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Today: learning undirected graphical models

1 Learning MRFs

a. Feature-based (log-linear) representation of MRFs
b. Maximum likelihood estimation
c. Maximum entropy view

2 Getting around complexity of inference

a. Using approximate inference (e.g., TRW) within learning
b. Pseudo-likelihood

3 Conditional random fields
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Recall: ML estimation in Bayesian networks

Maximum likelihood estimation: maxθ `(θ;D), where

`(θ;D) = log p(D; θ) =
∑
x∈D

log p(x; θ)

=
∑
i

∑
x̂pa(i)

∑
x∈D:

xpa(i)=x̂pa(i)

log p(xi | x̂pa(i))

In Bayesian networks, we have the closed form ML solution:

θML
xi |xpa(i) =

Nxi ,xpa(i)∑
x̂i

Nx̂i ,xpa(i)

where Nxi ,xpa(i) is the number of times that the (partial) assignment xi , xpa(i)
is observed in the training data

We were able to estimate each CPD independently because the objective
decomposes by variable and parent assignment
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Bad news for Markov networks

The global normalization constant Z (θ) kills decomposability:

θML = arg max
θ

log
∏
x∈D

p(x; θ)

= arg max
θ

∑
x∈D

(∑
c

log φc(xc ; θ)− log Z (θ)

)

= arg max
θ

(∑
x∈D

∑
c

log φc(xc ; θ)

)
− |D| log Z (θ)

The log-partition function prevents us from decomposing the
objective into a sum over terms for each potential

Solving for the parameters becomes much more complicated
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What are the parameters?

How do we parameterize φc(xc ; θ)? Use a log-linear parameterization:

Introduce weights w ∈ Rd that are used globally
For each potential c , a vector-valued feature function fc(xc) ∈ Rd

Then, φc(xc ;w) = exp(w · fc(xc))

Example: discrete-valued MRF with only edge potentials, where each
variable takes k states

Let d = k2|E |, and let wi,j,xi ,xj = log φij(xi , xj)
Let fi,j(xi , xj) have a 1 in the dimension corresponding to (i , j , xi , xj)
and 0 elsewhere

The joint distribution is in the exponential family!

p(x;w) = exp{w · f(x)− log Z (w)},

where f (x) =
∑

c fc(xc) and Z (w) =
∑

x exp{
∑

c w · fc(xc)}

This formulation allows for parameter sharing
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Log-likelihood for log-linear models

θML = arg max
θ

(∑
x∈D

∑
c

log φc(xc ; θ)

)
− |D| log Z (θ)

= arg max
w

(∑
x∈D

∑
c

w · fc(xc)

)
− |D| log Z (w)

= arg max
w

w ·

(∑
x∈D

∑
c

fc(xc)

)
− |D| log Z (w)

The first term is linear in w

The second term is also a function of w:

log Z (w) = log
∑
x

exp

(
w ·
∑
c

fc(xc)

)
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Log-likelihood for log-linear models

log Z (w) = log
∑
x

exp

(
w ·
∑
c

fc(xc)

)
log Z (w) does not decompose

No closed form solution; even computing likelihood requires inference

Letting f(x) =
∑

c fc(xc), we will show (see blackboard) that:

∇w log Z (w) = Ep(x;w)[f(x)] =
∑
c

Ep(xc ;w)[fc(xc)]

Thus, the gradient of the log-partition function can be computed by
inference, computing marginals with respect to the current parameters w

Similarly, you can show that 2nd derivative of the log-partition function
gives the second-order moments, i.e.

∇2 log Z (w) = cov[f(x)]

Since covariance matrices are always positive semi-definite, this proves that
log Z (w) is convex (so − log Z (w) is concave)
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Solving the maximum likelihood problem in MRFs

`(w;D) =
1

|D|
w ·

(∑
x∈D

∑
c

fc(xc)

)
− log Z (w)

First, note that the weights w are unconstrained, i.e. w ∈ Rd

The objective function is jointly concave. Apply any convex optimization
method to learn!

Can use gradient ascent, stochastic gradient ascent, quasi-Newton
methods such as limited memory BFGS (L-BFGS)

The gradient of the log-likelihood is:

d

dwk
`(w;D) =

1

|D|
∑
x∈D

∑
c

(fc(xc))k −
∑
c

Ep(xc ;w)[(fc(xc))k ]

=
∑
c

1

|D|
∑
x∈D

(fc(xc))k −
∑
c

Ep(xc ;w)[(fc(xc))k ]
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The gradient of the log-likelihood

∂

∂wk
`(w;D) =

∑
c

1

|D|
∑
x∈D

(fc(xc))k −
∑
c

Ep(xc ;w)[(fc(xc))k ]

Difference of expectations!

Consider the earlier pairwise MRF example. This then reduces to:

∂

∂wi,j,x̂i ,x̂j

`(w;D) =

(
1

|D|
∑
x∈D

1[xi = x̂i , xj = x̂j ]

)
− p(x̂i , x̂j ;w)

Setting derivative to zero, we see that for the maximum likelihood
parameters wML, we have

p(x̂i , x̂j ;w
ML) =

1

|D|
∑
x∈D

1[xi = x̂i , xj = x̂j ]

for all edges i j ∈ E and states x̂i , x̂j

Model marginals for each clique equal the empirical marginals!

Called moment matching, and is a property of maximum likelihood
learning in exponential families
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Gradient ascent requires repeated marginal inference,
which in many models is hard!

We will return to this shortly.
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Maximum entropy (MaxEnt)

We can approach the modeling task from an entirely different point of view

Suppose we know some expectations with respect to a (fully general)
distribution p(x):

(true)
∑
x

p(x)fi (x), (empirical)
1

|D|
∑
x∈D

fi (x) = αi

Assuming that the expectations are consistent with one another, there may
exist many distributions which satisfy them. Which one should we select?

The most uncertain or flexible one, i.e., the one with maximum entropy.

This yields a new optimization problem:

max
p

H(p(x)) = −
∑
x

p(x) log p(x)

s.t.
∑
x

p(x)fi (x) = αi∑
x

p(x) = 1 (strictly concave w.r.t. p(x))
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What does the MaxEnt solution look like?

To solve the MaxEnt problem, we form the Lagrangian:

L = −
∑
x

p(x) log p(x)−
∑
i

λi

(∑
x

p(x)fi (x)− αi

)
− µ

(∑
x

p(x)− 1

)
Then, taking the derivative of the Lagrangian,

∂L

∂p(x)
= −1− log p(x)−

∑
i

λi fi (x)− µ

And setting to zero, we obtain:

p∗(x) = exp

(
−1− µ−

∑
i

λi fi (x)

)
= e−1−µe−

∑
i λi fi (x)

From the constraint
∑

x p(x) = 1 we obtain e1+µ =
∑

x e−
∑

i λi fi (x) = Z (λ)

We conclude that the maximum entropy distribution has the form
(substituting wi = −λi )

p∗(x) =
1

Z (w)
exp(

∑
i

wi fi (x))
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Equivalence of maximum likelihood and maximum entropy

Feature constraints + MaxEnt ⇒ exponential family!

We have seen a case of convex duality:

In one case, we assume exponential family and show that ML implies
model expectations must match empirical expectations

In the other case, we assume model expectations must match empirical
feature counts and show that MaxEnt implies exponential family
distribution

Can show that one is the dual of the other, and thus both obtain the
same value of the objective at optimality (no duality gap)

Besides providing insight into the ML solution, this also gives an
alternative way to (approximately) solve the learning problem
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How can we get around the complexity of inference during learning?
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Monte Carlo methods

Recall the original learning objective

`(w;D) =
1

|D|
w ·

(∑
x∈D

∑
c

fc(xc)

)
− log Z (w)

Use any of the sampling approaches (e.g., Gibbs sampling) that we discussed
in Lecture 9

All we need for learning (i.e., to compute the derivative of `(w,D)) are
marginals of the distribution

No need to ever estimate log Z (w)
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Using approximations of the log-partition function

We can substitute the original learning objective

`(w;D) =
1

|D|
w ·
(∑

x∈D

∑
c

fc(xc)
)
− log Z (w)

with one that uses a tractable approximation of the log-partition function:

˜̀(w;D) =
1

|D|
w ·
(∑

x∈D

∑
c

fc(xc)
)
− ˜log Z (w)

Recall from Lecture 7 that we came up with a convex relaxation that
provided an upper bound on the log-partition function,

log Z (w) ≤ ˜log Z (w)

(e.g., tree-reweighted belief propagation, log-determinant relaxation)

Using this, we obtain a lower bound on the learning objective

`(w;D) ≥ ˜̀(w;D)

Again, to compute the derivatives we only need pseudo-marginals from the
variational inference algorithm
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Pseudo-likelihood

Alternatively, can we come up with a different objective function (i.e., a
different estimator) which succeeds at learning while avoiding inference
altogether?

Pseudo-likelihood method (Besag 1971) yields an exact solution if the data
is generated by a model in our model family p(x; θ∗) and |D| → ∞ (i.e., it is
consistent)

Note that, via the chain rule,

p(x;w) =
∏
i

p(xi |x1, . . . , xi−1;w)

We consider the following approximation:

p(x;w) ≈
∏
i

p(xi |x1, . . . , xi−1, xi+1, . . . , xn;w) =
∏
i

p(xi |x−i ;w)

where we have added conditioning over additional variables
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Pseudo-likelihood

The pseudo-likelihood method replaces the likelihood,

`(θ;D) =
1

|D|
log p(D; θ) =

1

|D|

|D|∑
m=1

log p(xm; θ)

with the following approximation:

`PL(w;D) =
1

|D|

|D|∑
m=1

n∑
i=1

log p(xm
i | xm

N(i);w)

(we replaced x−i with xN(i), i ’s Markov blanket)

For example, suppose we have a pairwise MRF. Then,

p(xm
i | xm

N(i);w) =
1

Z (xm
N(i);w)

e
∑

j∈N(i) θij (x
m
i ,x

m
j ), Z (xm

N(i);w) =
∑
x̂i

e
∑

j∈N(i) θij (x̂i ,x
m
j )

More generally, and using the log-linear parameterization, we have:

log p(xm
i | xm

N(i);w) = w ·
∑
c:i∈c

fc(xm
c )− log Z (xm

N(i);w)
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Pseudo-likelihood

This objective only involves summation over xi and is tractable

Has many small partition functions (one for each variable and each setting
of its neighbors) instead of one big one

It is still concave in w and thus has no local maxima

Assuming the data is drawn from a MRF with parameters w∗, can show that
as the number of data points gets large, wPL → w∗
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Conditional random fields

Recall from Lecture 3, a CRF is a Markov network on variables X∪Y, which
specifies the conditional distribution

P(y | x) =
1

Z (x)

∏
c∈C

φc(x, yc)

with partition function

Z (x) =
∑
ŷ

∏
c∈C

φc(x, ŷc).

The feature functions now depend on x in addition to y

For each potential c , a vector-valued feature function fc(x, yc) ∈ Rd

Then, φc(x, yc ;w) = exp(w · fc(x, yc))
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Learning with conditional random fields

Exact same as learning with MRFs, except that we have a different partition
function for each data point

θML = arg max
θ

∑
(x,y)∈D

(∑
c

log φc(x, yc ; θ)− log Z (x; θ)

)

= arg max
w

w ·

 ∑
(x,y)∈D

∑
c

fc(x, yc)

− ∑
(x,y)∈D

log Z (x;w)
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