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Abstract

Early detection of Type 2 diabetes poses challenges to both the machine learning
and medical communities. Current clinical practices focus on narrow patient-
specific courses of action whereas electronic health records and insurance claims
data give us the ability to generalize that knowledge across large sets of popula-
tions. Advances in population health care have the potential to improve the quality
of health of the patient as well as decrease future medical costs, at least in part
by prevention of long-term complications accruing during undiagnosed diabetes.
Based on patient data from insurance claims, we present the results of our initial
experiments into identification of patients who will develop diabetes. We moti-
vate future work in this area by considering the need to develop machine learning
algorithms that can effectively deal with the depth and the variety of the data.

1 Introduction

Diabetes is an increasingly prevalent disease that affects millions of people in the United States
and around the world. With burgeoning health care costs both to the individuals and to health
care providers, there is an urgent need to develop efficient ways to detect diabetes and diabetes
vulnerability before the frank diagnosis of this disorder. This allows providers to screen patients
and advise remedial courses of action, ideally leading to prevention not only of diabetes but also
the complications of diabetes including cardiovascular disease, kidney disease, peripheral vascular
disease, and retinopathy.

Current clinical procedures have focused on evidence-based screening, where patients exhibiting
risk factors for diabetes such as hypertension and obesity are screened. This approach has the distinct
disadvantage of diagnosing patients at the individual level but not at the population level. As a result,
many patients are often detected late in the progression of the disease, when preventive measures
are significantly less effective.

The focus of this extended abstract is on the early detection of diabetes from health insurance claims.
Our data are composed of a large cohort of 5 million individuals of age above 18 years. Patient
records include medical, pharmacy and lab information related to the individuals between years
2005 and 2013. The large number of patients, and the availability of thousands of features makes
the problem both challenging and interesting. Larger datasets allow us to perform experiments on
a variety of experimental settings and subsets of the data without losing the significance of our
conclusions. Performing large scale training and validation over noisy and incomplete data, on the
other hand, is very challenging. In our work, we perform prediction using varying spans of patient
history and varying windows into the future. This allows us to categorize the quality of the estimate
as well as the effect of having more information to make the prediction.
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Figure 1: At time T we predict for patients not currently diabetic whether they will be diabetic at T + W .
Bold shows the months that the patient is enrolled, and red dots denote the time of first diabetes diagnosis.

1.1 Related Work

Prediction of Type 2 diabetes has received significant attention in the research community. In a re-
cent study, Abbasi et al. [1] performed a systematic literature survey and independent validation of
over 25 prediction models, 12 of which use basic features (demographics, family history of diabetes,
measures of obesity, diet, lifestyle factors, blood pressure and use of antihypertensive drugs), and
the other 13 additionally including bio-markers such as HbA1c. As is common in clinical research,
prediction models were learned using logistic regression. The area under the receiver operator char-
acteristic curve (AUC) for predicting diabetes onset 7.5 years after baseline was found to be 0.84
for the best model in the first group, and 0.93 for the best model in the second group. However,
none of the models could sufficiently quantify the actual risk of future diabetes (i.e., they were not
well-calibrated).

In a recent online competition, Kaggle hosted a diabetes classification task using a dataset of 9948
members from Practice Fusion, a web-based electronic health record. The winning teams used
boosted regression trees on a large set of clinical and derived features, including many of those
described above. Our study differs both in the problem setup and in the type of data used. First,
the Kaggle task was to identify members already diagnosed with type 2 diabetes, where diagnosis
codes for diabetes, glucose lab tests, and diabetes medications are artificially removed from the
data. However, it may be difficult to completely mask the diabetes diagnosis and treatment, making
the prediction task ill-posed. Second, data found in electronic health records can differ from that
found in health insurance claims. Electronic health records can often be incomplete since they are
compiled by individual medical institutions. A patient may visit multiple clinics and hospitals over
the course of an illness, and seldom would all of their medically relevant transactions be captured
by a single institution. Since insurance companies pay for all medical transactions, their records can
be more comprehensive and rigorously maintained.

Most closely related to our work is an earlier study by Neuvirth et al. [6], who also use claims data
to study diabetes and show that it is possible to identify high-risk patients such as those likely to
need emergency care services. We use a similar set of features as theirs for our initial algorithms.

2 Methodology

We are interested in understanding the effects of patient history, and how far into the future we can
predict the onset of type 2 diabetes. We formulated this question as a series of experiments where we
used varying patient history and a varying prediction window into the future. Figure 1 shows how
we defined each history and prediction window. For each T and W pair, we trained a separate model
to predict the probability of patients developing diabetes between time T and T +W . Patients who
had developed diabetes before time T are excluded. For instance, patient C in the figure matches
this criteria and is excluded for this T and W pair. A patient is given a positive diabetes label if they
developed diabetes within the T and T +W window. For instance in Figure 1, patient A is assigned
a negative label, and patient B is assigned a positive label. We also excluded any patient who was
continuously enrolled less than two-thirds of time period between T and T + W . As an example,
patient D would be excluded from the evaluation of predictive accuracy for this T and W pair.
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Feature All (T=2010) Diabetic
(T=2010)

All (T=2008) Diabetic
(T=2008)

Average Age (std) 37.51 (19.87) 52.56 (15.55) 40.37 (20.23) 56.29 (15.61)
Gender 53% Female 55% Female 53% Female 51% Female
High BP 18.97% 44.82% 17.29% 41.44%
High Cholesterol 12.26% 25.63% 10.26% 24.07%
Obesity 5.36% 12.57% 4.42% 10.38%

Table 1: Characteristic Table for the dataset. The pairs of columns represent the statistics present in patients’
full history up to the specified year. Diabetic patients include those diagnosed within two years of the specified
year (i.e W = 2 years). Blood pressure, cholesterol and obesity features are based on IDC9 codes diagnosed
by the physician and recorded in medical claim records.

Diabetes onset in the interval between T and T +W was determined based on criteria developed by
the clinical co-authors and modeled on previous research studies. We used A1C levels, ICD9 codes
and NDC codes prescribed for diabetes to determine the conditions to mark the onset of diabetes.

Traditional approaches for prediction of diabetes rely heavily on features such as body mass in-
dex (BMI), ethnicity, height and weight. These were four distinct features that are not cataloged
in health insurance claims data. However, our dataset covers all health care encounters such as
medical claims, lab results and drug prescriptions with specific details on lab values and dosages of
prescriptions. Therefore, we remain optimistic that this rich source of information will give us the
opportunity to explore and infer some of the less well known indicators of diabetes.

We defined two sets of features from patient history. The first consists of 22 features commonly
used in the literature to predict diabetes [1, 2, 3, 8]. These include basic demographics, history of
diagnosis of conditions such as high blood pressure or high cholesterol, and measurement of related
bio-markers including fasting plasma glucose level, triglyceride level, and cholesterol in HDL. The
second group of 1054 features were created based on a much larger set of data. In addition to the first
set of features, we included medication history grouped according to both the standard and specific
therapeutic class of medications (999 features), and the diagnosis history grouped according to the
top-level of the ICD-9 hierarchy (34 features).

All the information about a patient was first aggregated into a single file where each line represented
a patient. The feature vector for some value of T was created by considering the entire history of
the patient up to time T . Many features are binary with 1 indicating at least one instance of the
patient being associated with the ICD-9 code or the class of medication specified earlier. Non binary
features included profile information such as age, number of medical records and number of drug
prescriptions among others.

3 Experiments

Our entire dataset consists of more than 5 million patients, all above 18 years of age. This study was
determined to be IRB exempt (IRB 13-9401: Machine Learning to Predict Undiagnosed Diabetes
from Insurance Claims) since the data was de-identified and stripped of personal information. For
the experiments presented herein, we used 330, 000 randomly selected patients from our database.
Training was performed using regularized logistic regression, as implemented in the scikit-learn [7]
package. We use a pre-determined train and test split for the experiments. We tune hyper-parameters
using three-fold cross-validation to select the optimal regularization parameter and regularization
type (L1 and L2 penalty functions). We create 95% confidence intervals for AUC values based on
variances calculated using the nonparametric approach of Delong et al. [4, 9].

Table 1 presents the characteristics table of the data. The last three rows in the table are features
that have been previously shown to be important for diagnosing diabetes. More specifically the All
(2008) column corresponds to the entire dataset at T = 2008 while the Diabetic (2008) column
corresponds to the subset of the dataset comprising individuals who were diagnosed with diabetes
in the two year period after 2008. As we travel from left to right from All to Diabetic across
columns we see that the percentages in the last three rows increase. This has a natural explanation
since individuals with diabetes are well-known to be more likely to exhibit higher blood pressure,
cholesterol and obesity.
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T W AUC AUC (age <45) AUC (age >45) # of Features
2008 3 0.807 ± 0.051 0.767 ± 0.115 0.743 ± 0.073 22
2008 3 0.798 ± 0.051 0.776 ± 0.113 0.727 ± 0.075 1054
2008 6 0.790 ± 0.040 0.766 ± 0.090 0.700 ± 0.060 22
2008 6 0.798 ± 0.039 0.777 ± 0.087 0.711 ± 0.058 1054
2008 12 0.776 ± 0.030 0.730 ± 0.075 0.672 ± 0.044 22
2008 12 0.782 ± 0.030 0.743 ± 0.074 0.682 ± 0.044 1054
2008 24 0.768 ± 0.025 0.742 ± 0.059 0.656 ± 0.036 22
2008 24 0.773 ± 0.024 0.751 ± 0.058 0.666 ± 0.035 1054
2010 3 0.781 ± 0.060 0.764 ± 0.136 0.688 ± 0.086 22
2010 3 0.763 ± 0.065 0.743 ± 0.138 0.678 ± 0.093 1054
2010 6 0.760 ± 0.047 0.727 ± 0.105 0.673 ± 0.064 22
2010 6 0.766 ± 0.046 0.738 ± 0.098 0.677 ± 0.065 1054
2010 12 0.752 ± 0.036 0.726 ± 0.074 0.651 ± 0.052 22
2010 12 0.756 ± 0.035 0.743 ± 0.069 0.655 ± 0.051 1054
2010 24 0.747 ± 0.030 0.716 ± 0.060 0.640 ± 0.043 22
2010 24 0.750 ± 0.029 0.723 ± 0.058 0.647 ± 0.042 1054

Table 2: Comparison of AUC (with 95% CI) evaluated on test data for different starting times (T ) and predic-
tion windows W (in months). See Fig. 1 for a visual depiction of T and W in the experiments.

Table 2 shows the area under the ROC curve (AUC) for different lengths of patient history T , and
prediction windows W (in months). To further analyze the results, we computed the AUC values
over different subsets of the data. Stratifying based on age allows us to consider the quality of our
predictor on a young population versus an older population. While this method is not a rigorous
analysis of age-matched populations with and without diabetes, it is indicative that that an older
population represents a harder prediction task for the algorithm, as age could no longer be used to
quickly disambiguate healthy from potentially sick patients. This accounts for the decrease in AUC
shown in Table 2 as we move from the slice of data representing young people to that representing
older people. The table also compares the results obtained from classification with 1054 features
versus 22 features. As expected, we see that most of the AUC values increase with the use of a larger
set of features, however this increase is not as marked as we might have hoped. This suggests that
there still exists room for significant improvement in the algorithm by improved feature engineering
and principled approaches to dealing with problems such as missing and noisy data.

4 Discussion

Our initial experiments and baseline statistics have helped us establish several ideas. The first is
that looking at patients across values of T and W allow us to analyze changes in the distribution
over people and the difficulty of predicting far into the future, while also keeping the prediction task
realistic. The second is that the reduced set of features in insurance claims relative to traditional
clinical data has prompted us to look for informative features in other locations. This problem also
motivates the need to find structure in and analyze situations where we have large quantities of noisy
and missing data, which begs the question of whether one can automatically infer these quantities.
We hope to expand on prior work [5] done in this area. In particular, we plan to consider a temporal
class of models that potentially could be used to infer some hidden state about the patient.

One shortcoming of our current evaluation methodology is that the predictor for time T is learned
using data in the range from T to T +W (i.e., peeking into the future) to obtain the diabetes labels
for the training points. Instead, we should be using a model trained solely using retrospective data.
As we illustrated in Table 1, this may require us to correct for changes in the underlying distribution.

In conclusion, we have early results that indicate that health insurance claims data is a rich source
of information for the early detection of diabetes. One set of particularly interesting questions has
to do with obtaining a better understanding of the disease. For example, why is it that some diabetic
patients go on to develop significant cardiovascular disease, whereas others do not? Could we use
claims data to obtain new insights into the disease mechanism that could lead to new treatments?
Many other clinical questions can also be studied using this data, notably discovering how chronic
illnesses such as diabetes, kidney disease, or congestive heart failure evolve over time.
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