
Using Anchors to Estimate Clinical State without Labeled Data

Yoni Halpern1, Youngduck Choi1, Steven Horng MD MMSc2, David Sontag PhD1

1New York University, New York, NY
2Beth Israel Deaconess Medical Center, Boston, MA

Abstract

We present a novel framework for learning to estimate and predict clinical state variables without labeled
data. The resulting models can used for electronic phenotyping, triggering clinical decision support, and cohort
selection. The framework relies on key observations which we characterize and term “anchor variables”. By
specifying anchor variables, an expert encodes a certain amount of domain knowledge about the problem while
the rest of learning proceeds in an unsupervised manner. The ability to build anchors upon standardized ontolo-
gies and the framework’s ability to learn from unlabeled data promote generalizability across institutions. We
additionally develop a user interface to enable experts to choose anchor variables in an informed manner. The
framework is applied to electronic medical record-based phenotyping to enable real-time decision support in
the emergency department. We validate the learned models using a prospectively gathered set of gold-standard
responses from emergency physicians for nine clinically relevant variables.

1 Introduction
Health information technology is an essential part of modern health care, providing health care professionals with
critical information about patients and allowing them to make maximally informed decisions about a patient’s
care.

In order to accelerate the development of advanced clinical decision support tools, we seek to create a new
middleware application layer consisting of hundreds of clinical state variables that summarize a patient’s past and
current state. These clinical state variables collectively form a patient phenotype that is continuously estimated
throughout a patient’s stay and can be used by decision support applications to better inform, guide, and expe-
dite the workflows of clinicians. We define clinical decision support for this paper very broadly to include any
functionality that helps a clinician to be better, whether this means more complete or efficient documentation,
adherence to clinical guidelines, disease specific order sets, alerts and reminders, visualizations that summarize
patient information, or contextual information retrieval, extraction, and summarization.

For example, nursing home patients have different clinical care needs and treatments than other patients in
the emergency department. They are more likely to have resistant organisms to standard antibiotic therapy, and
therefore must be empirically treated with broad spectrum antibiotics. They are also more likely to fall and
therefore require special handling to minimize fall risk. Decision support tools can be used to remind clinicians
to order broad spectrum antibiotics and warn them when they do not. They can also be used to alert ancillary staff
such as patient transporters and radiology technicians to take appropriate fall precautions, a precaution that may not
always be obvious. Although whether a patient is from a nursing home could be collected manually as structured
data, there are hundreds of clinical state variables that would be valuable for decision support. Collecting all of
these variables for all patients is not feasible. Previous systems that use this type of approach often fail to get the
support of clinical users and are systematically not used.

Standard ontologies and knowledge representations are necessary but not sufficient to catalyze the development
of advanced decision support and enable transferability of models across institutions. In particular, the patient’s
state may not be directly observable. Machine learning allows us to reason about patients in these settings. Previ-
ous approaches such as logistic regression, support vector machines, decision trees, and neural networks require
domain experts to label a fairly large number of positive and negative examples which is time consuming (e.g.
[1, 2, 3]). Even after this labeling work has been done, these learned classifiers often do not generalize well across
institutions since the learned classifiers are highly dependent on the representation they are trained on. Retraining
for each site can require repeating the labeling process, modifying the representation and adjusting rules (e.g.
[4, 5]). A review of recent approaches to automated patient phenotyping from electronic records can be found in
[6].

In this paper, we describe a methodology for learning to estimate a patient phenotype, consisting of hundreds
of different clinical state variables, based on information available in the Electronic Medical Record (EMR). We
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Figure 1: Schematic diagram of a middleware layer, reading inputs from the EMR and acting as an intermediate
representation for applications. To improve generalization across institutions, we make no assumptions about the
raw clinical data sources. Rather, we make use of existing standardized ontologies to specify anchors for each
clinical state variable, and then use the anchors within each institution to learn classifiers to estimate the variables
using previously collected, unlabeled, raw clinical data.

use a combination of domain expertise and vast amounts of unlabeled data, rather than relying solely on domain
expertise or requiring labor-intensive manual labeling. To learn the models, we require only that certain highly
informative variables that we call anchor variables be identified by an expert, and the rest is learned from large
amounts of unlabeled data in an unsupervised manner. To promote transferability between institutions, we assume
only that these anchor variables remain stable between institutions while the rest of the underlying observation
model can change. Figure 1 presents a schematic view of such a system.

The main contributions of this paper are as follows:

1. We introduce the concept of anchor variables.

2. We show how to use anchors within an unsupervised machine learning algorithm to estimate each clinical
state variable without any human labeling.

3. We describe a novel user interface developed to help with choosing a good set of anchors for each clinical
state variable and for performing interactive cohort selection.

4. We evaluate our algorithm’s performance using a prospectively gathered set of gold-standard responses from
emergency physicians on nine different clinically relevant patient phenotyping tasks.

More broadly, this paper presents a novel approach to harnessing unstructured and structured data found in
electronic medical records to estimate clinical state variables that can be used in a wide variety of settings, includ-
ing both retrospective and prospective clinical care, research, administration, and quality improvement.

2 Anchor variable framework

2.1 Observed and latent variables in the EMR
We formalize anchor variables within the context of latent variable models. In our framework, variables are
categorized as either latent or observed. In a model with m latent variables and n observed variables, each
patient is described with a collection of latent variables Y = {Y1, Y2, ...Ym} and a collection of observations
X = {X1, X2, .., Xn}. Here we focus on binary variables but the work can be readily extended to consider
categorical variables as well.

Observed variables represent quantities that can be observed directly from the EMR. These include structured
variables like age and sex, but also queries that can be computed on semi-structured or free-text data, such as
Does any of the free text contain the phrase “chest pain”? or Does the medication list include “GSN 004380”
(aspirin)? Here we assume a very general form of the EMR without making assumptions of which fields are
present and what structure they take. These observations are represented in Figure 1 as the leftmost section of the
schematic.

Observations from the EMR are inherently noisy and may miss important information. For example, if the
note contains the short-form “cp” instead of chest pain, the chest pain observation would be negative even though



the patient may actually have the symptom. Our model addresses this by explicitly treating observations as noisy
evidence about the clinical state variables of interest. Additionally, as we will see later on in more detail, we allow
certain key observations to be trusted as true when they are positive but not when they are negative.

Latent variables represent quantities that cannot be observed directly from the EMR or computed as a simple
query, but for which the EMR can provide information that would be useful to answer the question. These variables
could be the answers to higher level questions such as Does the patient have {an infection, altered mental status,
a history of alcoholism}? The answers to these higher level clinical state questions form a useful representation
of the patient, shown in the middle section of Figure 1. In many cases, the answers can be found in the EMR,
though they are usually found in free-text sections of the record. Formulating queries to extract this information
directly from the free-text is notoriously difficult due to the vast number of ways each fact can be expressed [7].
In other cases, the answers may simply not be documented at all, either because they are not known or due to a
failure to document. In all of these cases, even though it is impossible to observe the answers directly, it may still
be possible to infer them based on all of the other data observable in the record. In our framework, the goal will
be to learn a classifier to predict the value of the latent variables Y with only access to the observations X .

2.2 Anchor variables
It is important to recognize that many different EMR systems exist and the set of observable variables in one
system may not map directly to the set of observable variables in another [8]. Promulgation of standards in the
form of ontologies to normalize the representation of observations as well as knowledge representation standards
such as the Continuity of Care Document will help to reduce some of this effect. However, different vendors
will continue to innovate beyond these standardizations and there will always be a structural differences in data
representations. In our framework we assume that the set of observable variables can change from system to
system as long as a few key informative observations are conserved. These observations are anchor observations
with the following property:

Definition 1. An observation Xj is an anchor for a latent variable Yi if Xj is conditionally independent of all
other observations, Xk ∀k 6= j, conditioned on the value of Yi.

In other words, anchor observations provide a direct, albeit noisy, view of the underlying latent variable we
wish to predict. The key characteristic of an anchor is the conditional independence property which states once
the value of the latent variable is known, no other observables provide additional information about the anchor
variable. While anchors tend to provide strong evidence towards the value of the latent variable, it would not make
sense to answer the questions simply based on the values of the anchors alone. However, our insight is that we
can explicitly treat anchors as noisy labels and use them within a learning algorithm. Learning with noisy labels is
a subject that has been studied extensively in machine learning literature (e.g. [9, 10]) and we leverage that work
here. By using domain knowledge to identify these noisy labels in the data itself, we no longer require manual
labeling of the data before it can be fed to a machine learning algorithm. The resulting method is extremely
portable. As long as anchors can be shared between institutions, no new labeling work is required to train the
classifiers for a new institution’s data.

In the next section we describe an unsupervised method to learn decision rules to predict the values of latent
variables, Y , using all of the the observed variables, X , when anchors for each latent variable have been specified.
When transferring to a new system with a potentially different set of observed variables we can perform the same
unsupervised training on the data available in the new system with no additional human input as long as the anchors
are preserved or can be mapped into the new data system. In order to ensure that anchors are not particular to an
institution, we can use standard ontologies when specifying the anchors.

2.3 Learning decision rules with positive anchors
Let A ∈ X be an anchor variable for Yi. The collection X̃ = X \A represents the observations X with the anchor
removed. We describe a procedure for learning a single decision rule, trying to predict the value of a single latent
variable Yi from observed values X using a special type of anchor that we call positive anchors.

Definition 2. An observation A is a positive anchor for a latent variable Yi if it is an anchor for Yi and P (Yi =
1|A = 1) = 1.

Intuitively, observing the anchor to be positive unambiguously reveals the state of the latent variable to be
positive, while observing it to be negative does not reveal the state of the latent variable. This setting has previously
been studied under the name positive-only labels [9] and a procedure for learning with positive-only labels is as
follows (see [9] for a detailed derivation):



1. Learn a calibrated classifier (e.g. logistic regression) to predict P (A = 1|X̃ ).

2. Using a validate set, compute C = 1
|P|

∑
k∈P P (A = 1|X̃ (k)) where P is the set of data in the validate set

where A = 1.

3. For a previously unseen patient t, predict

{
P (A = 1|X̃ (t))/C if A(t) = 0

1 if A(t) = 1

Positive anchors have some appealing properties. First, the algorithm to learn with them is extremely simple
and requires only the capability of learning logistic regression models, which are standard in most statistical
packages. Second, positive anchors have an intuitive interpretation for the human providing the anchors. For
positive anchors, the anchor should be a quantity that can only be caused by the latent variable being “on”.
Finally, the positivity of an anchor is easy to verify. If an expert is presented with examples of patients with a
positive anchor, they can confirm that in fact all (or almost all) of the presented patients are positive for the latent
variable of interest. Conditional independence is more difficult to verify and requires that an expert verify that the
proposed anchor is truly completely explained by the clinical state of interest.

Anchors like this exist in medicine. For example, a positive rapid antigen test for Group A streptococci is
very specific for strep throat and can serve as a positive anchor. The absence of a positive test result can be un-
informative either due to the low sensitivity of the test, or due to the possibility that the test was never performed
because the diagnosis was obvious and the patient was treated without testing [11]. In addition to carefully choos-
ing anchors, data preprocessing can be performed to increase the amount of conditional independence between
anchors and other observations. For example, in the Methods section we describe how common bigrams are rep-
resented in order to avoid obvious violations of conditional independence. In real use cases, no anchors will ever
perfectly meet the criteria in Definitions 1 and 2, and missing data will not be completely at random. Nonetheless,
approximate anchors can perform well on real data, as we demonstrate with experimental results for a range of
clinical variables. The above definitions are still useful as they give theoretical principles by which to choose good
anchors.

If multiple anchors are specified, they can be combined in a number of different ways. The simplest way is
to create a composite anchor out of the union of all of the individual anchors. For example, if the diagnosis code
ICD9-288.00 (neutropenia, unspecified) and the word “immunocompromised” are both anchors for the latent
variable isImmunosuppressed, then we can create a single composite anchor which is present if either of
these two observations is present. If the original anchors are positive as in Definition 2, then the new composite
anchor is also a positive anchor. Using the composite anchor is advantageous compared to choosing a single
anchor because it occurs more frequently, providing more positive examples for training.

3 Specifying anchors with an interactive display
In practice, specifying anchors can be challenging. In order to specify anchors, one must have sufficient domain
knowledge to evaluate whether a variable fits the definition of an anchor. To ease the process of eliciting anchors
from domain experts, we built an interactive interface to allow domain experts to specify anchor variables and
visualize the resulting model learned with those anchors. Figure 2 shows a screenshot of the tool being used to
specify anchors to identify HIV positive patients.

The interface is a general tool for specifying anchors and viewing the learned classifier. A user can add latent
variables and specify anchors for them. After adding an anchor, the user can, in real time, update the learned model
and view a ranked list of patients at the bottom of the screen. The ranking is generated according to the predicted
likelihood of the latent variable being positive according to the model built with the current set of anchors. For
each patient, a short summary is presented for easy viewing, and selected patients can be viewed in more detail in
the middle pane. Patients can be filtered according to three different criteria: view only patients with anchors (to
judge whether the anchors are catching the correct subset of patients), view patients that have the most recently
added anchor (to judge the incremental effect) and view patients without anchors (looking at a ranked list of these
patients provides an idea of how well the learning algorithm has generalized beyond simply looking for patients
that have the anchors).

After learning a model, the tool additionally suggests new anchors by showing the observations ranked by
weights of a linear classifier learned with a penalty on the L1 norm of the weight vector. The L1 penalty encourages
the learned classifier to use a minimal number of variables, effectively selecting highly informative observations.
The user then uses clinical judgment to decide whether or not each suggestion would make a good anchor, e.g. by
including the new observation and seeing the incremental effect on the ranking, or by viewing the newly anchored
patients. The result is a simplified active learning workflow with a human-in-the-loop. In this work we focus on



the basic task of learning classifiers with anchors, leaving more advanced active learning techniques like asking
questions about specific patients in a maximally informative manner [12] and providing detailed performance
feedback for the user to future work.

The ranking and filtering mechanisms provide feedback to the user, giving information about whether the
model is being built reasonably or not. Figure 3 in Section 5 shows a user trace of a clinician using our interface to
specify anchors to identify patients with a cardiac etiology. The feedback coming from patient rankings, viewing
recently anchored patients and looking at suggested anchors is sufficient to allow him to incrementally build better
models by specifying new anchors.

Anchors can be specified as words or phrases, and they are interpreted as queries on the free text portions
of the medical record. Additionally, the interface allows for incorporation of anchors according to standardized
hierarchical ontologies. For example, medications are grouped by families according to First Databank’s Enhanced
Therapeutic Classification (ETC) hierarchy, and diagnosis codes are grouped according to the ICD9 hierarchy. For
these hierarchical structures, including a parent as an anchor automatically adds all of its children as well.

In addition to specifying anchors, the tool is useful for performing fast interactive cohort selection, allowing
the user to quickly learn classifiers to find members of a target population using the anchor approach. The learned
classifiers can be exported as well for use in real-time decision applications. The tool is freely available for
download at http://sontaglab.cs.nyu.edu/.

Figure 2: A screenshot of the anchor elicitation tool using deidentified patient information. Conditional high-
lighting emphasizes the presence of previously specified anchors in a note so that the physician can determine
quickly whether its usage is as expected.

4 Methods

4.1 Data description
For training and evaluation we use a collection of 273,174 emergency department patient records collected from a
55,000 patient/year Level 1 trauma center and tertiary academic teaching hospital between 2008 and 2013. Each
record represents a single patient visit. All consecutive ED patient visits were included in the data set. No visits
were excluded. This study was approved by our institutional review board.

In order to evaluate the utility of the latent variable predictors learned, we collected gold standard labels
from the primary clinical provider caring for a patient at the time of disposition from the emergency department,
(admission, discharge, or transfer). As part of the routine clinical workflow of disposition, clinicians were asked
a series of 2-3 questions chosen randomly from a rotating pool of questions. The answers serve as gold standard
labels. These questions were entirely voluntary, but received an approximately 85% completion rate. As part of
our quality assurance process, we routinely review random samples of cases to confirm the quality of data obtained
using this technique and confirm that missing data occurs completely at random. Since only 2-3 questions were
asked at any given time, it took approximately 2 years to collect the labels for this paper, in addition to labels for
other unrelated research projects not presented here. Table 1 shows the clinical state variables and the associated
disposition questions that we use for evaluation in this paper. Responses were collected for all consecutive patients
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except for the didFall question which was only asked for patients who had a head CT scan. Clinicians reported
responses using a five point scale with 1 being most negative and 5 being most positive. The didFall question
used a three-point scale of “No”, “Uncertain” or “Yes”. When converting the labels to binary values we take 4 or
above as positive. Responses labeled as “Uncertain” are treated as unlabeled.

Latent Variable Disposition Question Additional Information Labels 
Collected 

Fraction 
Positive 

didFall Did the patient fall from 
standing or lesser height? None 9,831 0.118 

hasCardiacEtiology 
In the workup of this patient, 
was a cardiac etiology 
suspected? 

None 17,258 0.068 

hasInfection Do you think this patient has an 
infection? 

Suspected or proven viral, fungal, 
protozoal, or bacterial infection 62,589 0.213 

fromNursingHome Is the patient from a nursing 
home or similar facility? 

Interpret as if you would be giving broad 
spectrum antibiotics 36,256 0.045 

hasCancer Does the patient have an active 
malignancy? 

Malignancy not in remission; and recent 
enough to change clinical thinking 4,091 0.042 

hasPneumonia Do you think the patient has 
pneumonia? None 9,934 0.073 

isAnticoagulated Prior to this visit, was the 
patient on anticoagulation? 

Excluding antiplatelet agents like aspirin 
or plavix 1,082 0.047 

isImmunosuppressed Is the patient currently 
immunocompromised? None 12,857 0.040 

hasSepticShock Is the patient in septic shock? None 6,867 0.020 

Table 1: Questions asked of physicians at disposition time to obtain a gold standard set of labels. Additional
information was displayed in a clickthrough screen with a link from the main question page.

4.2 Representation and preprocessing
Patient records are represented as containing six distinct types of observable variables which come from semi-
structured sections of the EMR: 1. ICD9 diagnosis codes (from billing information), 2. current medications
recorded during medication reconciliation, 3. medications dispensed during the ED course as reported by med-
ication dispensing machines (Pyxis), 4. free text sections formed by a concatenation of chief complaint, triage
assessment and physician’s comments, 5. Age, 6. Sex.

Deidentified free text was preprocessed using a modified version of NegEx [13, 14] and negated words were
replaced by a new token (i.e. if the token “fever” was within the scope of a negation, it was transformed to a new
token, “negfever”). A second step of preprocessing collected 1,500 significant bigrams and appended them to the
text (i.e. the phrase “chest pain” was augmented to be “chest pain chest-pain” with an extra token representing
the bigram). When learning with anchors, we remove the component words (i.e. “chest pain” is replaced by
a single token “chest-pain”). We do this in order to increase the amount of conditional independence between
anchors which are bigrams and the rest of the text. If the token “chest-pain” is chosen as an anchor, it will not be
conditionally independent of the tokens “chest” and “pain” without the removal step. For training linear classifiers,
the first representation is strictly more general, so it should not hurt the performance of our baseline algorithms.

Medications are represented by generic sequence number (GSN) and diagnosis codes by ICD9 codes. Age was
discretized by decade with a binary indicator for each decade. Patients are represented as a binary feature vector
representing the presence or absence of each distinct diagnosis code, current medication, dispensed medication,
word, discretized age value and sex. Observations that occur in fewer than 50 patients in the entire dataset were
discarded, leaving a final binary feature vector of size 20,334.

4.3 Anchor specification
A single emergency physician specified anchors for each clinical state variable using our custom anchor elicitation
tool with access to a database of 20,000 unlabeled patients chosen at random from the full patient set. Figure 3
shows the evolution of the performance of the learned classifier as the physician specified anchors. Unless other-
wise noted, results are reported using the final set of anchors specified by the physician. Note that the physician
was not provided with explicit feedback about the performance of the model on the ground truth labels, but was
able to use the interface to determine which anchors were useful and make progress. In order to accurately assess



the effort involved in specifying anchors for a new classification task and to avoid overfitting, each anchor-based
predictive model was only built once with the exception of hasCancer which was used as an example for
development purposes.

4.4 Machine learning
We compare the classifiers learned using anchors to a simple rule-based baseline and a supervised machine learn-
ing baseline which uses a subset of the collected gold standard labels for training. Evaluation is reported on nine
separate estimation tasks, one for each clinical state variable in Table 1. We emphasize that unlike the supervised
baseline, the anchor algorithm does not require ground truth labels for training.

The rule-based baseline simply predicts positively when at least one anchor is present and negatively otherwise.
This approach also requires no training, and is evaluated on the entire labeled set.

Evaluation of the supervised baseline is reported using 4-fold cross validation in order to fully utilize the
limited number of gold standard labels we have for some of our clinical state variables. In each experiment,
the labeled patients are divided into four equal-sized test sets. For each test set, a classifier is trained using a
portion of the 75% of patients which are not in the test set (“training patients”) and then used to predict for the
25% of patients designated as test. The results are averaged across the four test sets, giving an estimate of the
performance on the entire labeled dataset. Each classifier of the supervised baseline is learned using at most 3000
training patients, representing approximately 3 weeks-worth of patients at our institution.

The supervised baseline was learned with logistic regression using the scikit-learn package [15] in Python. We
use 5-fold cross validation within the train set to choose parameters, trying all combinations of the regularization
constant (options are {10−6, 10−5, ..., 106}) and the norm used in regularization. Choices for the norm are L1
(encourages the learned classifier to use a minimal number of features by penalizing the sum of absolute values
of the regression weights) or L2 (avoids overly emphasizing any one feature by penalizing the sum of squares of
the regression weights). For the supervised results for 100 and 200 labels, 5-fold cross validation is not viable,
due to the low number of positively labeled samples for each disposition question. Hence, for these numbers of
labels the parameters are chosen to be the default values in scikit-learn. Lastly, we reduce regularization of the
bias parameter by setting the “intercept scaling” parameter to 1000.

The anchor method is trained using the specified anchors and 200,000 examples chosen randomly from the
unlabeled dataset, and tested on the entire labeled set. Scikit-learn is used to fit logistic regression models as
in the supervised setting, but holding the regularization norm fixed as L2 and doing cross-validation over the
regularization parameter. Since the logistic regression models learned in the anchor method are meant to predict
the presence or absence of the anchor (as described in Section 2.3), the cross-validation technique to choose
parameters also uses the presence or absence of the anchor to measure performance, requiring no ground truth
labels.

We measure performance using area under the ROC curve (AUC), a measure of the overall quality of a ranking
predictor. Estimating the constant C in step 2 of the anchor algorithm is not necessary to obtain a ranking, so we
omit that step. In the rule-based approach, ties are broken by counting the number of distinct anchors present in
the patient record. In the anchor approach, ties among patients with anchors are broken according to the predicted
probability of the latent variable ignoring the presence of the anchors.

4.5 Real-time decision support evaluation
We evaluate a real-time decision support scenario where the estimation tasks are performed without access to
diagnosis codes (i.e., diagnosis codes are excluded from the feature vector), as these would usually be assigned
after the patient leaves the emergency department. The supervised baseline and rule-based approach simply ignore
all ICD9 codes because they cannot incorporate extra information that is not available at test time. However, since
the algorithms are meant to be trained on previous patients, it is reasonable to assume that diagnosis codes would
be available at the time of training. Thus, the anchor algorithm uses ICD9 codes as anchors during training, even
though the resulting prediction rules do not use them as features.

We also tested a retrospective setting where the algorithms have access to diagnosis codes, both at train and
test time. This setting is meaningful since our algorithm can also be used in retrospective settings for tasks such
as cohort selection, information retrieval and quality control. The results were qualitatively similar, so we only
present the real-time setting here.



5 Results
In this section we present results comparing the performance of the anchor-based learning method to the baseline
methods on the task of predicting the nine clinical state variables listed previously in Table 1.

First, we show the utility of the anchor-specification interface described in Section 3. Figure 3 shows the
learning path for the hasCardiacEtiology clinical state variable, describing the changes to AUC as the
clinician added and subtracted anchors from the model. It is noteworthy that using our interface, the quality of the
model tends to increase as time progresses. We observed this trend for all of the clinical state variables. Table 2
shows some of the final anchors specified by the clinician who used the interface. Using our interactive tool, the
total time to specify anchors for all nine models was approximately 5 hours.
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Figure 3: A learning path for one of the learned models (hasCardiacEtiology) as the interface is being used
to build this model. On the x-axis are user actions, either additions to or deletions from the current set of anchors.
On the y-axis is AUC evaluated on the gold standard collected labels. The dotted line shows the progress of the
rules baseline which simply predicts 1 when an anchor is present and 0 otherwise. The rules baseline initially has
an AUC of 0.5 since the earliest anchors are ICD9 codes and we consider the real-time setting where ICD9 codes
are not available for the test set.

Clinical State Variable Selected Anchors 

didFall Billing code [Accidental Falls] (ICD9 E880-E888), “slipped”, “s/p-fall', “slip-fall”, “fell down”, “mechanical_fall”, 
“witnessed-fall”, … 

hasSepticShock Billing code [septic shock] (ICD9 785.52) , Administered meds from [cardiac sympathomimetics] (ETC:00003064) 

isimmunosuppressed Current meds from [antineoplastic - antimetabolite - folic acid analogs] (ETC:00002881), “immunocompromised”, … 
 

hascancer 
 

Billing code [neoplasms] (ICD9 group 2), “breast-ca”, “mets”, “oncology”, … 
 

Table 2: A selection of anchors specified by a clinical collaborator. Anchors that utilize structured variables such
as diagnosis codes or medications (current or administered) are mapped to a relevant structured ontology.

Table 3 shows a comparison to supervised learning for the real-time setting described in Section 4.5. For many
of the clinical state variables, the anchor algorithm outperforms learning with 3K labels, suggesting that it would
take a non-trivial amount of time and human effort to collect the data necessary to train in a supervised setting
with comparable accuracy. The didFall task was evaluated on a biased population since the question was only
asked for patients with a head CT scan. The supervised method was trained on a similarly biased population, so it
makes sense that the performance of the anchor algorithm underperforms in this setting.

To provide a comparison to a semi-supervised algorithm, we experimented with training using SVMlight in a
transductive setting [16], using up to 20,000 visit instances (500 labeled, 19500 unlabeled) for the hasInfection



variable. Samples were reweighted to account for the class imbalance. However, we found that this semi-
supervised approach did not improve AUC over the supervised baseline with 500 labeled examples.

Variables Rules Supervised Anchors 
100 200 500 1K 2K 3K (min, max) 

didFall 0.725 ± 0.008 0.814 0.852 0.900 0.914 0.920 0.924 (0.917,0.934) 0.883 ± 0.006  

hasCardiacEtiology 0.611 ± 0.006 0.772 0.827 0.824 0.875 0.900 0.906 (0.891, 0.920) 0.881 ± 0.006 

hasInfection 0.723 ± 0.002 0.728 0.767 0.804 0.830 0.861 0.883 (0.881, 0.886) 0.903± 0.001 

fromNursingHome 0.620 ± 0.005 0.725 0.792 0.822 0.869 0.894 0.891 (0.873, 0.906) 0.918 ± 0.004 

hasCancer 0.822 ± 0.018 0.635 0.673 0.693 0.810 0.882 0.902 (0.880, 0.930) 0.945 ± 0.01 

hasPneumonia - 0.856 0.907 0.933 0.947 0.956 0.963 (0.954, 0.972) 0.971 ±  0.003 

isAnticoagulated 0.849 ± 0.03 - - - - - - 0.930 ± 0.02 

isImmunosuppressed 0.650 ± 0.01 0.584 0.659 0.740 0.814 0.842 0.862 (0.840, 0.877) 0.840 ± 0.009 

hasSepticShock 0.738 ± 0.02 - 0.760 0.773 0.863 0.920 0.952 (0.928, 0.967) 0.967 ± 0.008 

Table 3: Comparing AUC in the real-time setting. The supervised method is trained using logistic regression
with a small number of gold standard labels. When the anchors are composed entirely of diagnosis codes, the
rules approach cannot be meaningfully evaluated on the test set (in the real-time setting, diagnosis codes are not
available at test time). When we had insufficient data to train, the supervised approach could not be evaluated.
Best methods in each row are bolded. The anchor approach uses 200K unlabeled examples in training. Standard
errors of the AUC for Rules and Anchors are computed using 1000 bootstrap samples of the test set. Min and max
values for the 3K supervised baseline are from the 4-fold cross validation.

6 Discussion
Across the nine clinical state variables considered in our evaluation, our anchor-based unsupervised learning algo-
rithm obtains prediction accuracy comparable to and in many cases better than a supervised prediction algorithm.
It is important to note that the clinical states we are interested in are precisely those for which ground truth labels
cannot be easily derived from diagnosis codes or from natural language processing on the clinical notes. Labeling
data would be expensive, time consuming, and in many cases institution-specific since the learned predictors may
not generalize.

Surprisingly, despite the physician not receiving explicit feedback about the performance of the model on the
ground truth label, using our user interface he was able to determine when adding an anchor helped or hurt overall
performance (as seen by a generally monotonic increase in AUC with each additional anchor specified). Our initial
user interface also allowed the physician to label individual patients as positive or negative for a given clinical state
variable. However, despite trying various ways of integrating this feedback into our learning algorithm, we found
negligible gains in accuracy compared to only using the anchors.

There are several interesting directions for future work. Our current approach predicts each clinical state
variable independently, but it would also be interesting to jointly model the clinical states. Doing so may pro-
vide a solution for the vexing problem of how to efficiently provide the learning algorithm negative feedback,
which could be addressed by introducing additional variables (and anchors for them). We could then use negative
correlations between clinical state variables to disambiguate commonly confused clinical states.

Although our algorithm can provide useful predictions without any labeled data, its use within a clinical setting
presents opportunities to gather additional data to improve its performance. One direction for future work would
be to develop a feedback mechanism (implicit or explicit) to learn from the algorithm’s use. We also plan to
integrate our predictions into an active learning algorithm to be used with the current system that asks questions
prospectively at the time of disposition from the ED. We currently rotate through the questions asked so as to not
overburden the clinician. Instead, we can carefully select which questions to ask for the specific patient at hand so
as to best improve our prediction algorithms for a range of clinical state variables.

The most important next step will be to test the generalization of anchor-based learning in departments other
than the ED and in other institutions. We are also continuing to use the user interface to specify anchors for dozens
of additional clinical state variables, using these to enable new contextual user interfaces and to trigger decision
support.
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