Probabilistic Graphical Models

David Sontag

New York University

Lecture 5, Feb. 28, 2013

- Using VE for conditional queries
- Q Running-time of variable elimination
 - Elimination as graph transformation
 - Fill edges, width, treewidth
- Sum-product belief propagation (BP) Done on blackboard
- Max-product belief propagation

How to introduce evidence?

• Recall that our original goal was to answer conditional probability queries,

$$p(\mathbf{Y}|\mathbf{E}=\mathbf{e}) = rac{p(\mathbf{Y},\mathbf{e})}{p(\mathbf{e})}$$

- Apply variable elimination algorithm to the task of computing $P(\mathbf{Y}, \mathbf{e})$
- Replace each factor $\phi \in \Phi$ that has $\mathbf{E} \cap \operatorname{Scope}[\phi] \neq \emptyset$ with

$$\phi'(\mathbf{x}_{\mathrm{Scope}[\phi]-\mathbf{E}}) = \phi(\mathbf{x}_{\mathrm{Scope}[\phi]-\mathbf{E}}, \mathbf{e}_{\mathbf{E}\cap\mathrm{Scope}[\phi]})$$

- Then, eliminate the variables in $\mathcal{X} \mathbf{Y} \mathbf{E}$. The returned factor $\phi^*(\mathbf{Y})$ is $p(\mathbf{Y}, \mathbf{e})$
- To obtain the conditional p(Y | e), normalize the resulting product of factors – the normalization constant is p(e)

Algorithm 9.2 Using Sum-Product-Variable-Elimination for computing conditional probabilities.

Procedure Cond-Prob-VE (\mathcal{K} , // A network over \mathcal{X} Y, // Set of query variables E = e // Evidence $\Phi \leftarrow$ Factors parameterizing \mathcal{K} 1 Replace each $\phi \in \Phi$ by $\phi[E = e]$ 23 Select an elimination ordering \prec $Z \leftarrow = \mathcal{X} - Y - E$ 45 $\phi^* \leftarrow$ Sum-Product-Variable-Elimination (Φ, \prec, Z) $\alpha \leftarrow \sum_{\boldsymbol{y} \in Val(\boldsymbol{Y})} \phi^*(\boldsymbol{y})$ 6 7 return α, ϕ^*

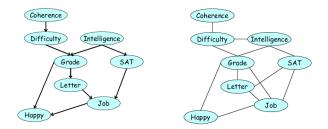
Running time of variable elimination

Coherence	Step	Variable	Factors	Variables	New
\mathbf{I}		eliminated	used	involved	factor
Difficulty Intelligence	1	C	$\phi_C(C), \phi_D(D, C)$	C, D	$\tau_1(D)$
	2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$\tau_2(G, I)$
Grade SAT	3	Ι	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$\tau_3(G, S)$
	4	H	$\phi_H(H, G, J)$	H, G, J	$\tau_4(G, J)$
Letter	5	G	$\tau_4(G, J), \tau_3(G, S), \phi_L(L, G)$	G, J, L, S	$\tau_5(J, L, S)$
Job	6	S	$\tau_5(J,L,S), \phi_J(J,L,S)$	J, L, S	$\tau_6(J, L)$
Нарру	7	L	$\tau_6(J, L)$	J, L	$\tau_7(J)$

- Let *n* be the number of variables, and *m* the number of initial factors
- At each step, we pick a variable X_i and multiply all factors involving X_i, resulting in a single factor ψ_i
- Let N_i be the number of variables in the factor ψ_i , and let $N_{max} = \max_i N_i$
- The running time of VE is then $O(mk^{N_{max}})$, where k = |Val(X)|. Why?
- The primary concern is that N_{max} can potentially be as large as n

Running time in graph-theoretic concepts

- Let's try to analyze the complexity in terms of the graph structure
- G_Φ is the undirected graph with one node per variable, where there is an edge (X_i, X_j) if these appear together in the scope of some factor φ
- Ignoring evidence, this is either the original MRF (for sum-product VE on MRFs) or the moralized Bayesian network:



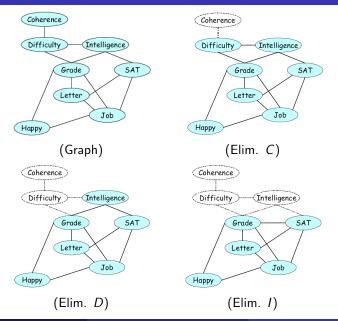
When a variable X is eliminated,

- We create a single factor ψ that contains X and all of the variables **Y** with which it appears in factors
- We eliminate X from ψ, replacing it with a new factor τ that contains all of the variables Y, but not X. Let's call the new set of factors Φ_X

How does this modify the graph, going from G_{Φ} to $G_{\Phi_{\chi}}$?

- Constructing ψ generates edges between all of the variables $Y \in \mathbf{Y}$
- Some of these edges were already in G_{Φ} , some are new
- The new edges are called fill edges
- The step of removing X from Φ to construct Φ_X removes X and all its incident edges from the graph

Example



David Sontag (NYU)

Lecture 5, Feb. 28, 2013 8 / 22

- We can summarize the computation cost using a single graph that is the union of all the graphs resulting from each step of the elimination
- We call this the induced graph $\mathcal{I}_{\Phi,\prec}$, where \prec is the elimination ordering

Example

Coherence Difficulty Intelligence Grade SAT Letter Job

1	Step	Variable	Factors	Variables	New
_		eliminated	used	involved	factor
	1	C	$\phi_C(C), \phi_D(D, C)$	C, D	$\tau_1(D)$
	2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$\tau_2(G, I)$
	3	Ι	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$\tau_3(G, S)$
	4	H	$\phi_H(H, G, J)$	H, G, J	$\tau_4(G, J)$
	5	G	$\tau_4(G, J), \ \tau_3(G, S), \ \phi_L(L, G)$	G, J, L, S	$\tau_5(J, L, S)$
	6	S	$\tau_5(J, L, S), \phi_J(J, L, S)$	J, L, S	$\tau_6(J, L)$
	7	L	$\tau_6(J, L)$	J, L	$\tau_7(J)$

(Induced graph)

(Maximal Cliques)

David Sontag (NYU)

- Theorem: Let $\mathcal{I}_{\Phi,\prec}$ be the induced graph for a set of factors Φ and ordering \prec , then
 - Every factor generated during VE has a scope that is a clique in *I*_{Φ,≺}
 Every maximal clique in *I*_{Φ,≺} is the scope of some intermediate factor in the computation

(see book for proof)

- Thus, N_{max} is equal to the size of the largest clique in $\mathcal{I}_{\Phi,\prec}$
- The running time, $O(mk^{N_{max}})$, is exponential in the size of the largest clique of the induced graph

Coherence					
Difficulty / Intelligence	Step	Variable	Factors	Variables	New
		eliminated	used	involved	factor
Grade SAT	1	C	$\phi_C(C), \phi_D(D, C)$	C, D	$\tau_1(D)$
	2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$\tau_2(G, I)$
Letter	3	Ι	$\phi_I(I), \phi_S(S,I), \tau_2(G,I)$	G, S, I	$\tau_3(G, S)$
	4	H	$\phi_H(H, G, J)$	H, G, J	$\tau_4(G, J)$
Job	5	G	$\tau_4(G, J), \tau_3(G, S), \phi_L(L, G)$	G, J, L, S	$\tau_5(J, L, S)$
	6	S	$\tau_5(J,L,S), \phi_J(J,L,S)$	J, L, S	$\tau_6(J, L)$
Нарру	7	L	$\tau_6(J, L)$	J, L	$\tau_7(J)$

(Maximal Cliques)

(VE)

 \bullet The maximal cliques in $\mathcal{I}_{G,\prec}$ are

$$\begin{array}{rcl} {\bf C}_1 & = & \{C, D\} \\ {\bf C}_2 & = & \{D, I, G\} \\ {\bf C}_3 & = & \{G, L, S, J\} \\ {\bf C}_4 & = & \{G, J, H\} \end{array}$$

- The width of an induced graph is #nodes in largest clique 1
- We define the induced width w_{G,≺} to be the width of the graph I_{G,≺} induced by applying VE to G using ordering ≺
- $\bullet~$ The treewidth,~ or "minimal induced width" of graph ${\cal G}$ is

$$w^*_{\mathcal{G}} = \min_{\prec} w_{\mathcal{G},\prec}$$

- The treewidth provides a bound on the best running time achievable by VE on a distribution that factorizes over G: O(mk^w_g^{*}),
- Unfortunately, finding the **best** elimination ordering (equivalently, computing the treewidth) for a graph is NP-hard
- In practice, heuristics (e.g., min-fill) are used to find a good elimination ordering

Graph is **chordal**, or triangulated, if every cycle of length \geq 3 has a shortcut (called a "chord")

Theorem: Every induced graph is chordal **Proof:** (by contradiction)

- Assume we have a chordless cycle X₁ X₂ X₃ X₄ X₁ in the induced graph
- Suppose X_1 was the first variable that we eliminated (of these 4)
- After a node is eliminated, no fill edges can be added to it. Thus, $X_1 X_2$ and $X_1 - X_4$ must have pre-existed
- Eliminating X_1 introduces the edge $X_2 X_4$, contradicting our assumption

Chordal graphs

- Thm: Every induced graph is chordal
- Thm: Any chordal graph has an elimination ordering that does not introduce any fill edges

```
Algorithm 9.3 Maximum Cardinality Algorithm for constructing an elimination ordering
```

```
\begin{array}{c|c} \textbf{Procedure Max-Cardinality} (& \mathcal{H} & // \text{An undirected graph over } \mathcal{X} \\ ) & \\ 1 & \text{Initialize all nodes in } \mathcal{X} \text{ as unmarked} \\ 2 & \textbf{for } k = |\mathcal{X}| \dots 1 \\ 3 & \mathcal{X} \leftarrow \text{ unmarked variable in } \mathcal{X} \text{ with largest number of marked neighbors} \\ 4 & \pi(\mathcal{X}) \leftarrow k \\ 5 & \text{Mark } \mathcal{X} \\ 6 & \textbf{return } \pi \end{array}
```

(The elimination ordering is REVERSE)

• **Conclusion:** Finding a good elimination ordering is equivalent to making graph chordal with minimal width

- Using VE for conditional queries
- Q Running-time of variable elimination
 - Elimination as graph transformation
 - Fill edges, width, treewidth
- Sum-product belief propagation (BP) Done on blackboard
- Max-product belief propagation

• Recall the MAP inference task,

$$\arg\max_{\mathbf{x}} p(\mathbf{x}), \qquad p(\mathbf{x}) = \frac{1}{Z} \prod_{c \in C} \phi_c(\mathbf{x}_c)$$

(we assume any evidence has been subsumed into the potentials, as discussed in the last lecture)

• Since the normalization term is simply a constant, this is equivalent to

$$\arg\max_{\mathbf{x}}\prod_{c\in C}\phi_c(\mathbf{x}_c)$$

(called the *max-product* inference task)

• Furthermore, since log is monotonic, letting $\theta_c(\mathbf{x_c}) = \lg \phi_c(\mathbf{x_c})$, we have that this is equivalent to

$$\arg\max_{\mathbf{x}}\sum_{c\in C}\theta_c(\mathbf{x}_c)$$

(called *max-sum*)

• Compare the sum-product problem with the max-product (equivalently, max-sum in log space):

sum-product
$$\sum_{\mathbf{x}} \prod_{c \in C} \phi_c(\mathbf{x}_c)$$
max-sum
$$\max_{\mathbf{x}} \sum_{c \in C} \theta_c(\mathbf{x}_c)$$

- Can exchange operators (+, *) for (max, +) and, because both are semirings satisfying associativity and commutativity, everything works!
- We get "max-product variable elimination" and "max-product belief propagation"

Simple example

 Suppose we have a simple chain, A − B − C − D, and we want to find the MAP assignment,

$$\max_{a,b,c,d} \phi_{AB}(a,b) \phi_{BC}(b,c) \phi_{CD}(c,d)$$

• Just as we did before, we can push the maximizations inside to obtain:

$$\max_{\substack{a,b}} \phi_{AB}(a,b) \max_{c} \phi_{BC}(b,c) \max_{d} \phi_{CD}(c,d)$$

or, equivalently,

$$\max_{a,b} \theta_{AB}(a,b) + \max_{c} \theta_{BC}(b,c) + \max_{d} \theta_{CD}(c,d)$$

• To find the actual maximizing assignment, we do a traceback (or keep back pointers)

David Sontag (NYU)

Max-product variable elimination

Procedure Max-Product-VE (

```
\Phi, // Set of factors over X
          < // Ordering on X
      )
         Let X_1, \ldots, X_k be an ordering of X such that
1
           X_i \prec X_i \text{ id } i < j
           for i = 1, ..., k
3
             (\Phi, \phi_{X_i}) \leftarrow \text{Max-Product-Eliminate-Var}(\Phi, X_i)
4
5
            \boldsymbol{x}^* \leftarrow \text{Traceback-MAP}(\{\phi_{X_i} : i = 1, \dots, k\})
6
            return x^*, \Phi \parallel \Phi contains the probability of the MAP
          Procedure Max-Product-Eliminate-Var (
             \Phi. // Set of factors
                 // Variable to be eliminated
             Z
            \Phi' \leftarrow \{\phi \in \Phi : Z \in Scope[\phi]\}
1
           \Phi'' \leftarrow \Phi - \Phi'
2
3
           \psi \leftarrow \prod_{\phi \in \overline{\Phi}'} \phi
4
            \tau \leftarrow \max_Z \psi
            return (\Phi'' \cup \{\tau\}, \psi)
5
          Procedure Traceback-MAP (
              \{\phi_X : i = 1, \dots, k\}
1
            for i = k, ..., 1
               u_i \leftarrow (x_{i+1}^*, \ldots, x_k^*) \langle Scope[\phi_{X_i}] - \{X_i\} \rangle
2
3
                  // The maximizing assignment to the variables eliminated after
                     X_i
               x_i^* \leftarrow \arg \max_{x_i} \phi_{X_i}(x_i, \boldsymbol{u}_i)
4
5
                  // x_i^* is chosen so as to maximize the corresponding entry in
                     the factor, relative to the previous choices u_i
6
            return x^*
```

David Sontag (NYU)

Max-product belief propagation (for tree-structured MRFs)

• Same as sum-product BP except that the messages are now:

$$m_{j\to i}(x_i) = \max_{x_j} \phi_j(x_j) \phi_{ij}(x_i, x_j) \prod_{k \in N(j) \setminus i} m_{k \to j}(x_j)$$

• After passing all messages, can compute single node max-marginals,

$$m_i(x_i) = \phi_i(x_i) \prod_{j \in \mathcal{N}(i)} m_{j \to i}(x_i) \qquad \propto \qquad \max_{\mathbf{x}_{V \setminus i}} p(\mathbf{x}_{V \setminus i}, x_i)$$

• If the MAP assignment **x**^{*} is **unique**, can find it by locally decoding each of the single node max-marginals, i.e.

$$x_i^* = \arg \max_{x_i} m_i(x_i)$$

• MAP as a discrete optimization problem is

$$\arg \max_{\mathbf{x}} \sum_{i \in V} \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

- Very general discrete optimization problem many hard combinatorial optimization problems can be written as this (e.g., 3-SAT)
- Studied in operations research communities, theoretical computer science, AI (constraint satisfaction, weighted SAT), etc.
- Very fast moving field, both for theory and heuristics