Probabilistic Graphical Models

David Sontag

New York University

Lecture 3, February 14, 2013

Undirected graphical models

Reminder of lecture 2

- An alternative representation for joint distributions is as an undirected graphical model (also known as Markov random fields)
- As in BNs, we have one node for each random variable
- Rather than CPDs, we specify (non-negative) **potential functions** over sets of variables associated with cliques *C* of the graph,

$$p(x_1,\ldots,x_n)=\frac{1}{Z}\prod_{c\in C}\phi_c(\mathbf{x}_c)$$

Z is the **partition function** and normalizes the distribution:

$$Z = \sum_{\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_n} \prod_{c \in C} \phi_c(\hat{\mathbf{x}}_c)$$

Undirected graphical models

$$p(x_1,\ldots,x_n) = \frac{1}{Z} \prod_{c \in C} \phi_c(\mathbf{x}_c), \qquad Z = \sum_{\hat{x}_1,\ldots,\hat{x}_n} \prod_{c \in C} \phi_c(\hat{\mathbf{x}}_c)$$

Simple example (potential function on each edge encourages the variables to take the same value):

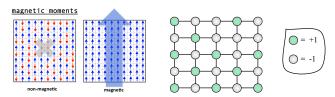
$$p(a,b,c) = \frac{1}{7}\phi_{A,B}(a,b)\cdot\phi_{B,C}(b,c)\cdot\phi_{A,C}(a,c),$$

where

$$Z = \sum_{\hat{a}, \hat{b}, \hat{c} \in \{0,1\}^3} \phi_{A,B}(\hat{a}, \hat{b}) \cdot \phi_{B,C}(\hat{b}, \hat{c}) \cdot \phi_{A,C}(\hat{a}, \hat{c}) = 2 \cdot 1000 + 6 \cdot 10 = 2060.$$

Example: Ising model

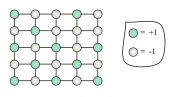
- Invented by the physicist Wilhelm Lenz (1920), who gave it as a problem to his student Ernst Ising
- Mathematical model of ferromagnetism in statistical mechanics
- The spin of an atom is biased by the spins of atoms nearby on the material:



- Each atom $X_i \in \{-1, +1\}$, whose value is the direction of the atom spin
- If a spin at position i is +1, what is the probability that the spin at position j is also +1?
- Are there phase transitions where spins go from "disorder" to "order"?

Example: Ising model

- Each atom $X_i \in \{-1, +1\}$, whose value is the direction of the atom spin
- The spin of an atom is biased by the spins of atoms nearby on the material:



$$p(x_1, \dots, x_n) = \frac{1}{Z} \exp \left(\sum_{i < j} w_{i,j} x_i x_j - \sum_i u_i x_i \right)$$

- When $w_{i,j} > 0$, nearby atoms encouraged to have the same spin (called **ferromagnetic**), whereas $w_{i,j} < 0$ encourages $X_i \neq X_j$
- Node potentials $\exp(-u_ix_i)$ encode the bias of the individual atoms
- Scaling the parameters makes the distribution more or less spiky

Today's lecture

- Markov random fields
 - Factor graphs
 - ② Bayesian networks ⇒ Markov random fields (moralization)
 - Hammersley-Clifford theorem (conditional independence ⇒ joint distribution factorization)
- Conditional models
 - Oiscriminative versus generative classifiers
 - Conditional random fields

Higher-order potentials

- The examples so far have all been **pairwise MRFs**, involving only node potentials $\phi_i(X_i)$ and pairwise potentials $\phi_{i,j}(X_i, X_j)$
- Often we need higher-order potentials, e.g.

$$\phi(x, y, z) = 1[x + y + z \ge 1],$$

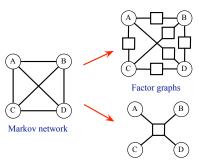
where X, Y, Z are binary, enforcing that at least one of the variables takes the value $\mathbf{1}$

 Although Markov networks are useful for understanding independencies, they hide much of the distribution's structure:

Does this have pairwise potentials, or one potential for all 4 variables?

Factor graphs

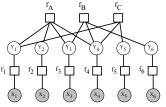
- G does not reveal the structure of the distribution: maximum cliques vs. subsets of them
- A factor graph is a bipartite undirected graph with variable nodes and factor nodes. Edges are only between the variable nodes and the factor nodes
- Each factor node is associated with a single potential, whose scope is the set of variables that are neighbors in the factor graph



• The distribution is same as the MRF – this is just a different data structure

Example: Low-density parity-check codes

• Error correcting codes for transmitting a message over a noisy channel (invented by Galleger in the 1960's, then re-discovered in 1996)



• Each of the top row factors enforce that its variables have even parity:

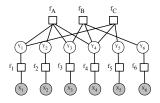
$$f_A(Y_1,Y_2,Y_3,Y_4)=1$$
 if $Y_1\otimes Y_2\otimes Y_3\otimes Y_4=0$, and 0 otherwise

Thus, the only assignments Y with non-zero probability are the following (called codewords):
 3 bits encoded using 6 bits

 $000000,\ 011001,\ 110010,\ 101011,\ 111100,\ 100101,\ 001110,\ 010111$

• $f_i(Y_i, X_i) = p(X_i \mid Y_i)$, the likelihood of a bit flip according to noise model

Example: Low-density parity-check codes



The decoding problem for LDPCs is to find

$$\mathrm{argmax}_{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x})$$

This is called the maximum a posteriori (MAP) assignment

• Since Z and $p(\mathbf{x})$ are constants with respect to the choice of \mathbf{y} , can equivalently solve (taking the log of $p(\mathbf{y}, \mathbf{x})$):

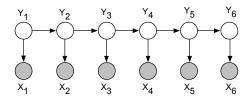
$$\operatorname{argmax}_{\mathbf{y}} \sum_{c \in C} \theta_c(\mathbf{x}_c),$$

where $\theta_c(\mathbf{x}_c) = \log \phi_c(\mathbf{x}_c)$

This is a discrete optimization problem!

Converting BNs to Markov networks

What is the equivalent Markov network for a hidden Markov model?



Many inference algorithms are more conveniently given for undirected models – this shows how they can be applied to Bayesian networks

Moralization of Bayesian networks

- Procedure for converting a Bayesian network into a Markov network
- The moral graph $\mathcal{M}[G]$ of a BN G = (V, E) is an undirected graph over V that contains an undirected edge between X_i and X_j if
 - 1 there is a directed edge between them (in either direction)
 - ② X_i and X_j are both parents of the same node

(term historically arose from the idea of "marrying the parents" of the node)

• The addition of the moralizing edges leads to the loss of some independence information, e.g., $A \to C \leftarrow B$, where $A \perp B$ is lost

Converting BNs to Markov networks

Moralize the directed graph to obtain the undirected graphical model:

Introduce one potential function for each CPD:

$$\phi_i(x_i, \mathbf{x}_{pa(i)}) = p(x_i \mid \mathbf{x}_{pa(i)})$$

• So, converting a hidden Markov model to a Markov network is simple:

ullet For variables having > 1 parent, factor graph notation is useful

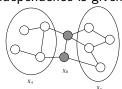
Factorization implies conditional independencies

• p(x) is a Gibbs distribution over G if it can be written as

$$p(x_1,\ldots,x_n)=\frac{1}{Z}\prod_{c\in C}\phi_c(\mathbf{x}_c),$$

where the variables in each potential $c \in C$ form a clique in G

• Recall that conditional independence is given by graph separation:



• Theorem (soundness of separation): If p(x) is a Gibbs distribution for G, then G is an I-map for p(x), i.e. $I(G) \subseteq I(p)$ Proof: Suppose **B** separates **A** from **C**. Then we can write

$$p(\mathbf{X}_{A}, \mathbf{X}_{B}, \mathbf{X}_{C}) = \frac{1}{7} f(\mathbf{X}_{A}, \mathbf{X}_{B}) g(\mathbf{X}_{B}, \mathbf{X}_{C}).$$

Conditional independencies implies factorization

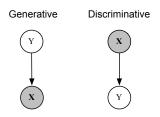
- Theorem (soundness of separation): If p(x) is a Gibbs distribution for G, then G is an I-map for p(x), i.e. $I(G) \subseteq I(p)$
- What about the converse? We need one more assumption:
- A distribution is **positive** if $p(\mathbf{x}) > 0$ for all \mathbf{x}
- Theorem (**Hammersley-Clifford**, 1971): If $p(\mathbf{x})$ is a positive distribution and G is an I-map for $p(\mathbf{x})$, then $p(\mathbf{x})$ is a Gibbs distribution that factorizes over G
- Proof is in book (as is counter-example for when p(x) is not positive)
- This is important for learning:
 - Prior knowledge is often in the form of conditional independencies (i.e., a graph structure G)
 - Hammersley-Clifford tells us that it suffices to search over Gibbs distributions for G allows us to parameterize the distribution

Today's lecture

- Markov random fields
 - Factor graphs
 - ② Bayesian networks ⇒ Markov random fields (moralization)
 - Hammersley-Clifford theorem (conditional independence ⇒ joint distribution factorization)
- Conditional models
 - Oiscriminative versus generative classifiers
 - Conditional random fields

Discriminative versus generative classifiers

 There is often significant flexibility in choosing the structure and parameterization of a graphical model

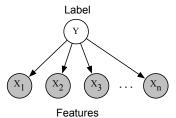


It is important to understand the trade-offs

 In the next few slides, we will study this question in the context of e-mail classification

From lecture 1... naive Bayes for single label prediction

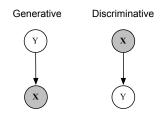
- ullet Classify e-mails as spam (Y=1) or not spam (Y=0)
 - Let 1: n index the words in our vocabulary (e.g., English)
 - $X_i = 1$ if word i appears in an e-mail, and 0 otherwise
 - E-mails are drawn according to some distribution $p(Y, X_1, \dots, X_n)$
- Words are conditionally independent given *Y*:



Prediction given by:

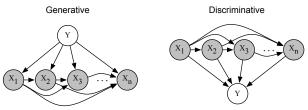
$$p(Y = 1 \mid x_1, \dots x_n) = \frac{p(Y = 1) \prod_{i=1}^n p(x_i \mid Y = 1)}{\sum_{y \in \{0,1\}} p(Y = y) \prod_{i=1}^n p(x_i \mid Y = y)}$$

• Recall that these are **equivalent** models of p(Y, X):



- However, suppose all we need for prediction is $p(Y \mid X)$
- In the left model, we need to estimate both p(Y) and p(X | Y)
- In the right model, it suffices to estimate just the **conditional** distribution $p(Y \mid X)$
 - We never need to estimate p(X)!
 - Would need p(X) if X is only partially observed
 - Called a discriminative model because it is only useful for discriminating Y's label

- Let's go a bit deeper to understand what are the trade-offs inherent in each approach
- Since **X** is a random vector, for $Y \to \mathbf{X}$ to be equivalent to $\mathbf{X} \to Y$, we must have:

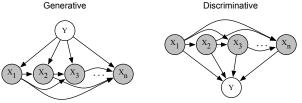


We must make the following choices:

- **1** In the generative model, how do we parameterize $p(X_i \mid \mathbf{X}_{pa(i)}, Y)$?
- 2 In the discriminative model, how do we parameterize $p(Y \mid \mathbf{X})$?

We must make the following choices:

- **1** In the generative model, how do we parameterize $p(X_i \mid \mathbf{X}_{pa(i)}, Y)$?
- **②** In the discriminative model, how do we parameterize $p(Y \mid \mathbf{X})$?



- **①** For the generative model, assume that $X_i \perp \mathbf{X}_{-i} \mid Y$ (naive Bayes)
- For the discriminative model, assume that

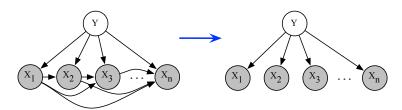
$$p(Y = 1 \mid \mathbf{x}; \alpha) = \frac{1}{1 + e^{-\alpha_0 - \sum_{i=1}^{n} \alpha_i x_i}}$$

21 / 33

This is called **logistic regression**. (To simplify the story, we assume $X_i \in \{0,1\}$)

Naive Bayes

• For the generative model, assume that $X_i \perp \mathbf{X}_{-i} \mid Y$ (naive Bayes)

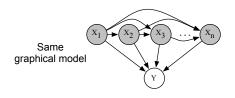


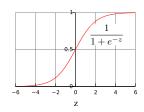
Logistic regression

For the discriminative model, assume that

$$p(Y = 1 \mid \mathbf{x}; \alpha) = \frac{e^{\alpha_0 + \sum_{i=1}^{n} \alpha_i x_i}}{1 + e^{\alpha_0 + \sum_{i=1}^{n} \alpha_i x_i}} = \frac{1}{1 + e^{-\alpha_0 - \sum_{i=1}^{n} \alpha_i x_i}}$$

Let $z(\alpha, \mathbf{x}) = \alpha_0 + \sum_{i=1}^n \alpha_i x_i$. Then, $p(Y = 1 \mid \mathbf{x}; \alpha) = f(z(\alpha, \mathbf{x}))$, where $f(z) = 1/(1 + e^{-z})$ is called the **logistic function**:





- **①** For the generative model, assume that $X_i \perp \mathbf{X}_{-i} \mid Y$ (naive Bayes)
- For the discriminative model, assume that

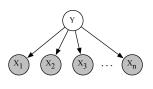
$$p(Y = 1 \mid \mathbf{x}; \alpha) = \frac{e^{\alpha_0 + \sum_{i=1}^{n} \alpha_i x_i}}{1 + e^{\alpha_0 + \sum_{i=1}^{n} \alpha_i x_i}} = \frac{1}{1 + e^{-\alpha_0 - \sum_{i=1}^{n} \alpha_i x_i}}$$

- In problem set 1, you showed assumption $1 \Rightarrow$ assumption 2
- Thus, every conditional distribution that can be represented using naive Bayes can also be represented using the logistic model
- What can we conclude from this?

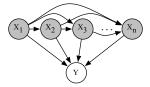
With a large amount of training data, logistic regression will perform at least as well as naive Bayes!

Discriminative models are powerful

Generative (naive Bayes)



Discriminative (logistic regression)



- Logistic model does *not* assume $X_i \perp \mathbf{X}_{-i} \mid Y$, unlike naive Bayes
- This can make a big difference in many applications
- For example, in spam classification, let $X_1 = 1$ ["bank" in e-mail] and $X_2 = 1$ ["account" in e-mail]
- ullet Regardless of whether spam, these always appear together, i.e. $X_1=X_2$
- Learning in naive Bayes results in $p(X_1 \mid Y) = p(X_2 \mid Y)$. Thus, naive Bayes double counts the evidence
- Learning with logistic regression sets $\alpha_i = 0$ for one of the words, in effect ignoring it (there are other equivalent solutions)

Generative models are still very useful

- Using a conditional model is only possible when X is always observed
 - When some X_i variables are unobserved, the generative model allows us to compute $p(Y \mid \mathbf{X}_e)$ by marginalizing over the unseen variables
- Estimating the generative model using maximum likelihood is more efficient (statistically) than discriminative training [Ng & Jordan, 2002]
 - Amount of training data needed to get close to infinite data solution
 - Naive Bayes needs $O(\log n)$ samples
 - Logistic regression needs O(n) samples
 - Naive Bayes converges more quickly to its (perhaps less helpful) asymptotic estimates

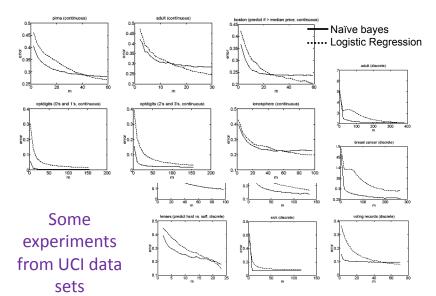


Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naïve Bayes.

Conditional random fields (CRFs)

- Conditional random fields are undirected graphical models of conditional distributions p(Y | X)
 - Y is a set of target variables
 - X is a set of observed variables
- We typically show the graphical model using just the Y variables
- Potentials are a function of X and Y

Formal definition

 A CRF is a Markov network on variables X ∪ Y, which specifies the conditional distribution

$$P(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{c \in C} \phi_c(\mathbf{x}_c, \mathbf{y}_c)$$

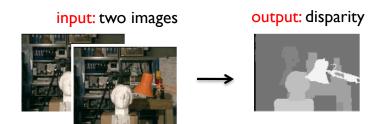
with partition function

$$Z(\mathbf{x}) = \sum_{\hat{\mathbf{y}}} \prod_{c \in C} \phi_c(\mathbf{x}_c, \hat{\mathbf{y}}_c).$$

- As before, two variables in the graph are connected with an undirected edge
 if they appear together in the scope of some factor
- The only difference with a standard Markov network is the normalization term – before marginalized over X and Y, now only over Y

CRFs in computer vision

- Undirected graphical models very popular in applications such as computer vision: segmentation, stereo, de-noising
- Grids are particularly popular, e.g., pixels in an image with 4-connectivity



- Not encoding p(X) is the main strength of this technique, e.g., if X is the image, then we would need to encode the distribution of natural images!
- Can encode a rich set of features, without worrying about their distribution

Parameterization of CRFs

- Factors may depend on a large number of variables
- We typically parameterize each factor as a log-linear function,

$$\phi_c(\mathbf{x}_c, \mathbf{y}_c) = \exp\{\mathbf{w} \cdot \mathbf{f}_c(\mathbf{x}_c, \mathbf{y}_c)\}$$

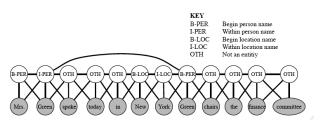
- $\mathbf{f}_c(\mathbf{x}_c, \mathbf{y}_c)$ is a feature vector
- w is a weight vector which is typically learned we will discuss this extensively in later lectures

NLP example: named-entity recognition

- Given a sentence, determine the people and organizations involved and the relevant locations:
 - "Mrs. Green spoke today in New York. Green chairs the finance committee."
- Entities sometimes span multiple words. Entity of a word not obvious without considering its context
- CRF has one variable X_i for each word, which encodes the possible labels of that word
- The labels are, for example, "B-person, I-person, B-location, I-location, B-organization, I-organization"
 - Having beginning (B) and within (I) allows the model to segment adjacent entities

NLP example: named-entity recognition

The graphical model looks like (called a *skip-chain CRF*):



There are three types of potentials:

- $\phi^1(Y_t, Y_{t+1})$ represents dependencies between neighboring target variables [analogous to transition distribution in a HMM]
- $\phi^2(Y_t, Y_{t'})$ for all pairs t, t' such that $x_t = x_{t'}$, because if a word appears twice, it is likely to be the same entity
- $\phi^3(Y_t, X_1, \dots, X_T)$ for dependencies between an entity and the word sequence [e.g., may have features taking into consideration capitalization]

Notice that the graph structure changes depending on the sentence!

33 / 33