
GA.3033-006 Problem Set 6 1

Probabilistic Graphical Models, Spring 2013

Problem Set 6: Monte-Carlo methods and variational inference
Due: Thursday, April 18, 2012 at 5pm (in class)

Latent Dirichlet allocation (LDA) is a probabilistic model for discovering topics in sets of docu-
ments [1]. The generative model is as follows:

• For each document, m = 1, . . . ,M

1. Draw topic probabilities θm ∼ p(θ|α)

2. For each of the N words:

(a) Draw a topic zmn ∼ p(z|θm)

(b) Draw a word wmn ∼ p(w|zmn, β),

where p(θ|α) is a Dirichlet distribution, and where p(z|θm) and p(w|zmn, β) are Multinomial
distributions. Treat α and β as fixed hyperparameters. Note that β is a matrix, with one
column per topic, and the Multinomial variable zmn selects one of the columns of β to yield
multinomial probabilities for wmn.

α z wθ

β

M
N

Figure 1: Graphical structure of the LDA model.

For Problems 1–3 below, hand in your full derivation, not just the final solution.

1. Derive a Gibbs sampler for the LDA model (i.e., write down the set of conditional proba-
bilities for the sampler; see page 506 of Koller & Friedman).

You may find it helpful to refer to your solutions from Problem Set 3.

2. Derive a collapsed Gibbs sampler for the LDA model, where you consider the marginal
distribution Pr(zm | wm;α, β) (integrating out the topic probabilities θm) and are now
only sampling z.

3. Derive a mean-field algorithm for inference in the LDA model by minimizing the KL-
divergence D(qγm,φm(θ, z)||p(θ, z | w)) with respect to the variational parameters φ and γ,
where qγ,φ(θ, z) = qγ(θ)

∏
n qφn(zn), qγ(θ) is a Dirichlet, and the qφn(zn) are Multinomial.

Feel free to refer to the LDA paper if you have difficulty [1]. In particular, you will probably
want to use the fact that:

Eqγ [log θi] = Ψ(γi)−Ψ(

k∑
j=1

γj)

GA.3033-006 Problem Set 6 2

4. Implement each of the three inference algorithms that you derived. You will then run your
algorithms to find the posterior topic distribution θ for an input document.

We have previously learned the parameters (i.e., α and β) of a 200-topic LDA model
on a corpus containing thousands of abstracts of papers from the top machine learning
conference, Neural Information Processing Systems (NIPS). Your task will be to infer the
topic distribution for a new document.

We have provided the following data files:

• alphas.txt, which has on each line for topic i: i, αi, and a list of the most likely
words for this topic,

• abstract *.txt, with the words of document m (i.e., the abstract),

• abstract *.txt.ready, with, in order,

– the number of topics k,

– αi, for i = 1, . . . , k,

– for every word wn, the word itself followed by βwn,i for i = 1, . . . , k.

Note that your code only needs to read in the abstract *.txt.ready files – the
alphas.txt and abstract *.txt files are provided for your reference only.

It is common with MCMC methods to discard the first X samples to avoid using samples
that are highly correlated with the arbitrary starting assignment (this is called “burning
in”). Use X = 50 for your Gibbs sampling implementations.

For each of the abstracts,

(a) Use your code to generate an accurate estimate of E[θ] using collapsed Gibbs sampling
with a high number of iterations (e.g. 104). Use this as ground truth.

The following formula can be used to obtain an estimate of θ from the collapsed Gibbs
sampler (where T is the number of samples):

E[θi] =
Tαi +

∑T
t=1

∑N
n=1 1[ztn = i]

T (
∑k
î=1 αî +N)

(b) Plot the `2 error on your estimate of E[θ] as a function of the number of iterations
for each of the three algorithms.

(c) Which algorithm converges fastest? Do all algorithms return an accurate estimate of
E[θm] when run for a sufficiently long time? Explain your answers.

Print and hand in only the plot for the data file NIPS2008 0517. The remaining
files are provided for your own experimentation.

Print all code and submit together with your solutions. As with the earlier problem
sets, you may use the programming language of your choice. We recommend first checking
that packages are available to (1) sample from a Dirichlet distribution, and (2) compute
the Digamma function Ψ(x), as these will simplify your coding. For example, see Python’s
numpy.random.mtrand.dirichlet and scipy.special.psi.

References

[1] David M. Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. JMLR, 3:993–
1022, 2003.

