Mixture Models & EM algorithm Probabilistic Graphical Models, Lecture 13

David Sontag
New York University

Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer, Dan Weld, Vibhav Gogate, and Andrew Moore

Mixture of Gaussians model

- P(Y): There are k components
- P(X|Y): Each component generates data from a **multivariate** Gaussian with mean μ_i and covariance matrix Σ_i

Each data point is sampled from a generative process:

- 1. Choose component i with probability P(y=i)
- 2. Generate datapoint $\sim N(m_i, \Sigma_i)$

Gaussian mixture model (GMM)

Multivariate Gaussians

$$P(X=\mathbf{x}_{j}) = \frac{1}{(2\pi)^{m/2} \|\mathbf{\Sigma}\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_{j} - \mu_{k})^{T} \mathbf{\Sigma}_{j}^{-1}(\mathbf{x}_{j} - \mu_{k})\right]$$

 Σ = arbitrary (semidefinite) matrix:

- specifies rotation (change of basis)
- eigenvalues specify relative elongation

Mixtures of Gaussians (1)

Old Faithful Data Set

Duration of Last Eruption

Mixtures of Gaussians (1)

Old Faithful Data Set

Mixtures of Gaussians (2)

Combine simple models into a complex model:

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$
 Component Mixing coefficient

$$\forall k : \pi_k \geqslant 0 \qquad \sum_{k=1}^K \pi_k = 1$$

Mixtures of Gaussians (3)

Unsupervised learning

Model data as mixture of multivariate Gaussians

Unsupervised learning

Model data as mixture of multivariate Gaussians

Unsupervised learning

Model data as mixture of multivariate Gaussians

Shown is the *posterior probability* that a point was generated from ith Gaussian: $\Pr(Y=i\mid x)$

ML estimation in supervised setting

Univariate Gaussian

$$\mu_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \sigma_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

• *Mixture* of *Multi*variate Gaussians

ML estimate for each of the Multivariate Gaussians is given by:

$$\mu_{ML}^{k} = \frac{1}{n} \sum_{j=1}^{n} x_{n} \qquad \sum_{ML}^{k} = \frac{1}{n} \sum_{j=1}^{n} (\mathbf{x}_{j} - \mu_{ML}^{k}) (\mathbf{x}_{j} - \mu_{ML}^{k})^{T}$$

Just sums over x generated from the k'th Gaussian

That was easy! But what if *unobserved data*?

MLE:

- $-\operatorname{argmax}_{\theta}\prod_{i} P(y_{i},x_{i})$
- $-\theta$: all model parameters
 - eg, class probs, means, and variances
- But we don't know y_i's!!!
- Maximize marginal likelihood:

EM: Two Easy Steps

Objective: $argmax_{\theta} \lg \prod_{j} \sum_{k=1}^{K} P(Y_j = k, x_j \mid \theta) = \sum_{j} \lg \sum_{k=1}^{K} P(Y_j = k, x_j \mid \theta)$

Data: $\{x_j \mid j=1 .. n\}$

- **E-step**: Compute expectations to "fill in" missing y values according to current parameters, θ
 - For all examples j and values k for Y_j , compute: $P(Y_j=k \mid x_{j,}\theta)$
- M-step: Re-estimate the parameters with "weighted" MLE estimates
 - Set $\theta = \operatorname{argmax}_{\theta} \sum_{i} \sum_{k} P(Y_{i} = k \mid x_{i}, \theta) \log P(Y_{i} = k, x_{i} \mid \theta)$

Especially useful when the E and M steps have closed form solutions!!!

Simple example: learn means only!

Consider:

- 1D data
- Mixture of k=2
 Gaussians
- Variances fixed to $\sigma=1$
- Distribution over classes is uniform
- Just need to estimate μ_1 and μ_2

EM for GMMs: only learning means

Iterate: On the t'th iteration let our estimates be

$$\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \dots \mu_K^{(t)} \}$$

E-step

Compute "expected" classes of all datapoints

$$P(Y_j = k | x_j, \mu_1 ... \mu_K) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_k||^2\right) P(Y_j = k)$$

M-step

Compute most likely new μ s given class expectations

$$\mu_k = \frac{\sum_{j=1}^m P(Y_j = k | x_j) x_j}{\sum_{j=1}^m P(Y_j = k | x_j)}$$

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Jensen's inequality

- Theorem: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$
 - e.g., Binary case for convex function f:

