order of the edge potentials provided in the original UAI file. Do not special-case your code for
binary variables – problem 2 below involves inference with non-binary variables.

1. MPLP can be shown to always be exact (i.e., have zero integrality gap once the algorithm
has converged) for any tree-structured graphical model.

Run your algorithm on the two object detection CRFs given in PS 4 question
2(b), and attach the output (i.e. the per-iteration values of the integer solution found,
dual objective, and integrality gap). You should confirm that you found the same MAP
assignment as you did using the max-sum belief propagation algorithm in PS 4. How many
iterations did MPLP take to find the MAP assignment?

(Note that the running time of belief propagation is roughly equivalent to one iteration of
that of MPLP.)

2. In this question, we apply MPLP to solve a key task in structural biology. The side-
chain placement problem involves finding the three-dimensional configuration of rotamers
given the backbone structure of a protein. This problem can be formulated as finding the
MAP configuration of a pairwise model [4, 3].
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Figure 2: (a) Cow actin binding protein (PDB code 1pne). (b) A closer view of its 6 C-terminal
residues. Given the protein backbone (black) and the amino acid sequence, side-chain
prediction is the problem of predicting the native side-chain conformation (gray). (c)
Problem representation as a graphical model for those C-terminal residues shown in (b)
(nodes located atC! atom positions, edges drawn in black).

1999; Kolmogorov and Zabih, 2004) and Belief Propagation (Felzenszwalb and Huttenlocher, 2004;
Tappen and Freeman, 2003; Sun et al., 2002).

In this work we use the same energy function used by Tappen and Freeman (2003). The local
cost is based on the Birchfield-Tomasi matching cost (Birchfield and Tomasi, 1998) and the pairwise
energy penalizes for neighboring pixels having different disparities. The amount of penalty depends
only on the intensity difference between the two pixels and therefore, for each pair of neighboring
pixels, the penalty for violating the smoothness constraint is constant. Thus the MRF is equivalent
to a Potts model. Specifically, the pairwise energy penalty is defined using 3 parameters – s, P and
T – and set to P · s when the intensity difference between the two pixels is smaller than a threshold
T , and s otherwise.

We used four images from the standard Middlebury stereo benchmark set (Scharstein and
Szeliski, 2003). By varying the parameters of the energy function, as in (Tappen and Freeman,
2003), we obtained 22 different graphical models. The parameters s,P,T are constant over the
whole image.

4.2 Side-Chain Prediction

Proteins are chains of simpler molecules called amino acids. All amino acids have a common
structure – a central carbon atom (C!) to which a hydrogen atom, an amino group (NH2) and a
carboxyl group (COOH) are bonded. In addition, each amino acid has a chemical group called
the side-chain, bound to C!. This group distinguishes one amino acid from another and gives its
distinctive properties. Amino acids are joined end to end during protein synthesis by the formation
of peptide bonds. An amino acid unit in a protein is called a residue. The formation of a succession
of peptide bonds generates the backbone (consisting of C! and its adjacent atoms, N and CO, of
each reside), upon which the side-chains are hanged (Figure 2).

The side-chain prediction problem is defined as follows: given the 3 dimensional structure of
the backbone we wish to predict the placements of the side-chains. This problem is considered of
central importance in protein-folding and molecular design and has been tackled extensively using
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Figure 1: (a) Cow actin binding protein (PDB code “1pne”). (b) A closer view of its 6 C-
terminal residues. Given the protein backbone (black) and the amino acid sequence, side-chain
prediction is the problem of predicting the native side-chain conformation (gray). (c) Problem
representation as a graphical model. Figure and caption from [3].

We have provided you with the CRFs corresponding to the side-chain placement problem
for two different proteins, “2dri” and “1exm”. These files end in “UAI.LG”, denoting that
they use the logarithm of the potential functions (we do not exponentiate because of
potential numerical errors; this is what the algorithm needs anyway).

Run MPLP on both files, and attach the output. For “2dri”, you will find that there
is no integrality gap. At what iteration do you first find the MAP assignment via local
decoding? For “1exm”, after running MPLP to convergence, what is the value of the best
assignment found, and what is the integrality gap?1
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1If instead of stopping we had attempted to tighten the LP relaxation, the resulting algorithm almost always
finds the MAP assignment [2].


