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Approximate marginal inference

Given the joint p(x1, . . . , xn) represented as a graphical model, how
do we perform marginal inference, e.g. to compute p(x1 | e)?

We showed in Lecture 4 that doing this exactly is NP-hard

Nearly all approximate inference algorithms are either:
1 Monte-carlo methods (e.g., likelihood reweighting, MCMC)
2 Variational algorithms (e.g., mean-field, TRW, loopy belief

propagation)

These next two lectures will be on variational methods
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Variational methods

Goal: Approximate difficult distribution p(x | e) with a new
distribution q(x) such that:

1 p(x | e) and q(x) are “close”
2 Computation on q(x) is easy

How should we measure distance between distributions?

The Kullback-Leibler divergence (KL-divergence) between two
distributions p and q is defined as

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

(measures the expected number of extra bits required to describe
samples from p(x) using a code based on q instead of p)

D(p ‖ q) ≥ 0 for all p, q, with equality if and only if p = q

Notice that KL-divergence is asymmetric
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KL-divergence (see Section 8.5 of K&F)

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

Suppose p is the true distribution we wish to do inference with

What is the difference between the solution to

arg min
q

D(p‖q)

(called the M-projection of q onto p) and

arg min
q

D(q‖p)

(called the I-projection)?

These two will differ only when q is minimized over a restricted set of
probability distributions Q = {q1, . . .}, and in particular when p 6∈ Q
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KL-divergence – M-projection

q∗ = arg min
q∈Q

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

For example, suppose that p(z) is a 2D Gaussian and Q is the set of all
Gaussian distributions with diagonal covariance matrices:
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p=Green, q∗=Red
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KL-divergence – I-projection

q∗ = arg min
q∈Q

D(q‖p) =
∑

x

q(x) log
q(x)

p(x)
.

For example, suppose that p(z) is a 2D Gaussian and Q is the set of all
Gaussian distributions with diagonal covariance matrices:
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KL-divergence (single Gaussian)

In this simple example, both the M-projection and I-projection find an
approximate q(x) that has the correct mean (i.e. Ep[z] = Eq[z]):
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What if p(x) is multi-modal?
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KL-divergence – M-projection (mixture of Gaussians)

q∗ = arg min
q∈Q

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

Now suppose that p(x) is mixture of two 2D Gaussians and Q is the set of
all 2D Gaussian distributions (with arbitrary covariance matrices):

p=Blue, q∗=Red

M-projection yields distribution q(x) with the correct mean and covariance.
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KL-divergence – I-projection (mixture of Gaussians)

q∗ = arg min
q∈Q

D(q‖p) =
∑

x

q(x) log
q(x)

p(x)
.

p=Blue, q∗=Red (two equivalently good solutions!)

Unlike the M-projection, the I-projection does not necessarily yield the
correct moments.
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Mapping of distributions to/from moments

Recall the definition of probability distributions in the exponential family:

q(x; η) = h(x) exp{η · f(x)− ln Z (η)}

f(x) are called the sufficient statistics

In the exponential family, there is a one-to-one correspondance between
distributions q(x; η) and marginal vectors Eq[f(x)]

For example, when q is a Gaussian distribution,

q(x;µ,Σ) =
1

(2π)k/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

then f(x) = [x1, x2, . . . , xk , x
2
1 , x1x2, x1x3, . . . , x

2
2 , x2x3, . . .]

The expectation of f(x) gives the first and second-order (non-central)
moments, from which one can solve for µ and Σ
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Finding the M-projection is the same as exact inference

M-projection is:

q∗ = arg min
q∈Q

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

Suppose that Q is an exponential family (p(x) can be arbitrary) and that we
could perform the M-projection, finding q∗

It can be shown (see Thm 8.6) that the expected sufficient statistics, with
respect to q∗(x), are exactly the marginals of p(x):

Eq∗ [f(x)] = Ep[f(x)]

Thus, solving for the M-projection is just as hard as the original inference
problem
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Most variational inference algorithms make use of the I-projection
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Variational methods

Suppose that we have an arbitrary graphical model:

p(x; θ) =
1

Z (θ)

∏

c∈C
φc(xc) = exp

(∑

c∈C
θc(xc)− ln Z (θ)

)

All of the approaches begin as follows:

D(q‖p) =
∑

x

q(x) ln
q(x)

p(x)

= −
∑

x

q(x) ln p(x)−
∑

x

q(x) ln
1

q(x)

= −
∑

x

q(x)
(∑

c∈C
θc(xc)− ln Z (θ)

)
− H(q(x))

= −
∑

c∈C

∑

x

q(x)θc(xc) +
∑

x

q(x) ln Z (θ)− H(q(x))

= −
∑

c∈C
Eq[θc(xc)] + ln Z (θ)− H(q(x)).
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The log-partition function

Since D(q‖p) ≥ 0, we have

−
∑

c∈C
Eq[θc(xc)] + ln Z (θ)− H(q(x)) ≥ 0,

which implies that

ln Z (θ) ≥
∑

c∈C
Eq[θc(xc)] + H(q(x)).

Thus, any approximating distribution q(x) gives a lower bound on the
log-partition function (for a BN, this is the probability of the evidence)

Recall that D(q‖p) = 0 if and only if p = q.Thus, if we allow
ourselves to optimize over all distributions, we have:

ln Z (θ) = max
q

∑

c∈C
Eq[θc(xc)] + H(q(x)).
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Two types of variational algorithms: Mean-field and
relaxation

max
q

∑

c∈C
Eq[θc(xc)] + H(q(x)).

Although this function is concave and thus in theory should be easy
to optimize, we need some compact way of representing q(x)

Mean-field algorithms assume a factored representation of the joint
distribution:

q(x) =
∏

i∈V
qi (xi )

[topic of next week’s lecture]

Relaxation algorithms work directly with pseudomarginals which may
not be consistent with any joint distribution
[loopy sum-product BP is an example of this!]
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Re-writing objective in terms of moments

ln Z (θ) = max
q

∑

c∈C
Eq[θc(xc)] + H(q(x)).

Assume that p(x) is in the exponential family, and let f(x) be its sufficient
statistic vector

Let Q be the exponential family with sufficient statistics f(x)

Define µq = Eq[f(x)] be the marginals of q(x)

We can re-write the objective as

ln Z (θ) = max
q

∑

c∈C

∑

xc

θc(xc)µc
q(xc) + H(µq),

where we define H(µq) to be the entropy of the maximum entropy
distribution with marginals µq

Next, instead of optimizing over distributions q(x), optimize over valid
marginal vectors µ. We obtain:

ln Z (θ) = max
µ∈M

∑

c∈C

∑

xc

θc(xc)µc(xc) + H(µ)
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Marginal polytope (same as from Lecture 6)
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Figure 2-1: Illustration of the marginal polytope for a Markov random field with three nodes
that have states in {0, 1}. The vertices correspond one-to-one with global assignments to
the variables in the MRF. The marginal polytope is alternatively defined as the convex hull
of these vertices, where each vertex is obtained by stacking the node indicator vectors and
the edge indicator vectors for the corresponding assignment.

2.2 The Marginal Polytope

At the core of our approach is an equivalent formulation of inference problems in terms of
an optimization over the marginal polytope. The marginal polytope is the set of realizable
mean vectors µ that can arise from some joint distribution on the graphical model:

M(G) =
�

µ ∈ Rd | ∃ θ ∈ Rd s.t. µ = EPr(x;θ)[φ(x)]
�

(2.7)

Said another way, the marginal polytope is the convex hull of the φ(x) vectors, one for each
assignment x ∈ χn to the variables of the Markov random field. The dimension d of φ(x) is
a function of the particular graphical model. In pairwise MRFs where each variable has k
states, each variable assignment contributes k coordinates to φ(x) and each edge assignment
contributes k2 coordinates to φ(x). Thus, φ(x) will be of dimension k|V | + k2|E|.

We illustrate the marginal polytope in Figure 2-1 for a binary-valued Markov random
field on three nodes. In this case, φ(x) is of dimension 2 · 3 + 22 · 3 = 18. The figure shows
two vertices corresponding to the assignments x = (1, 1, 0) and x� = (0, 1, 0). The vector
φ(x) is obtained by stacking the node indicator vectors for each of the three nodes, and then
the edge indicator vectors for each of the three edges. φ(x�) is analogous. There should be
a total of 9 vertices (the 2-dimensional sketch is inaccurate in this respect), one for each
assignment to the MRF.

Any point inside the marginal polytope corresponds to the vector of node and edge
marginals for some graphical model with the same sufficient statistics. By construction, the

17
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Relaxation

ln Z (θ) = max
µ∈M

∑

c∈C

∑

xc

θc(xc)µc(xc) + H(µ)

We still haven’t achieved anything, because:

1 The marginal polytope M is complex to describe (in general,
exponentially many vertices and facets)

2 H(µ) is very difficult to compute or optimize over

We now make two approximations:

1 We replace M with a relaxation of the marginal polytope, e.g. the local
consistency constraints ML

2 We replace H(µ) with a function H̃(µ) which approximates H(µ)

David Sontag (NYU) Graphical Models Lecture 7, March 14, 2012 18 / 22



Local consistency constraints (same as from Lecture 6)

Force every “cluster” of variables to choose a local assignment:

µi (xi ) ≥ 0 ∀i ∈ V , xi∑

xi

µi (xi ) = 1 ∀i ∈ V

µij(xi , xj) ≥ 0 ∀ij ∈ E , xi , xj∑

xi ,xj

µij(xi , xj) = 1 ∀ij ∈ E

Enforce that these local assignments are globally consistent:

µi (xi ) =
∑

xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑

xi

µij(xi , xj) ∀ij ∈ E , xj

The local consistency polytope, ML is defined by these constraints
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Entropy of a tree distribution

Suppose that q is a tree-structured distribution, so that we are
optimizing only over marginals µij(xi , xj) for ij ∈ T

The entropy of q as a function of its marginals can be shown to be

H(~µ) =
∑

i∈V
H(µi )−

∑

ij∈T
I (µij)

where

H(µi ) = −
∑

xi

µi (xi ) logµi (xi )

I (µij) =
∑

xi ,xj

µij(xi , xj) log
µij(xi , xj)

µi (xi )µj(xj)

Can we use this for non-tree structured models?

David Sontag (NYU) Graphical Models Lecture 7, March 14, 2012 20 / 22



Bethe-free energy approximation

The Bethe entropy approximation is (for any graph)

Hbethe(~µ) =
∑

i∈V
H(µi )−

∑

ij∈E
I (µij)

This gives the following variational approximation:

max
µ∈ML

∑

c∈C

∑

xc

θc(xc)µc(xc) + Hbethe(~µ)

For non tree-structured models this is not concave, and is hard to
maximize

Loopy belief propagation, if it converges, finds a saddle point!
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Concave relaxation

Let H̃(µ) be an upper bound on H(µ), i.e. H(µ) ≤ H̃(µ)

As a result, we obtain the following upper bound on the log-partition
function:

ln Z (θ) ≤ max
µ∈ML

∑

c∈C

∑

xc

θc(xc)µc(xc) + H̃(µ)

An example of a concave entropy upper bound is the tree-reweighted
approximation (Jaakkola, Wainwright, & Wilsky, ’05), given by specifying a
distribution over spanning trees of the graph

b

e
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b

e

f

b

e

f

b

e

f

(a) (b) (c) (d)

Figure 1. Illustration of the spanning tree poly-
tope T(G). Original graph is shown in panel (a).
Probability 1/3 is assigned to each of the three
spanning trees { Ti | i = 1, 2, 3 } shown in panels
(b)–(d). Edge b is a so-called bridge in G, mean-
ing that it must appear in any spanning tree (i.e.,
µb = 1). Edges e and f appear in two and one of the
spanning trees respectively, which gives rise to edge
appearance probabilities µe = 2/3 and µf = 1/3.

Tree-consistent pseudomarginals: The con-
straint set associated with our variational formula-
tion [10] is the set of so-called pseudomarginals that
satisfy certain tree-consistency constraints. To be pre-
cise, for each node s ∈ V , let Ts = {Ts;j | j ∈ Xs} be
a non-negative pseudomarginal vector with ms = |Xs|
elements; similarly, for each edge (s, t) ∈ E, let
Tst = {Tst;jk | (j, k) ∈ Xs × Xt} be a non-negative
pseudomarginal vector with ms × mt elements. On
occasion, we will also use the notation Ts(xs) to refer
to the function that takes the value Ts;j when xs = j;
the joint function Tst(xs, xt) is defined similarly. We
let T = {Ts, s ∈ V } ∪ { Tst, (s, t) ∈ E } denote the
full collection of pseudomarginals on nodes and edges.
This set of pseudomarginals is required to satisfy
a set of local normalization and marginalization
constraints; in particular, we require that they are
elements of the set

TREE(G) !
{

T
∣∣ ∑

k∈Xt

Tst;jk = Ts;j ,
∑

j∈Xs

Ts;j = 1
}

Our choice of notation is motivated by the fact that if
G is a tree, then TREE(G) is a complete description
of the set of valid (single node and edge) marginal
distributions.

Variational formulation We now present the vari-
ational problem that gives rise to upper bounds on the
log partition function. We begin by setting up the nec-
essary notation. For each s ∈ V and pseudomarginal
Ts, we define the single node entropy:

Hs(Ts) = −
∑

j∈Xs

Ts;j log Ts;j

Similarly, for each (s, t) ∈ E, we define the mutual
information between xs and xt as measured under the

joint pseudomarginal Tst:

Ist(Tst) =
∑

(j,k)

Tst;jk log
Tst;jk

(
∑

k∈Xt

Tst;jk)(
∑

j∈Xs

Tst;jk)

Borrowing terminology from statistical physics [11], we
define an “average energy” term as follows:

T · θ∗ =
∑

s∈V

∑

j

Ts;jθ
∗
s;j +

∑

(s,t)∈E

∑

(j,k)

Tst;jkθ∗
st;jk

Using this notation, our bounds are based on the fol-
lowing function:

F(T;µe; θ∗) ! −
∑

s∈V

Hs(Ts) +
∑

(s,t)∈E

µstIst(Tst) − T · θ∗

It can be seen that this function is closely related to
the Bethe free energy [11]. In fact, suppose that we
set µst = 1 for all edges (s, t) ∈ E, meaning that every
edge appears with probability one. In this case, the
function F(T;µe; θ∗) is equivalent to the Bethe free
energy on the constraint set TREE(G). However, the
choice µe = 1 belongs to the spanning tree polytope
T(G) only when the graph G is actually a tree.

In the paper [10], we prove the following result:

Theorem 1. For all µe ∈ T(G), the function
F(T ;µe; θ∗) is a convex in terms of T. Moreover, the
log partition function is bounded above by the solution
of the following variational problem:

Φ(θ∗) ≤ − min
T∈TREE(G)

F(T;µe; θ∗) (4)

The optimal solution T̂ = T̂(θ∗) to this minimization
is unique.

3.2 Tree-reweighted belief propagation

We now present a tree-reweighted belief propagation
algorithm designed to find the requisite set T̂ of pseu-
domarginals via a sequence of message-passing oper-
ations. This algorithm is the sum-product version of
the tree-reweighted max-product updates analyzed in
our related work [9].

The optimal collection T̂ of pseudomarginals, as a so-
lution to the constrained optimization problem (4),
must belong to TREE(G). In addition, it can be
shown [10] that they are characterized by the following
admissibility condition:

θ∗ · φ(x) + C =

∑

s∈V

log T̂ (xs) +
∑

(s,t)∈E

µst log
T̂st(xs, xt)

T̂s(xs)T̂t(xt)
(5)

Letting {ρij} denote edge appearance probabilities, we have:

HTRW (~µ) =
∑

i∈V
H(µi )−

∑

ij∈E
ρij I (µij)
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