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Amir Globerson (modified by David Sontag)

Consider a pairwise Markov random field and data {x(m)}m=1...M :

p(x;θ) =
1

Z(θ)
e
∑

ij θij(xi,xj) (1)

As we have seen earlier, the gradient w.r.t. θ of the likelihood is pD(xi, xj)− p(xi, xj ;θ). When inference
in the model is hard (e.g., because of high tree width) it is not feasible to calculate the gradient, and
likelihood maximization is typically intractable. One way to address this is to use approximate inference
methods to approximate the gradient (e.g., loopy BP, sampling etc).

The pseudo-likelihood method (Besag 1971) offers a different approach to this problem, which surpris-
ingly yields an exact solution if the data is generated by a model p(x;θ∗) and n→∞ (i.e., it is consistent).

The goal is to replace the likelihood by a more tractable objective. To do this, we note that:

p(x;θ) =
∏
i

p(xi|x1, . . . , xi−1) (2)

via the chain rule. We consider the following approximation:

p(x;θ) ≈
∏
i

p(xi|x1, . . . , xi−1, xi+1, . . . , xn;θ) =
∏
i

p(xi|x−i;θ) (3)

where we have added conditioning over additional variables. In an undirected model, the above has a
particularly simple form:

p(xi|x−i;θ) = p(xi|xN(i);θ) =
p(xi, x−i;θ)∑
x̂i
p(x̂i, x−i;θ)

=
e
∑

j∈N(i) θ(xj ,xi)∑
x̂i
e
∑

j∈N(i) θ(xj ,x̂i)

=
1

Z(xN(i);θ)
e
∑

j∈N(i) θ(xj ,xi)

So we have the approximation:

p(x;θ) ≈
∏
i

p(xi|xN(i);θ) (4)

or:
log p(x;θ) ≈

∑
i

log p(xi|xN(i);θ) (5)

The pseudolikelihood is defined as the following function of θ:

`PL(θ) =
1

M

∑
m

[
n∑
i=1

log p(x
(m)
i |x(m)

N(i);θ)

]
(6)
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Where:

p(x
(m)
i |x(m)

N(i);θ) =
e
∑

j∈N(i) θ(x
(m)
j ,x

(m)
i )∑

x̂i
e
∑

j∈N(i) θ(x
(m)
j ,x̂i)

(7)

What this implies is that we want the expression in the numerator to obtain its highest value when we set it
to the observed value of x(m)

i . This is a so-called contrastive that seeks to contrast between the values we
observed and the other values (in standard likelihood maximization we contrast between x(m) and all other
values.

Expanding `PL(θ) we obtain:

`PL(θ) =
1

M

∑
m

∑
i

∑
j∈N(i)

θ(x
(m)
j ,x

(m)
i )− 1

M

∑
m

∑
i

logZ(xN(i);θ)

=
1

M

∑
i

∑
j∈N(i)

∑
m

θ(x
(m)
j ,x

(m)
i )− 1

M

∑
i

∑
m

logZ(xN(i);θ)

=
∑
i

∑
j∈N(i)

pD(xi, xj)θ(xi, xj)−
∑
i

∑
xN(i)

pD(xN(i)) logZ(xN(i);θ)

Some good things about this function:

• It only involves summation over xi and is thus tractable

• It is concave in θ and hence has no local minima. We shall furthermore focus on cases in which it is
strictly concave (i.e., it has a single maximizer).

Next we will show the following important property: Assume the data is generated IID by a distribution
p(x;θ∗) for some θ∗. Then as n → ∞ we have `PL(θ) → `∞PL(θ) and θ∗ maximizes `∞PL(θ). In other
words as n→∞ the true parameter will be the solution to maximizing the pseudolikelihood function.

To take derivatives we need the following property (for j ∈ N(i))

∂

∂θij(xi, xj)
logZ(xN(i);θ) =

1

Z(xN(i);θ)
e
∑

k∈N(i) θki(xk,xi) = p(xi|xxN(i)
;θ) (8)

Take the derivative of `(θ) w.r.t. θij(xi, xj) to obtain:

∂`PL
∂θij(xi, xj)

= 2pD(xi, xj)−
∑
xN(i)

pD(xN(i))p(xi|xxN(i)
;θ)−

∑
xN(j)

pD(xN(j))p(xj |xN(j);θ) (9)

(the factor of 2 is because θij(xi, xj) shows up in two terms, one for node i and another for node j.)
As n→∞ we have pD(x)→ p(x;θ∗). So the gradient becomes:

2p(xi, xj ;θ
∗)−

∑
xN(i)\j

p(xN(i);θ
∗)p(xi|xN(i);θ)−

∑
xN(j)\i

p(xN(j);θ
∗)p(xj |xxN(j)

;θ) (10)

We now want to argue that the above is zero when θ = θ∗. The second term becomes:∑
xN(i)\j

p(xN(i);θ
∗)p(xi|xN(i);θ

∗) =
∑

xN(i)\j

p(xi, xN(i);θ
∗) = p(xi, xj ;θ

∗) (11)

and the same for the third term in Eq. 10 so that the gradient is indeed zero and `PL is (uniquely) maximized
by the true parameter value. The uniqueness comes from `PL being strictly concave.

In terms of convergence time we need the marginals over the neighbors to converge to their true value. If
there are many neighbors this could take a long time. The more problematic assumption of pseudolikelihood
is that the data is generated by a distribution in the class, which is rarely the case.
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