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Mixture of Gaussians model

e P(Y): There are k components

e P(X]|Y): Each component generates data from a multivariate
Gaussian with mean p;and covariance matrix 2

Each data point is sampled from a generative process:
1. Choose component i with probability P(y=i)

2. Generate datapoint ¥~ N(m,, 2})
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Multivariate Gaussians
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> = arbitrary (semidefinite) matrix:
- specifies rotation (change of basis)
- eigenvalues specify relative elongation
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Mixtures of Gaussians (1)
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Mixtures of Gaussians (1)

Old Faithful Data Set
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Mixtures of Gaussians (2)

Combine simple models into a complex model:

« p(z)y
p(x) = Z WkN(X|Hka Ek?

k=1
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Mixtures of Gaussians (3)




Unsupervised learning

Model data as mixture of multivariate Gaussians
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Unsupervised learning

Model data as mixture of multivariate Gaussians

0.5




Unsupervised learning

Model data as mixture of multivariate Gaussians
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Shown is the posterior probability that a point was generated
from ith Gaussian: Pr(Y =i | )



ML estimation in supervised setting

e Univariate Gaussian

e Mixture of Multivariate Gaussians

ML estimate for each of the Multivariate Gaussians is given by:
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Just sums over x generated from the k’th Gaussian



That was easy!
But what if unobserved data?

* MLE:

—argmaxg | [; P(y,x;)
— 0: all model parameters

e eg, class probs, means, and
variances

* But we don’t know y;’s!!!

* Maximize marginal likelihood: —
— argmax, [, P(x) = argmax [, 3., P(Y=k, x))



EM: Two Easy Steps
Objective: argmaxg Ig[ [; X\, P(Y;=k, x; 8) = 3, 1g >, P(Y;=k, x;| 6)
Data: {x; | j=1.. n}

e E-step: Compute expectations to “fill in” missing y values
according to current parameters, 0

— For all examples j and values k for Y;, compute: P(Y=k | x; 6)

 M-step: Re-estimate the parameters with “weighted” MLE
estimates

— Set 0 =argmaxg Y, 2, P(Y;=k | x; 8) log P(Y;=k, x; | 6)

Especially useful when the E and M steps have closed form solutions!!!



Simple example: learn means only!

Consider:
e 1D data

e Mixture of k=2
Gaussians

e Variances fixed to o=1

 Distribution over
classes is uniform 01 .03 .05 .07 .09

e Just need to estimate
W, and W,



EM for GMMs: only learning means

Iterate: On the t'th iteration let our estimates be
}\‘t = {ul(t), HZ(t) “K(t)}

E-step
Compute “expected” classes of all datapoints
1 2
P(Yj = k‘xj,y,l...u,{) x exp By ij — MkH P(YJ. = k)
M-step

Compute most likely new ps given class expectations
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Gaussian Mixture Example: Start ~——




After first iteration




After 2nd iteration




After 3rd iteration
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After 4th iteration
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After 5th iteration




After 6th iteration




After 20th iteration




Jensen’s inequality

* Theorem: log ), P(z) f(z) = ), P(z) log f(z)

— e.g., Binary case for convex function f:

f(ty + (1= t)xs) < tf(1) + (1— 1) f(22).




