
Probabilistic Graphical Models

David Sontag

New York University

Lecture 4, February 21, 2013

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 1 / 29

Conditional random fields (CRFs)

A CRF is a Markov network on variables X ∪ Y, which specifies the
conditional distribution

P(y | x) =
1

Z (x)

∏
c∈C

φc(x, yc)

with partition function

Z (x) =
∑

ŷ

∏
c∈C

φc(x, ŷc).

As before, two variables in the graph are connected with an undirected edge
if they appear together in the scope of some factor

The only difference with a standard Markov network is the normalization
term – before marginalized over X and Y, now only over Y

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 2 / 29

Parameterization of CRFs

We typically parameterize each factor as a log-linear function,

φc(x, yc) = exp{wc · fc(x, yc)}

fc(x, yc) is a feature vector
wc are weights that are typically learned – we will discuss this
extensively in later lectures

This is without loss of generality: any discrete CRF can be parameterized
like this (why?)

Conditional random fields are in the exponential family:

P(y | x) =
1

Z (x)

∏
c∈C

φc(x, yc) = exp

{∑
c∈C

wc · fc(x, yc)− ln Z (w, x)

}
= exp {w · f(x, y)− ln Z (w, x)} .

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 3 / 29

NLP example: named-entity recognition

Given a sentence, determine the people and organizations involved and the
relevant locations:
“Mrs. Green spoke today in New York. Green chairs the finance committee.”

Entities sometimes span multiple words. Entity of a word not obvious
without considering its context

CRF has one variable Xi for each word, which encodes the possible labels of
that word

The labels are, for example, “B-person, I-person, B-location, I-location,
B-organization, I-organization”

Having beginning (B) and within (I) allows the model to segment
adjacent entities

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 4 / 29

NLP example: named-entity recognition

The graphical model looks like (called a skip-chain CRF):

There are three types of potentials:

φ1(Yt ,Yt+1) represents dependencies between neighboring target variables
[analogous to transition distribution in a HMM]

φ2(Yt ,Yt′) for all pairs t, t ′ such that xt = xt′ , because if a word appears
twice, it is likely to be the same entity

φ3(Yt ,X1, · · · ,XT) for dependencies between an entity and the word
sequence [e.g., may have features taking into consideration capitalization]

Notice that the graph structure changes depending on the sentence!
David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 5 / 29

Today’s lecture

1 Worst-case complexity of probabilistic inference

2 Elimination algorithm

3 Running-time analysis of elimination algorithm (treewidth)

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 6 / 29

Probabilistic inference

Today we consider exact inference in graphical models

In particular, we focus on conditional probability queries,

p(Y|E = e) =
p(Y, e)

p(e)

(e.g., the probability of a patient having a disease given some observed
symptoms)

Let W = X − Y − E be the random variables that are neither the query nor
the evidence. Each of these joint distributions can be computed by
marginalizing over the other variables:

p(Y, e) =
∑

w

p(Y, e,w), p(e) =
∑

y

p(y, e)

Naively marginalizing over all unobserved variables requires an exponential
number of computations

Does there exist a more efficient algorithm?

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 7 / 29

Computational complexity of probabilistic inference

Here we show that, unless P=NP, there does not exist a more efficient
algorithm

We show this by reducing 3-SAT, which is NP-hard, to probabilistic
inference in Bayesian networks

3-SAT asks about the satisfiability of a logical formula defined on n literals
Q1, . . . ,Qn, e.g.

(¬Q3 ∨ ¬Q2 ∨ Q3) ∧ (Q2 ∨ ¬Q4 ∨ ¬Q5) · · ·

Each of the disjunction terms is called a clause, e.g.

C1(q1, q2, q3) = ¬q3 ∨ ¬q2 ∨ q3

In 3-SAT, each clause is defined on at most 3 literals.

Our reduction also proves that inference in Markov networks is NP-hard
(why?)

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 8 / 29

Reducing satisfiability to MAP inference

Input: 3-SAT formula with n literals Q1, . . .Qn and m clauses C1, . . . ,Cm

Q1 QnQ4Q3Q2

C1

A1 XAm–2A2

CmCm–1C3C2

. . .

. . .

One variable Qi ∈ {0, 1} for each literal, p(Qi = 1) = 0.5.

One variable Ci ∈ {0, 1} for each clause, whose parents are the literals used
in the clause. Ci = 1 if the clause is satisfied, and 0 otherwise:

p(Ci = 1 | qpa(i)) = 1[Ci (qpa(i))]

Variable X which is 1 if all clauses satisfied, and 0 otherwise:

p(Ai = 1 | pa(Ai)) = 1[pa(Ai) = 1], for i = 1, . . . ,m − 2

p(X = 1 | am−2, cm) = 1[am−2 = 1, cm = 1]

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 9 / 29

Reducing satisfiability to MAP inference

Input: 3-SAT formula with n literals Q1, . . .Qn and m clauses C1, . . . ,Cm

Q1 QnQ4Q3Q2

C1

A1 XAm–2A2

CmCm–1C3C2

. . .

. . .

p(q, c, a,X = 1) = 0 for any assignment q which does not satisfy all clauses

p(Q = q,C = 1,A = 1,X = 1) = 1
2n for any satisfying assignment q

Thus, we can find a satisfying assignment (whenever one exists) by
constructing this BN and finding the maximum a posteriori (MAP)
assignment:

argmax
q,c,a

p(Q = q,C = c,A = a | X = 1)

This proves that MAP inference in Bayesian networks and MRFs is NP-hard

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 10 / 29

Reducing satisfiability to marginal inference

Input: 3-SAT formula with n literals Q1, . . .Qn and m clauses C1, . . . ,Cm

Q1 QnQ4Q3Q2

C1

A1 XAm–2A2

CmCm–1C3C2

. . .

. . .

p(X = 1) =
∑

q,c,a p(Q = q,C = c,A = a,X = 1) is equal to the number

of satisfying assignments times 1
2n

Thus, p(X = 1) > 0 if and only if the formula has a satisfying assignment

This shows that marginal inference is also NP-hard

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 11 / 29

Reducing satisfiability to approximate marginal inference

Might there exist polynomial-time algorithms that can approximately answer
marginal queries, i.e. for some ε, find ρ such that

ρ− ε ≤ p(Y | E = e) ≤ ρ+ ε ?

Suppose such an algorithm exists, for any ε ∈ (0, 1
2). Consider the following:

1 Start with E = { X = 1 }
2 For i = 1, . . . , n:
3 Let qi = arg maxq p(Qi = q | E)
4 E← E ∪ (Qi = qi)

At termination, E is a satisfying assignment (if one exists). Pf by induction:

In iteration i , if ∃ satisfying assignment extending E for both qi = 0 and
qi = 1, then choice in line 3 does not matter

Otherwise, suppose ∃ satisfying assignment extending E for qi = 1 but not
for qi = 0. Then, p(Qi = 1 | E) = 1 and p(Qi = 0 | E) = 0

Even if approximate inference returned p(Qi = 1 | E) = 0.501 and
p(Qi = 0 | E) = .499, we would still choose qi = 1

Thus, it is even NP-hard to approximately perform marginal inference!

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 12 / 29

Probabilistic inference in practice

NP-hardness simply says that there exist difficult inference problems

Real-world inference problems are not necessarily as hard as these worst-case
instances

The reduction from SAT created a very complex Bayesian network:

Q1 QnQ4Q3Q2

C1

A1 XAm–2A2

CmCm–1C3C2

. . .

. . .

Some graphs are easy to do inference in! For example, inference in hidden
Markov models

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6

and other tree-structured graphs can be performed in linear time

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 13 / 29

Variable elimination (VE)

Exact algorithm for probabilistic inference in any graphical model

Running time will depend on the graph structure

Uses dynamic programming to circumvent enumerating all
assignments

First we introduce the concept for computing marginal probabilities,
p(Xi), in Bayesian networks

After this, we will generalize to MRFs and conditional queries

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 14 / 29

Basic idea

Suppose we have a simple chain, A→ B → C → D, and we want to
compute p(D)

p(D) is a set of values, {p(D = d), d ∈ Val(D)}. Algorithm
computes sets of values at a time – an entire distribution

By the chain rule and conditional independence, the joint distribution
factors as

p(A,B,C ,D) = p(A)p(B | A)p(C | B)p(D | C)

In order to compute p(D), we have to marginalize over A,B,C :

p(D) =
∑
a,b,c

p(A = a,B = b,C = c ,D)

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 15 / 29

Let’s be a bit more explicit...

There is structure to the summation, e.g., repeated P(c1|b1)P(d1|c1)

Let’s modify the computation to first compute

P(a1)P(b1|a1) + P(a2)P(b1|a2)

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 16 / 29

Let’s be a bit more explicit...

Let’s modify the computation to first compute

P(a1)P(b1|a1) + P(a2)P(b1|a2)

and
P(a1)P(b2|a1) + P(a2)P(b2|a2)

Then, we get

We define τ1 : Val(B)→ <, τ1(bi) = P(a1)P(bi |a1) + P(a2)P(bi |a2)

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 17 / 29

Let’s be a bit more explicit...

We now have

We can once more reverse the order of the product and the sum and get

There are still other repeated computations!

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 18 / 29

Let’s be a bit more explicit...

We define τ2 : Val(C)→ <, with

τ2(c1) = τ1(b1)P(c1|b1) + τ1(b2)P(c1|b2)

τ2(c2) = τ1(b1)P(c2|b1) + τ1(b2)P(c2|b2)

Now we can compute the marginal p(D) as

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 19 / 29

What did we just do?

Our goal was to compute

p(D) =
∑
a,b,c

p(a, b, c ,D) =
∑
a,b,c

p(a)p(b | a)p(c | b)p(D | c)

=
∑
c

∑
b

∑
a

p(D | c)p(c | b)p(b | a)p(a)

We can push the summations inside to obtain:

p(D) =
∑
c

p(D | c)
∑
b

p(c | b)
∑
a

p(b | a)p(a)︸ ︷︷ ︸
ψ1(a,b)︸ ︷︷ ︸
τ1(b)

Let’s call ψ1(A,B) = P(A)P(B|A). Then, τ1(B) =
∑

a ψ1(a,B)

Similarly, let ψ2(B,C) = τ1(B)P(C |B). Then, τ2(C) =
∑

b ψ1(b,C)

This procedure is dynamic programming: computation is inside out instead
of outside in

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 20 / 29

Inference in a chain

Generalizing the previous example, suppose we have a chain
X1 → X2 → · · · → Xn where each variable has k states

In Problem Set 2, you gave an algorithm to compute p(Xi), for k = 2

For i = 1 up to n − 1, compute (and cache)

p(Xi+1) =
∑
xi

p(Xi+1 | xi)p(xi)

Each update takes k2 time (why?)

The total running time is O(nk2)

In comparison, naively marginalizing over all latent variables has complexity
O(kn)

We did inference over the joint without ever explicitly constructing it!

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 21 / 29

Summary so far

Worst-case analysis says that marginal inference is NP-hard

Even approximating it is NP-hard

In practice, due to the structure of the Bayesian network, we can cache
computations that are otherwise computed exponentially many times

This depends on our having a good variable elimination ordering

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 22 / 29

Sum-product inference task

We want to give an algorithm to compute p(Y) for BNs and MRFs

This can be reduced to the following sum-product inference task:

Compute τ(y) =
∑

z

∏
φ∈Φ

φ(zScope[φ]∩Z, yScope[φ]∩Y) ∀y,

where Φ is a set of factors or potentials

For a BN, Φ is given by the conditional probability distributions for all
variables,

Φ = {φXi}ni=1 = {p(Xi | XPa(Xi))}
n
i=1,

and where we sum over the set Z = X − Y

For Markov networks, the factors Φ correspond to the set of potentials
which we earlier called C

Sum-product returns an unnormalized distribution, so we divide by∑
y τ(y)

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 23 / 29

Factor marginalization

Let φ(X,Y) be a factor where X is a set of variables and Y /∈ X

Factor marginalization of φ over Y (also called “summing out Y in φ”)
gives a new factor:

τ(X) =
∑
Y

φ(X,Y)

For example,
a1

a1

a1

a1

a2

a2

a2

a2

a3

a3

a3

a3

b1

b1

b2

b2

b1

b1

b2

b2

b1

b1

b2

b2

c1

c2

c1

c2

c1

c2

c1

c2

c1

c2

c1

c2

0.25

0.35

0.08

0.16

0.05

0.07

 0

 0

0.15

0.21

0.09

0.18

a1

a1

a2

a2

a3

a3

c1

c2

c1

c2

c1

c2

0.33

0.51

0.05

0.07

0.24

0.39

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 24 / 29

Sum-product variable elimination

Order the variables Z (called the elimination ordering)

Iteratively marginalize out variable Zi , one at a time

For each i ,

1 Multiply all factors that have Zi in their scope, generating a new
product factor

2 Marginalize this product factor over Zi , generating a smaller factor
3 Remove the old factors from the set of all factors, and add the new one

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 25 / 29

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 26 / 29

Example

What is p(Job)? Joint distribution factorizes as:

p(C ,D, I ,G , S , L,H, J) = p(C)p(D|C)p(I)p(G |D, I)p(L|G)P(S |I)P(J|S , L)p(H|J,G)

with factors

Φ = {φC (C), φD(C ,D), φI (I), φG (G ,D, I), φL(L,G),

φS(S , I), φJ(J, S , L), φH(H, J,G)}

Let’s do variable elimination with ordering {C ,D, I ,H,G ,S , L} on the board!

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 27 / 29

Elimination ordering

We can pick any order we want, but some orderings introduce factors with
much larger scope

Alternative ordering...

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 28 / 29

Choosing an elimination ordering

Set of possible heuristics:

Min-neighbors: The cost of a vertex is the number of neighbors it has in
the current graph.

Min-weight: the cost of a vertex is the product of weights (domain
cardinality) of its neighbors.

Min-fill: the cost of a vertex is the number of edges that need to be added
to the graph due to its elimination.

Weighted-Min-Fill: the cost of a vertex is the sum of weights of the edges
that need to be added to the graph due to its elimination. Weight of an
edge is the product of weights of its constituent vertices.

Which one better?

None of these criteria is better than others.

Often will try several.

David Sontag (NYU) Graphical Models Lecture 4, February 21, 2013 29 / 29

