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What notion of “best” should learning be optimizing?

This depends on what we want to do

1 Density estimation: we are interested in the full distribution (so later we can
compute whatever conditional probabilities we want)

2 Specific prediction tasks: we are using the distribution to make a prediction

3 Structure or knowledge discovery: we are interested in the model itself
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Density estimation for conditional models

Suppose we want to predict a set of variables Y given some others X, e.g.,
for segmentation or stereo vision

output: disparity!input: two images!

We concentrate on predicting p(Y|X), and use a conditional loss function

loss(x, y,M̂) = − log p̂(y | x).

Since the loss function only depends on p̂(y | x), suffices to estimate the
conditional distribution, not the joint
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Density estimation for conditional models

CRF: p(y | x) =
1

Z (x)

∏

c∈C
φc(x, yc), Z (x) =

∑

ŷ

∏

c∈C
φc(x, ŷc)

Parameterization as log-linear model:

Weights w ∈ Rd . Feature vectors fc(x, yc) ∈ Rd .
φc(x, yc ; w) = exp(w · fc(x, yc))

Empirical risk minimization with CRFs, i.e. minM̂ ED
[
loss(x, y,M̂)

]
:

wML = arg min
w

1

|D|
∑

(x,y)∈D
− log p(y | x; w)

= arg max
w

∑

(x,y)∈D

(∑

c

log φc(x, yc ; w)− logZ (x; w)
)

= arg max
w

w ·
( ∑

(x,y)∈D

∑

c

fc(x, yc)
)
−

∑

(x,y)∈D
logZ (x; w)
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Application: Part-of-speech tagging

1. Background: Part-of-speech tagging

United flies some large jet

United1 flies2 some3 large4 jet5

N V D A N

David Sontag (NYU) Graphical Models Lecture 12, April 23, 2013 5 / 24



Graphical model formulation of POS tagging

Graphical model formulation

given:

• a sentence of length n and a tag set T

• one variable for each word, takes values in T

• edge potentials θ(i − 1, i , t �, t) for all i ∈ n, t, t � ∈ T

example:

United1 flies2 some3 large4 jet5

T = {A, D, N, V }

note: for probabilistic HMM θ(i − 1, i , t �, t) = log(p(wi |t)p(t|t �))
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Features for POS tagging

Edge potentials: Fully parameterize (T × T features and weights), i.e.

θi−1,i (t
′, t) = wT

t′,t

where the superscript “T” denotes that these are the weights for the
transitions

Node potentials: Introduce features for the presence or absence of certain
attributes of each word (e.g., initial letter capitalized, suffix is “ing”), for
each possible tag (T × #attributes features and weights)

This part is conditional on the input sentence!

Edge potential same for all edges. Same for node potentials.
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Structured prediction

Often we learn a model for the purpose of structured prediction, in which
given x we predict y by finding the MAP assignment:

argmax
y

p̂(y|x)

Rather than learn using log-loss (density estimation), we use a loss function
better suited to the specific task

One reasonable choice would be the classification error:

E(x,y)∼p∗ [1I{ ∃y′ 6= y s.t. p̂(y′|x) ≥ p̂(y|x) }]

which is the probability over all (x, y) pairs sampled from p∗ that our
classifier selects the right labels

If p∗ is in the model family, training with log-loss (density estimation) and
classification error would perform similarly (given sufficient data)

Otherwise, better to directly go for what we care about (classification error)
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Structured prediction

Consider the empirical risk for 0-1 loss (classification error):

1

|D|
∑

(x,y)∈D
1I{ ∃y′ 6= y s.t. p̂(y′|x) ≥ p̂(y|x) }

Each constraint p̂(y′|x) ≥ p̂(y|x) is equivalent to

w ·
∑

c

fc(x, y′c)− logZ (x; w) ≥ w ·
∑

c

fc(x, yc)− logZ (x; w)

The log-partition function cancels out on both sides. Re-arranging, we have:

w ·
(∑

c

fc(x, y′c)−
∑

c

fc(x, yc)

)
≥ 0

Said differently, the empirical risk is zero when ∀(x, y) ∈ D and y′ 6= y,

w ·
(∑

c

fc(x, yc)−
∑

c

fc(x, y′c)

)
> 0.
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Structured prediction

Empirical risk is zero when ∀(x, y) ∈ D and y′ 6= y,

w ·
(∑

c

fc(x, yc)−
∑

c

fc(x, y′c)

)
> 0.

In the simplest setting, learning corresponds to finding a weight vector w
that satisfies all of these constraints (when possible)

This is a linear program (LP)!

How many constraints does it have? |D| ∗ |Y| – exponentially many!

Thus, we must avoid explicitly representing this LP

This lecture is about algorithms for solving this LP (or some variant) in a
tractable manner
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Structured perceptron algorithm

Input: Training examples D = {(xm, ym)}
Let f(x, y) =

∑
c fc(x, yc). Then, the constraints that we want to satisfy are

w ·
(

f(xm, ym)− f(xm, y)
)
> 0, ∀y 6= ym

The perceptron algorithm uses MAP inference in its inner loop:

MAP(xm; w) = arg max
y∈Y

w · f(xm, y)

The maximization can often be performed efficiently by using the structure!

The perceptron algorithm is then:

1 Start with w = 0
2 While the weight vector is still changing:
3 For m = 1, . . . , |D|
4 y← MAP(xm; w)
5 w← w + f(xm, ym)− f(xm, y)
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Structured perceptron algorithm

If the training data is separable, the perceptron algorithm is guaranteed to
find a weight vector which perfectly classifies all of the data

When separable with margin γ, number of iterations is at most

(
2R

γ

)2

,

where R = maxm,y ||f(xm, y)||2
In practice, one stops after a certain number of outer iterations (called
epochs), and uses the average of all weights

The averaging can be understood as a type of regularization to prevent
overfitting
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Allowing slack

We can equivalently write the constraints as

w ·
(

f(xm, ym)− f(xm, y)
)
≥ 1, ∀y 6= ym

Suppose there do not exist weights w that satisfy all constraints

Introduce slack variables ξm ≥ 0, one per data point, to allow for constraint
violations:

w ·
(

f(xm, ym)− f(xm, y)
)
≥ 1− ξm, ∀y 6= ym

Then, minimize the sum of the slack variables, minξ≥0
∑

m ξm, subject to
the above constraints
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Structural SVM (support vector machine)

min
w,ξ

∑

m

ξm + C ||w||2

subject to:

w ·
(

f(xm, ym)− f(xm, y)
)
≥ 1− ξm, ∀m, y 6= ym

ξm ≥ 0, ∀m

This is a quadratic program (QP). Solving for the slack variables in closed form,
we obtain

ξ∗m = max

(
0, max

y∈Y
1−w ·

(
f(xm, ym)− f(xm, y)

))

Thus, we can re-write the whole optimization problem as

min
w

∑

m

max

(
0, max

y∈Y
1−w ·

(
f(xm, ym)− f(xm, y)

))
+ C ||w||2
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Hinge loss

We can view max
(

0, maxy∈Y 1−w ·
(

f(xm, ym)− f(xm, y)
))

as a loss

function, called hinge loss

When w · f(xm, ym) ≥ w · f(xm, y) for all y (i.e., correct prediction), this
takes a value between 0 and 1

When ∃y such that w · f(xm, y) ≥ w · f(xm, ym) (i.e., incorrect prediction),
this takes a value ≥ 1

Thus, this always upper bounds the 0-1 loss!

Minimizing hinge loss is good because it minimizes an upper bound on the
0-1 loss (prediction error)
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Better Metrics

It doesn’t always make sense to penalize all incorrect predictions equally!

We can change the constraints to

w ·
(

f(xm, ym)− f(xm, y)
)
≥ ∆(y, ym)− ξm, ∀y,

where ∆(y, ym) ≥ 0 is a measure of how far the assignment y is from the
true assignment ym

This is called margin scaling (as opposed to slack scaling)

We assume that ∆(y, y) = 0, which allows us to say that the constraint
holds for all y, rather than just y 6= ym

A frequently used metric for MRFs is Hamming distance, where
∆(y, ym) =

∑
i∈V 1I[yi 6= ym

i ]
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Structural SVM with margin scaling

min
w

∑

m

max
y∈Y

(
∆(y, ym)−w ·

(
f(xm, ym)− f(xm, y)

))
+ C ||w||2

How to solve this? Many methods!

1 Cutting-plane algorithm (Tsochantaridis et al., 2005)

2 Stochastic subgradient method (Ratliff et al., 2007)

3 Dual Loss Primal Weights algorithm (Meshi et al., 2010)

4 Frank-Wolfe algorithm (Lacoste-Julien et al., 2013)
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Stochastic subgradient method

min
w

∑

m

max
y∈Y

(
∆(y, ym)−w ·

(
f(xm, ym)− f(xm, y)

))
+ C ||w||2

Although this objective is convex, it is not differentiable everywhere

We can use a subgradient method to minimize (instead of gradient descent)

The subgradient of maxy∈Y ∆(y, ym)−w ·
(

f(xm, ym)− f(xm, y)
)

at w(t)is

f(xm, ŷ)− f(xm, ym),

where ŷ is one of the maximizers with respect to w(t), i.e.

ŷ = arg max
y∈Y

∆(y, ym) + w(t) · f(xm, y)

This maximization is called loss-augmented MAP inference
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Loss-augmented inference

ŷ = arg max
y∈Y

∆(y, ym) + w(t) · f(xm, y)

When ∆(y, ym) =
∑

i∈V 1I[yi 6= ym
i ], this corresponds to adding additional

single-node potentials

θi (yi ) = 1 if yi 6= ym, and 0 otherwise

If MAP inference was previously exactly solvable by a combinatorial
algorithm, loss-augmented MAP inference typically is too

The Hamming distance pushes the MAP solution away from the true
assignment ym

David Sontag (NYU) Graphical Models Lecture 12, April 23, 2013 19 / 24



Cutting-plane algorithm

min
w,ξ

∑

m

ξm + C ||w||2

subject to:

w ·
(

f(xm, ym)− f(xm, y)
)
≥ ∆(y, ym)− ξm, ∀m, y ∈ Ym

ξm ≥ 0, ∀m

Start with Ym = {ym}. Solve for the optimal w∗, ξ∗

Then, look to see if any of the unused constraints that are violated

To find a violated constraint for data point m, simply solve the
loss-augmented inference problem:

ŷ = arg max
y∈Y

∆(y, ym) + w · f(xm, y)

If ŷ ∈ Ym, do nothing. Otherwise, let Ym = Ym ∪ {ŷ}
Repeat until no new constraints are added. Then we are optimal!
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Cutting-plane algorithm

Can prove that, in order to solve the structural SVM up to ε (additive)
accuracy, takes a polynomial number of iterations

In practice, terminates very quickly
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Summary of convergence ratesBlock-Coordinate Frank-Wolfe Optimization for Structural SVMs

Table 1. Convergence rates given in the number of calls to the oracles for di↵erent optimization algorithms for the struc-
tural SVM objective (1) in the case of a Markov random field structure, to reach a specific accuracy " measured for di↵erent
types of gaps, in term of the number of training examples n, regularization parameter �, size of the label space |Y|, max-
imum feature norm R := maxi,y k i(y)k2 (some minor terms were ignored for succinctness). Table inspired from (Zhang
et al., 2011). Notice that only stochastic subgradient and our proposed algorithm have rates independent of n.

Optimization algorithm Online Primal/Dual Type of guarantee Oracle type # Oracle calls

dual extragradient (Taskar
et al., 2006)

no primal-‘dual’ saddle point gap Bregman projection O
⇣

nR log |Y|
�"

⌘

online exponentiated gradient
(Collins et al., 2008)

yes dual expected dual error expectation O
⇣

(n+log |Y|)R2

�"

⌘

excessive gap reduction
(Zhang et al., 2011)

no primal-dual duality gap expectation O

✓
nR
q

log |Y|
�"

◆

BMRM (Teo et al., 2010) no primal �primal error maximization O
⇣

nR2

�"

⌘

1-slack SVM-Struct (Joachims
et al., 2009)

no primal-dual duality gap maximization O
⇣

nR2

�"

⌘

stochastic subgradient
(Shalev-Shwartz et al., 2010a)

yes primal primal error w.h.p. maximization Õ
⇣

R2

�"

⌘

this paper: block-coordinate
Frank-Wolfe

yes primal-dual expected duality gap maximization O
⇣

R2

�"

⌘
Thm. 3

lary 3 gives a similar convergence rate as our Theo-
rem 3. Balamurugan et al. (2011) propose to approx-
imately solve a quadratic problem on each example
using SMO, but they do not provide any rate guar-
antees. The online-EG method implements a variant
of dual coordinate descent, but it requires an expecta-
tion oracle and Collins et al. (2008) estimate its primal
convergence at only O

�
1/"2

�
.

Besides coordinate descent methods, a variety of other
algorithms have been proposed for structural SVMs.
We summarize a few of the most popular in Table 1,
with their convergence rates quoted in number of ora-
cle calls to reach an accuracy of ". However, we note
that almost no guarantees are given for the optimiza-
tion of structural SVMs with approximate oracles. A
regret analysis in the context of online optimization
was considered by Ratli↵ et al. (2007), but they do not
analyze the e↵ect of this on solving the optimization
problem. The cutting plane algorithm of Tsochan-
taridis et al. (2005) was considered with approximate
maximization by Finley & Joachims (2008), though
the dependence of the running time on the the approx-
imation error was left unclear. In contrast, we pro-
vide guarantees for batch subgradient, cutting plane,
and block-coordinate Frank-Wolfe, for achieving an "-
approximate solution as long as the error of the oracle
is appropriately bounded.

8. Discussion

This work proposes a novel randomized block-
coordinate generalization of the classic Frank-Wolfe
algorithm for optimization with block-separable con-
straints. Despite its potentially much lower iteration
cost, the new algorithm achieves a similar convergence

rate in the duality gap as the full Frank-Wolfe method.
For the dual structural SVM optimization problem, it
leads to a simple online algorithm that yields a solu-
tion to an issue that is notoriously di�cult to address
for stochastic algorithms: no step-size sequence needs
to be tuned since the optimal step-size can be e�-
ciently computed in closed-form. Further, at the cost
of an additional pass through the data (which could
be done alongside a full Frank-Wolfe iteration), it al-
lows us to compute a duality gap guarantee that can
be used to decide when to terminate the algorithm.
Our experiments indicate that empirically it converges
faster than other stochastic algorithms for the struc-
tural SVM problem, especially in the realistic setting
where only a few passes through the data are possible.

Although our structural SVM experiments use an
exact maximization oracle, the duality gap guaran-
tees, the optimal step-size, and a computable bound
on the duality gap are all still available when only
an appropriate approximate maximization oracle is
used. Finally, although the structural SVM problem is
what motivated this work, we expect that the block-
coordinate Frank-Wolfe algorithm may be useful for
other problems in machine learning where a complex
objective with block-separable constraints arises.
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Bernd Gärtner and Ronny Luss for helpful discussions,
and Robert Carnecky for the 3D illustration. MJ is
supported by the ERC Project SIPA, and by the Swiss
National Science Foundation. SLJ and MS are partly
supported by the ERC (SIERRA-ERC-239993). SLJ
is supported by a Research in Paris fellowship. MS is
supported by a NSERC postdoctoral fellowship.

R same as before. n=number of training examples. λ is the regularization
constant (correpsonding to 2C/n)
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Application to segmentation & support inference

ECCV-12 submission ID 1079 3

Input RGB Surface Normals Aligned Normals Segmentation

Input Depth Inpainted Depth 3D Planes Support Relations

Support 
RelaƟonships 

1. Major Surfaces 
2. Surface Normals 
3. Align Point Cloud 

Image 

Depth 
Map 

SegmentaƟŽŶ 
RGB Image

 Point Cloud

 Regions 
 Feature  

ExtracƟŽŶ 

Features 
 Support ClassiĮcaƟŽŶ 

{Xi,Ni} {Rj} {Fj} 

Structure  
Labels 

Fig. 1. Overview of algorithm. Our algorithm flows from left to right. Given an
input image with raw and inpainted depth maps, we compute surface normals and
align them to the room by finding three dominant orthogonal directions. We then
fit planes to the points using RANSAC and segment them based on depth and color
gradients. Given the 3D scene structure and initial estimates of physical support, we
then create a hierarchical segmentation and infer the support structure. In the surface
normal images, the absolute value of the three normal directions is stored in the R,
G, and B channels. The 3D planes are indicated by separate colors. Segmentation is
indicated by red boundaries. Arrows point from the supported object to the surface
that supports it.

RANSAC on 3D points to initialize plane fitting but also infer a segmentation
and improved plane parameters using a graph cut segmentation that accounts
for 3D position, 3D normal, and intensity gradients. Their application is pixel
labeling, but ours is parsing into regions and support relations. Others, such as
Silberman et al. [11] and Karayev et al. [12] use RGBD images from the Kinect
for object recognition, but do not consider tasks beyond category labeling.

To summarize, the most original of our contributions is the inference of
support relations in complex indoor scenes. We incorporate geometric structure
inferred from depth, object properties encoded in our structural classes, and
data-driven scene priors, and our approach is robust to clutter, stacked objects,
and invisible supporting surfaces. We also contribute ideas for interpreting geo-
metric structure from a depth image, such as graph cut segmentation of planar
surfaces and ways to use the structure to improve segmentation. Finally, we o↵er
a new large dataset with registered RGBD images, detailed object labels, and
annotated physical relations.

2 Dataset for Indoor Scene Understanding

Several Kinect scene datasets have recently been introduced. However, the NYU
indoor scene dataset [11] has limited diversity (only 67 scenes); in the Berkeley

(Joint with Nathan Silberman & Rob Fergus)
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Application to machine translation

Word alignment between languages:
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(c) Dice, Distance, Orthographic, and BothShort (d) All features

Figure 1: Example alignments for each successive feature set.

except fertility.1

First, and, most importantly, we want to in-
clude information about word association; trans-
lation pairs are likely to co-occur together in
a bitext. This information can be captured,
among many other ways, using a feature whose

1In principle, we can model also model fertility, by
allowing 0-k matches for each word rather than 0-1, and
having bias features on each word. However, we did not
explore this possibility.

value is the Dice coefficient (Dice, 1945):

Dice(e, f) =
2CEF (e, f)

CE(e) + CF (f)

Here, CE and CF are counts of word occurrences
in each language, while CEF is the number of
co-occurrences of the two words. With just this
feature on a pair of word tokens (which depends
only on their types), we can already make a stab

(Taskar, Lacoste-Julien, Klein ’05)
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