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Abstract
Structured prediction is used in areas such as
computer vision and natural language processing
to predict structured outputs such as segmenta-
tions or parse trees. In these settings, prediction
is performed by MAP inference or, equivalently,
by solving an integer linear program. Because of
the complex scoring functions required to obtain
accurate predictions, both learning and inference
typically require the use of approximate solvers.
We propose a theoretical explanation to the strik-
ing observation that approximations based on lin-
ear programming (LP) relaxations are often tight
on real-world instances. In particular, we show
that learning with LP relaxed inference encour-
ages integrality of training instances, and that
tightness generalizes from train to test data.

1. Introduction
Many applications of machine learning can be formulated
as prediction problems over structured output spaces (Bakir
et al., 2007; Nowozin et al., 2014). In such problems out-
put variables are predicted jointly in order to take into ac-
count mutual dependencies between them, such as high-
order correlations or structural constraints (e.g., matchings
or spanning trees). Unfortunately, the improved expressive
power of these models comes at a computational cost, and
indeed, exact prediction and learning become NP-hard in
general. Despite this worst-case intractability, efficient ap-
proximations often achieve very good performance in prac-
tice. In particular, one type of approximation which has
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proved effective in many applications is based on linear
programming (LP) relaxation. In this approach the predic-
tion problem is first cast as an integer LP (ILP), and then
the integrality constraints are relaxed to obtain a tractable
program. In addition to achieving high prediction accuracy,
it has been observed that LP relaxations are often tight in
practice. That is, the solution to the relaxed program hap-
pens to be optimal for the original hard problem (i.e., an
integral solution is found). This is particularly surprising
since the LPs have complex scoring functions that are not
constrained to be from any tractable family. A major open
question is to understand why these real-world instances
behave so differently from the theoretical worst case.

This paper aims to address this question and to provide a
theoretical explanation for the tightness of LP relaxations
in the context of structured prediction. In particular, we
show that the approximate training objective, although de-
signed to produce accurate predictors, also induces tight-
ness of the LP relaxation as a byproduct. Our analysis also
suggests that exact training may have the opposite effect.
To explain tightness of test instances, we prove a general-
ization bound for tightness. Our bound implies that if many
training instances are integral, then test instances are also
likely to be integral. Our results are consistent with previ-
ous empirical findings, and to our knowledge provide the
first theoretical justification for the wide-spread success of
LP relaxations for structured prediction in settings where
the training data is not linearly separable.

2. Related Work
Many structured prediction problems can be represented
as ILPs (Roth & Yih, 2005; Martins et al., 2009a; Rush
et al., 2010). Despite being NP-hard in general (Roth,
1996; Shimony, 1994), various effective approximations
have been proposed. Those include both search-based
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Figure 1. Percentage of integral solutions for dependency parsing
from Koo et al. (2010).

methods (Daumé III et al., 2009; Zhang et al., 2014), and
natural LP relaxations to the hard ILP (Schlesinger, 1976;
Koster et al., 1998; Chekuri et al., 2004; Wainwright et al.,
2005). Tightness of LP relaxations for special classes of
problems has been studied extensively in recent years and
include restricting either the structure of the model or its
score function. For example, the pairwise LP relaxation
is known to be tight for tree-structured models and for su-
permodular scores (see, e.g., Wainwright & Jordan, 2008;
Thapper & Živný, 2012), and the cycle relaxation (equiva-
lently, the second-level of the Sherali-Adams hierarchy) is
known to be tight both for planar Ising models with no ex-
ternal field (Barahona, 1993) and for almost balanced mod-
els (Weller et al., 2016). To facilitate efficient prediction,
one could restrict the model class to be tractable. For ex-
ample, Taskar et al. (2004) learn supermodular scores, and
Meshi et al. (2013) learn tree structures.

However, the sufficient conditions mentioned above are by
no means necessary, and indeed, many score functions that
are useful in practice do not satisfy them but still produce
integral solutions (Roth & Yih, 2004; Sontag et al., 2008;
Finley & Joachims, 2008; Martins et al., 2009b; Koo et al.,
2010). For example, Martins et al. (2009b) showed that
predictors that are learned with LP relaxation yield tight
LPs for 92.88% of the test data on a dependency parsing
problem (see Table 2 therein). Koo et al. (2010) observed
a similar behavior for dependency parsing on a number of
languages, as can be seen in Fig. 1 (kindly provided by
the authors). The same phenomenon has been observed
for a multi-label classification task, where test integrality
reached 100% (Finley & Joachims, 2008, Table 3).

Learning structured output predictors from labeled data
was proposed in various forms by Collins (2002); Taskar
et al. (2003); Tsochantaridis et al. (2004). These formu-
lations generalize training methods for binary classifiers,
such as the Perceptron algorithm and support vector ma-
chines (SVMs), to the case of structured outputs. The learn-

ing algorithms repeatedly perform prediction, necessitating
the use of approximate inference within training as well as
at test time. A common approach, introduced right at the
inception of structured SVMs by Taskar et al. (2003), is to
use LP relaxations for this purpose.

The closest work to ours is Kulesza & Pereira (2007),
which showed that not all approximations are equally good,
and that it is important to match the inference algorithms
used at train and test time. The authors defined the concept
of algorithmic separability which refers to the case when
an approximate inference algorithm achieves zero loss on a
data set. The authors studied the use of LP relaxations for
structured learning, giving generalization bounds for the
true risk of LP-based prediction. However, since the gen-
eralization bounds in Kulesza & Pereira (2007) are focused
on prediction accuracy, the only settings in which tightness
on test instances can be guaranteed are when the training
data is algorithmically separable, which is seldom the case
in real-world structured prediction tasks (the models are far
from perfect). Our paper’s main result (Theorem 4.1), on
the other hand, guarantees that the expected fraction of test
instances for which a LP relaxation is integral is close to
that which was estimated on training data. This then al-
lows us to talk about the generalization of computation.
For example, suppose one uses LP relaxation-based algo-
rithms that iteratively tighten the relaxation, such as Sontag
& Jaakkola (2008); Sontag et al. (2008), and observes that
20% of the instances in the training data are integral using
the basic relaxation and that after tightening the remaining
80% are now integral too. Our generalization bound then
guarantees that approximately the same ratio will hold at
test time (assuming sufficient training data).

Finley & Joachims (2008) also studied the effect of vari-
ous approximate inference methods in the context of struc-
tured prediction. Their theoretical and empirical results
also support the superiority of LP relaxations in this set-
ting. Martins et al. (2009b) established conditions which
guarantee algorithmic separability for LP relaxed training,
and derived risk bounds for a learning algorithm which uses
a combination of exact and relaxed inference.

Finally, recently Globerson et al. (2015) studied the per-
formance of structured predictors for 2D grid graphs with
binary labels from an information-theoretic point of view.
They proved lower bounds on the minimum achievable
expected Hamming error in this setting, and proposed a
polynomial-time algorithm that achieves this error. Our
work is different since we focus on LP relaxations as an
approximation algorithm, we handle the most general form
without making any assumptions on the model or error
measure (except score decomposition), and we concentrate
solely on the computational aspects while ignoring any ac-
curacy concerns.
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3. Background
In this section we review the formulation of the structured
prediction problem, its LP relaxation, and the associated
learning problem. Consider a prediction task where the
goal is to map a real-valued input vector x to a discrete
output vector y = (y1, . . . , yn). A popular model class
for this task is based on linear classifiers. In this set-
ting prediction is performed via a linear discriminant rule:
y(x;w) = argmaxy′ w

>φ(x, y′), where φ(x, y) ∈ Rd is a
function mapping input-output pairs to feature vectors, and
w ∈ Rd is the corresponding weight vector. Since the out-
put space is often huge (exponential in n), it will generally
be intractable to maximize over all possible outputs.

In many applications the score function has a partic-
ular structure. Specifically, we will assume that the
score decomposes as a sum of simpler score functions:
w>φ(x, y) =

∑
c w
>
c φc(x, yc), where yc is an as-

signment to a (non-exclusive) subset of the variables
c. For example, it is common to use such a de-
composition that assigns scores to single and pairs of
output variables corresponding to nodes and edges of
a graph G: w>φ(x, y) =

∑
i∈V (G) w

>
i φi(x, yi) +∑

ij∈E(G) w
>
ijφij(x, yi, yj). Viewing this as a func-

tion of y, we can write the prediction problem as:
maxy

∑
c θc(yc;x,w) (we will sometimes omit the depen-

dence on x and w in the sequel).

Due to its combinatorial nature, the prediction problem is
generally NP-hard. Fortunately, efficient approximations
have been proposed. Here we will be particularly interested
in approximations based on LP relaxations. We begin by
formulating prediction as the following ILP:1

max
µ∈ML
µ∈{0,1}q

∑
c

∑
yc

µc(yc)θc(yc) +
∑
i

∑
yi

µi(yi)θi(yi) = θ>µ

whereML =

{
µ ≥ 0 :

∑
yc\i

µc(yc) = µi(yi) ∀c, i ∈ c, yi∑
yi
µi(yi) = 1 ∀i

}
.

Here, µc(yc) is an indicator variable for a factor c and local
assignment yc, and q is the total number of factor assign-
ments (dimension of µ). The setML is known as the lo-
cal marginal polytope (Wainwright & Jordan, 2008). First,
notice that there is a one-to-one correspondence between
feasible µ’s and assignments y’s, which is obtained by set-
ting µ to indicators over local assignments (yc and yi) con-
sistent with y. Second, while solving ILPs is NP-hard in
general, it is easy to obtain a tractable program by relax-
ing the integrality constraints (µ ∈ {0, 1}q), which may
introduce fractional solutions to the LP. This relaxation is
the first level of the Sherali-Adams hierarchy (Sherali &
Adams, 1990), which provides successively tighter LP re-
laxations of an ILP. Notice that since the relaxed program is

1For convenience we introduce singleton factors θi, which can
be set to 0 if needed.

obtained by removing constraints, its optimal value upper
bounds the ILP optimum.

In order to achieve high prediction accuracy, the param-
eters w are learned from training data. In this super-
vised learning setting, the model is fit to labeled exam-
ples {(x(m), y(m))}Mm=1, where the goodness of fit is mea-
sured by a task-specific loss ∆(y(x(m);w), y(m)). In the
structured SVM (SSVM) framework (Taskar et al., 2003;
Tsochantaridis et al., 2004), the empirical risk is upper
bounded by a convex surrogate called the structured hinge
loss, which yields the training objective:2

min
w

∑
m

max
y

[
w>
(
φ(x(m), y)− φ(x(m), y(m))

)
+ ∆(y, y(m))

]
.

(1)
This is a convex function in w and hence can be optimized
in various ways. But, notice that the objective includes
a maximization over outputs y for each training example.
This loss-augmented prediction task needs to be solved re-
peatedly during training (e.g., to evaluate subgradients),
which makes training intractable in general. Fortunately,
as in prediction, LP relaxation can be applied to the struc-
tured loss (Taskar et al., 2003; Kulesza & Pereira, 2007),
which yields the relaxed training objective:

min
w

∑
m

max
µ∈ML

[
θ>m(µ− µm) + `>mµ

]
, (2)

where θm ∈ Rq is a score vector in which each entry repre-
sentsw>c φc(x

(m), yc) for some c and yc, similarly `m ∈ Rq

is a vector with entries3 ∆c(yc, y
(m)
c ), and µm is the inte-

gral vector corresponding to y(m).

4. Analysis
In this section we present our main results, proposing a the-
oretical justification for the observed tightness of LP relax-
ations for structured prediction. To this end, we make two
complementary arguments: in Section 4.1 we argue that
optimizing the relaxed training objective of Eq. (2) also has
the effect of encouraging tightness of training instances; in
Section 4.2 we show that tightness generalizes from train
to test data.

4.1. Tightness at Training

We first show that the relaxed training objective in Eq. (2),
although designed to achieve high accuracy, also induces
tightness of the LP relaxation. In order to simplify notation
we focus on a single training instance and drop the index

2For brevity, we omit the regularization term, however, all of
our results below still hold with regularization.

3We assume that the task-loss ∆ decomposes as the model
score.
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m. Denote the solutions to the relaxed and integer LPs as:

µL ∈ argmax
µ∈ML

θ>µ µI ∈ argmax
µ∈ML

µ∈{0,1}q

θ>µ

Also, let µT be the integral vector corresponding to the
ground-truth output y(m). Now consider the following de-
composition:

θ>(µL − µT )
relaxed-hinge

= θ>(µL − µI)
integrality gap

+ θ>(µI − µT )
exact-hinge

(3)

This equality states that the difference in scores between
the relaxed optimum and ground-truth (relaxed-hinge) can
be written as a sum of the integrality gap and the difference
in scores between the exact optimum and the ground-truth
(exact-hinge) (notice that all terms are non-negative). This
simple decomposition has several interesting implications.

First, we can immediately derive the following bound on
the integrality gap:

θ>(µL − µI) = θ>(µL − µT )− θ>(µI − µT ) (4)

≤ θ>(µL − µT ) (5)

≤ θ>(µL − µT ) + `>µL (6)

≤ max
µ∈ML

(
θ>(µ− µT ) + `>µ

)
, (7)

where Eq. (7) is precisely the relaxed training objective
from Eq. (2). Therefore, optimizing the approximate train-
ing objective of Eq. (2) minimizes an upper bound on the
integrality gap. Hence, driving down the approximate
objective also reduces the integrality gap of training in-
stances. One case where the integrality gap becomes zero
is when the data is algorithmically separable. In this case
the relaxed-hinge term vanishes (the exact-hinge must also
vanish), and integrality is assured.

However, the bound above might sometimes be loose. In-
deed, to get the bound we have discarded the exact-hinge
term (Eq. (5)), added the task-loss (Eq. (6)), and maximized
the loss-augmented objective (Eq. (7)). At the same time,
Eq. (4) provides a precise characterization of the integral-
ity gap. Specifically, the gap is determined by the differ-
ence between the relaxed-hinge and the exact-hinge terms.
This implies that even when the relaxed-hinge is not zero, a
small integrality gap can still be obtained if the exact-hinge
is also large. In fact, the only way to get a large integral-
ity gap is by setting the exact-hinge much smaller than the
relaxed-hinge. But when can this happen?

A key point is that the relaxed and exact hinge terms are
upper bounded by the relaxed and exact training objectives,
respectively (the latter additionally depend on the task loss
∆). Therefore, minimizing the training objective will also
reduce the corresponding hinge term (see also Section 5).
Using this insight, we observe that relaxed training reduces

the relaxed-hinge term without directly reducing the exact-
hinge term, and thereby induces a small integrality gap.
On the other hand, this also suggests that exact training
may actually increase the integrality gap, since it reduces
the exact-hinge without also reducing directly the relaxed-
hinge term. This finding is consistent with previous em-
pirical evidence. Specifically, Martins et al. (2009b, Table
2) showed that on a dependency parsing problem, training
with the relaxed objective achieved 92.88% integral solu-
tions, while exact training achieved only 83.47% integral
solutions. An even stronger effect was observed by Fin-
ley & Joachims (2008, Table 3) for multi-label classifica-
tion, where relaxed training resulted in 99.57% integral in-
stances, with exact training attaining only 17.7% (‘Yeast’
dataset).

In Section 5 we provide further empirical support for our
explanation, however, we next also show its possible lim-
itations by providing a counter-example. The counter-
example demonstrates that despite training with a relaxed
objective, the exact-hinge can in some cases actually be
smaller than the relaxed-hinge, leading to a loose relax-
ation. Although this illustrates the limitations of the expla-
nation above, we point out that the corresponding learning
task is far from natural; we believe it is unlikely to arise in
real-world applications.

Specifically, we construct a learning scenario where re-
laxed training obtains zero exact-hinge and non-zero
relaxed-hinge, so the relaxation is not tight. Consider a
model where x ∈ R3, y ∈ {0, 1}3, and the prediction is
given by:

y(x;w) = argmax
y

(
x1y1 + x2y2 + x3y3

+ w [1{y1 6= y2}+ 1{y1 6= y3}+ 1{y2 6= y3}]
)
.

The corresponding LP relaxation is then:

max
µ∈ML

(
x1µ1(1) + x2µ2(1) + x3µ3(1) + w[µ12(01) + µ12(10)

+ µ13(01) + µ13(10) + µ23(01) + µ23(10)]
)
.

Next, we construct a trainset where the first instance is:
x(1) = (2, 2, 2), y(1) = (1, 1, 0), and the second is: x(2) =
(0, 0, 0), y(2) = (1, 1, 0). It can be verified thatw = 1 min-
imizes the relaxed objective (Eq. (2)). However, with this
weight vector the relaxed-hinge for the second instance is
equal to 1, while the exact-hinge for both instances is 0 (the
data is separable w.r.t. w = 1). Consequently, there is an
integrality gap of 1 for the second instance, and the relax-
ation is loose (the first instance is actually tight).

Finally, note that Eq. (3) holds for any integral µ, and not
just the ground-truth µT . In other words, the only property
of µT we are using here is its integrality. Indeed, in Section
5 we verify empirically that training a model using random
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labels still attains the same level of tightness as training
with the ground-truth labels. On the other hand, accuracy
drops dramatically, as expected. This analysis suggests that
tightness is not related to accuracy of the predictor. Finley
& Joachims (2008) explained tightness of LP relaxations
by noting that fractional solutions always incur a loss dur-
ing training. Our analysis suggests an alternative explana-
tion, emphasizing the difference in scores (Eq. (4)) rather
than the loss, and decoupling tightness from accuracy.

4.2. Generalization of Tightness

Our argument in Section 4.1 concerns only the tightness of
train instances. However, the empirical evidence discussed
above pertains to test data. To bridge this gap, in this sec-
tion we show that train tightness implies test tightness. We
do so by proving a generalization bound for tightness based
on Rademacher complexity.

We first define a loss function which measures the lack of
integrality (or, fractionality) for a given instance. To this
end, we consider the discrete set of vertices of the local
polytopeML (excluding its convex hull), denoting byMI

and MF the sets of fully-integral and non-integral (i.e.,
fractional) vertices, respectively (soMI ∩MF = ∅, and
MI ∪ MF consists of all vertices of ML). Considering
vertices is without loss of generality, since linear programs
always have a vertex that is optimal. Next, let θx ∈ Rq
be the mapping from weights w and inputs x to scores
(as used in Eq. (2)), and let I∗(θ) = maxµ∈MI θ>µ and
F ∗(θ) = maxµ∈MF θ>µ be the best integral and frac-
tional scores attainable, respectively. By convention, we
set F ∗(θ) = −∞ wheneverMF = ∅. The fractionality of
θ can be measured by the quantity D(θ) = F ∗(θ)− I∗(θ).
If this quantity is large then the LP has a fractional solution
with a much better score than any integral solution. We can
now define the loss:

L(θ) =

{
1 D(θ) > 0

0 otherwise
. (8)

That is, the loss equals 1 if and only if the optimal frac-
tional solution has a (strictly) higher score than the optimal
integral solution.4 This loss ignores the ground-truth y, as
expected. In addition, we define a ramp loss parameterized
by γ > 0 which upper bounds the fractionality loss:

ϕγ(θ) =


0 D(θ) ≤ −γ
1 +D(θ)/γ −γ < D(θ) ≤ 0

1 D(θ) > 0

, (9)

For this loss to be zero, the best integral solution has to
be better than the best fractional solution by at least γ,

4Notice that the loss will be 0 whenever the non-integral and
integral optima are equal, but this is fine for our purpose, since we
consider the relaxation to be tight in this case.

which is a stronger requirement than mere tightness. In
Section 4.2.1 we give examples of models that are guaran-
teed to satisfy this stronger requirement, and in Section 5
we also show this often happens in practice. We point out
that ϕγ(θ) is generally hard to compute, as is L(θ) (due
to the discrete optimization involved in computing I∗(θ)
and F ∗(θ)). However, here we are only interested in prov-
ing that tightness is a generalizing property, so we will not
worry about computational efficiency for now. We are now
ready to state the main theorem of this section.

Theorem 4.1. Let inputs be independently selected ac-
cording to a probability measure P (X), and let Θ be the
class of all scoring functions θX with ‖w‖2 ≤ B. Let
‖φ(x, yc)‖2 ≤ R̂ for all x, c, yc, and q is the total num-
ber of factor assignments (dimension of µ). Then for any
number of samples M and any 0 < δ < 1, with probability
at least 1− δ, every θX ∈ Θ satisfies:

EP [L(θX)] ≤ ÊM [ϕγ(θX)] +O

(
q1.5BR̂

γ
√
M

)
+

√
8 ln(2/δ)

M

(10)

where ÊM is the empirical expectation.

Proof. Our proof relies on the following general result
from Bartlett & Mendelson (2002).

Theorem 4.2 (Bartlett & Mendelson (2002), Theorem 8).
Consider a loss function L : Y × Θ 7→ [0, 1] and a domi-
nating function ϕ : Y ×Θ 7→ [0, 1] (i.e., L(y, θ) ≤ ϕ(y, θ)
for all y, θ). Let F be a class of functions mapping X to
Θ, and let {(x(m), y(m))}Mm=1 be independently selected
according to a probability measure P (x, y). Then for any
number of samples M and any 0 < δ < 1, with probability
at least 1− δ, every f ∈ F satisfies:

E[L(y, f(x))] ≤ ÊM [ϕ(y, f(x))]+RM (ϕ̃◦f)+

√
8 ln(2/δ)

M
,

where ÊM is the empirical expectation, ϕ̃ ◦ f = {(x, y) 7→
ϕ(y, f(x)) − ϕ(y, 0) : f ∈ F}, and RM (F) is the
Rademacher complexity of the class F .

To use this result, we define Θ = Rq , f(x) = θx, and F to
be the class of all such functions satisfying ‖w‖2 ≤ B and
‖φ(x, yc)‖2 ≤ R̂. In order to obtain a meaningful bound,
we would like to bound the Rademacher term RM (ϕ̃ ◦ f).
Theorem 12 in Bartlett & Mendelson (2002) states that
if ϕ̃ is Lipschitz with constant L and satisfies ϕ̃(0) = 0,
then RM (ϕ̃ ◦ f) ≤ 2LRM (F). In addition, Weiss &
Taskar (2010) show that RM (F) = O( qBR̂√

M
). Therefore,

it remains to compute the Lipschitz constant of ϕ̃, which is
equal to the Lipschitz constant of ϕ. For this purpose, we
will bound the Lipschitz constant of D(θ), and then use
L(ϕγ(θ)) ≤ L(D(θ))/γ (from Eq. (9)).
Let µI ∈ argmaxµ∈MI θ>µ and µF ∈
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Figure 2. Training with the ‘Yeast’ dataset. Various quantities of interest are shown as a function of training iterations. (Left) Training
with LP relaxation. (Middle) Training with ILP. (Right) Integrality margin (bin widths are scaled differently).

argmaxµ∈MF θ>µ, then:

D(θ1)−D(θ2)

= (µ1
F − µ1

I) · θ1 − (µ2
F − µ2

I) · θ2

= (µ1
F · θ1 − µ2

F · θ2) + (µ1
F · θ2 − µ1

F · θ2)

+ (µ2
I · θ2 − µ1

I · θ1) + (µ2
I · θ1 − µ2

I · θ1)

= µ1
F · (θ1 − θ2) + (µ1

F − µ2
F ) · θ2

+ µ2
I · (θ2 − θ1) + (µ2

I − µ1
I) · θ1

≤ (µ1
F − µ2

I) · (θ1 − θ2) [optimality of µ2
F and µ1

I ]

≤ ‖µ1
F − µ2

I‖2‖θ1 − θ2‖2 [Cauchy-Schwarz]

≤ √q‖θ1 − θ2‖2

Therefore, L =
√
q/γ.

Combining everything together, and dropping the spurious
dependence on y, we obtain the bound in Eq. (10). Finally,
we point out that when using an L2 regularizer at training,
we can actually drop the assumption ‖w‖2 ≤ B and instead
use a bound on the norm of the optimal solution (as in the
analysis of Shalev-Shwartz et al. (2011)).

Theorem 4.1 shows that if we observe high integrality
(equivalently, low fractionality) on a finite sample of train-
ing data, then it is likely that integrality of test data will not
be much lower, provided sufficient number of samples.

Our result actually applies more generally to any two dis-
joint sets of vertices, and is not limited to MI and MF .
For example, we can replaceMI by the set of vertices with
at most 10% fractional values, andMF by the rest of the
vertices ofML. This gives a different meaning to the loss
L(θ), and the rest of our analysis holds unchanged. Con-
sequently, our generalization result implies that it is likely
to observe a similar portion of instances with at most 10%
fractional values at test time as we did at training.

4.2.1. γ-TIGHT RELAXATIONS

In this section we study the stronger notion of tightness
required by our surrogate fractionality loss (Eq. (9)), and
show examples of models that satisfy it.

Definition An LP relaxation is called γ-tight if I∗(θ) ≥
F ∗(θ) + γ (so ϕγ(θ) = 0). That is, the best integral value
is larger than the best non-integral value by at least γ.5

We focus on binary pairwise models and show two cases
where the model is guaranteed to be γ-tight. Proofs are pro-
vided in Appendix A. Our first example involves balanced
models, which are binary pairwise models that have super-
modular scores, or can be made supermodular by “flipping”
a subset of the variables (for more details, see Appendix A).

Proposition 4.3. A balanced model with a unique optimum
is (α/2)-tight, where α is the difference between the best
and second-best (integral) solutions.

This result is of particular interest when learning struc-
tured predictors where the edge scores depend on the input.
Whereas one could learn supermodular models by enforc-
ing linear inequalities (Taskar et al., 2004), we know of no
tractable means of ensuring the model is balanced. Instead,
one could learn over the full space of models using LP re-
laxation. If the learned models are balanced on the training
data, Prop. 4.3 together with Theorem 4.1 tell us that the
LP relaxation is likely to be tight on test data as well.

Our second example regards models with singleton scores
that are much stronger than the pairwise scores. Consider
a binary pairwise model6 in minimal representation, where
θ̄i are node scores and θ̄ij are edge scores in this represen-
tation (see Appendix A for full details). Further, for each
variable i, define the set of neighbors with attractive edges
N+
i = {j ∈ Ni|θ̄ij > 0}, and the set of neighbors with

repulsive edges N−i = {j ∈ Ni|θ̄ij < 0}.
Proposition 4.4. If all variables satisfy the condition:

θ̄i ≥ −
∑

j∈N−i
θ̄ij + β, or θ̄i ≤ −

∑
j∈N+

i

θ̄ij − β

for some β > 0, then the model is (β/2)-tight.

5Notice that scaling up θ will also increase γ, but our bound
in Eq. (10) also grows with the norm of θ (via BR̂). Therefore,
we assume here that ‖θ‖2 is bounded.

6This case easily generalizes to non-binary variables.
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Figure 3. Training with the ‘Scene’ dataset. Various quantities of interest are shown as a function of training iterations. (Left) Training
with LP relaxation. (Middle) Training with ILP. (Right) Integrality margin.

Finally, we point out that in both of the examples above,
the conditions can be verified efficiently and if they hold,
the value of γ can be computed efficiently.

5. Experiments
In this section we present some numerical results to support
our theoretical analysis. We run experiments for a multi-
label classification task and an image segmentation task.
For training we have implemented the block-coordinate
Frank-Wolfe algorithm for structured SVM (Lacoste-Julien
et al., 2013), using GLPK as the LP solver. We use a stan-
dard L2 regularizer, chosen via cross-validation.

Multi-label classification For multi-label classification
we adopt the experimental setting of Finley & Joachims
(2008). In this setting labels are represented by binary vari-
ables, the model consists of singleton and pairwise factors
forming a fully connected graph over the labels, and the
task loss is the normalized Hamming distance.

Fig. 2 shows relaxed and exact training iterations for the
‘Yeast’ dataset (14 labels). We plot the relaxed and exact
hinge terms (Eq. (3)), the exact and relaxed SSVM train-
ing objectives7 (Eq. (1) and Eq. (2), respectively), fraction
of train and test instances having integral solutions, as well
as test accuracy (measured by F1 score). We use a simple
scheme to round fractional solutions found with relaxed in-
ference. First, we note that the relaxed-hinge values are
nicely correlated with the relaxed training objective, and
likewise the exact-hinge is correlated with the exact ob-
jective (left and middle, top). Second, observe that with
relaxed training, the relaxed-hinge and the exact-hinge are
very close (left, top), so the integrality gap, given by their
difference, remains small (almost 0 here). On the other
hand, with exact training there is a large integrality gap
(middle, top). Indeed, we can see that the percentage of

7The displayed objective values are averaged over train in-
stances and exclude regularization.

integral solutions is almost 100% for relaxed training (left,
bottom), and close to 0% with exact training (middle, bot-
tom). In Fig. 2 (right) we also show histograms of the dif-
ference between the optimal integral and fractional values,
i.e., the integrality margin (I∗(θ) − F ∗(θ)), under the fi-
nal learned model for all training instances. It can be seen
that with relaxed training this margin is positive (although
small), while exact training results in larger negative val-
ues. Finally, we note that train and test integrality levels
are very close to each other, almost indistinguishable (left
and middle, bottom), which provides empirical support to
our generalization result from Section 4.2.

We next train a model using random labels (with similar
label counts as the true data). In this setting the learned
model obtains 100% tight training instances (not shown),
which supports our observation that any integral point can
be used in place of the ground-truth, and that accuracy is
not important for tightness. Finally, in order to verify that
tightness is not coincidental, we test the tightness of the re-
laxation induced by a random weight vectorw. We find that
random models are never tight (in 20 trials), which shows
that tightness of the relaxation does not come by chance.

We now proceed to perform experiments on the ‘Scene’
dataset (6 labels). The results, in Fig. 3, differ from the
‘Yeast’ results in case of exact training (middle). Specif-
ically, we observe that in this case the relaxed-hinge and
exact-hinge are close in value (middle, top), as for relaxed
training (left, top). As a consequence, the integrality gap
is very small and the relaxation is tight for almost all train
(and test) instances. These results illustrate that sometimes
optimizing the exact objective can reduce the relaxed ob-
jective (and relaxed-hinge) as well. Further, in this setting
we observe a larger integrality margin (right), namely the
integral optimum is strictly better than the fractional one.

We conjecture that the LP instances are easy in this case

http://www.gnu.org/software/glpk
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Figure 4. Training for foreground-background segmentation with the Weizmann Horse dataset. Various quantities of interest are shown
as a function of training iterations. (Left) Training with LP relaxation. (Right) Training with ILP.

due to the dominance of the singleton scores.8 Specifically,
the features provide a strong signal which allows label as-
signment to be decided mostly based on the local score,
with little influence coming from the pairwise terms. To
test this conjecture we inject Gaussian noise into the input
features, forcing the model to rely more on the pairwise in-
teractions. We find that with the noisy singleton scores the
results are indeed more similar to the ‘Yeast’ dataset, where
a large integrality gap is observed and fewer instances are
tight (see Appendix B in the supplement).

Image segmentation Finally, we conduct experiments
on a foreground-background segmentation problem using
the Weizmann Horse dataset (Borenstein et al., 2004). The
data consists of 328 images, of which we use the first 50 for
training and the rest for testing. Here a binary output vari-
able is assigned to each pixel, and there are ∼ 58K vari-
ables per image on average. We extract singleton and pair-
wise features as described in Domke (2013). Fig. 4 shows
the same quantities as in the multi-label setting, except for
the accuracy measure – here we compute the percentage of
correctly classified pixels rather thanF1. We observe a very
similar behavior to that of the ‘Scene’ multi-label dataset
(Fig. 3). Specifically, both relaxed and exact training pro-
duce a small integrality gap and high percentage of tight
instances. Unlike the ‘Scene’ dataset, here only 1.2% of
variables satisfy the condition in Prop. 4.4 (using LP train-
ing). In all of our experiments the learned model scores
were never balanced (Prop. 4.3), although for the segmen-
tation problem we believe the models learned are close to
balanced, both for relaxed and exact training.

6. Conclusion
In this paper we propose an explanation for the tightness
of LP relaxations often observed in structured prediction

8With ILP training, the condition in Prop. 4.4 is satisfied for
65% of all variables, although only 1% of the training instances
satisfy it for all their variables.

applications. Our analysis is based on a careful examina-
tion of the integrality gap and its relation to the training
objective. It shows how training with LP relaxations, al-
though designed with accuracy considerations in mind, also
induces tightness of the relaxation. Our derivation also sug-
gests that exact training may sometimes have the opposite
effect, increasing the integrality gap.

To explain tightness of test instances, we show that tight-
ness generalizes from train to test instances. Compared to
the generalization bound of Kulesza & Pereira (2007), our
bound only considers the tightness of the instance, ignor-
ing label errors. Thus, for example, if learning happens
to settle on a set of parameters in a tractable regime (e.g.,
supermodular potentials or stable instances (Makarychev
et al., 2014)) for which the LP relaxation is tight for all
training instances, our generalization bound guarantees that
with high probability the LP relaxation will also be tight on
test instances. In contrast, in Kulesza & Pereira (2007),
tightness on test instances can only be guaranteed when the
training data is algorithmically separable (i.e., LP-relaxed
inference predicts perfectly).

Our work suggests many directions for further study. Our
analysis in Section 4.1 focuses on the score hinge, and it
would be interesting to also study the effect of various task
losses ∆ on tightness of the relaxation at training. Next,
our bound in Section 4.2 is intractable to compute due to
the hardness of the surrogate loss ϕ. It is therefore desir-
able to derive a tractable alternative which could be used
to obtain a useful guarantee in practice. The upper bound
on integrality shown in Section 4.1 holds for other con-
vex relaxations which have been proposed for structured
prediction, such as semi-definite programming relaxations
(Kumar et al., 2009). However, it is less clear how to ex-
tend the generalization result to such non-polyhedral relax-
ations. Finally, we hope that our methodology will be use-
ful for shedding light on tightness of convex relaxations in
other learning problems.
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Supplementary Material
Train and Test Tightness of LP Relaxations in Structured Prediction

A. γ-Tight LP Relaxations
In this section we provide full derivations for the results in Section 4.2.1. We make extensive use of the results in Weller
et al. (2016), some of which are restated here for completeness. We start by defining a model in minimal representation,
which will be convenient for the derivations that follow. Specifically, in the case of binary variables (yi ∈ {0, 1}) with
pairwise factors, we define a value ηi for each variable, and a value ηij for each pair. The mapping between the over-
complete vector µ and the minimal vector η is as follows. For singleton factors, we have:

µi =

(
1− ηi
ηi

)
Similarly, for the pairwise factors, we have:

µij =

(
1 + ηij − ηi − ηj ηj − ηij ,

ηi − ηij ηij

)
The corresponding mapping to minimal parameters is then:

θ̄i = θi(1)− θi(0) +
∑
j∈Ni

(θij(1, 0)− θij(0, 0))

θ̄ij = θij(1, 1) + θij(0, 0)− θij(0, 1)− θij(1, 0)

In this representation, the LP relaxation is given by (up to constants):

max
η∈L

f(η) :=

n∑
i=1

θ̄iηi +
∑
ij∈E

θ̄ijηij

where L is the appropriate transformation ofML to the equivalent reduced space of η:

0 ≤ ηi ≤ 1 ∀i
max(0, ηi + ηj − 1) ≤ ηij ≤ min(ηi, ηj) ∀ij ∈ E

If θ̄ij > 0 (θ̄ij < 0), then the edge is called attractive (repulsive). If all edges are attractive, then the LP relaxation is
known to be tight (Wainwright & Jordan, 2008). When not all edges are attractive, in some cases it is possible to make
them attractive by flipping a subset of the variables (yi ← 1− yi).9 In such cases the model is called balanced.

In the sequel we will make use of the known fact that all vertices of the local polytope are half-integral (take values in
{0, 12 , 1}) (Wainwright & Jordan, 2008). We are now ready to prove the propositions (restated here for convenience).

A.1. Proof of Proposition 4.3

Proposition 4.3 A balanced model with a unique optimum is (α/2)-tight, where α is the difference between the best and
second-best (integral) solutions.

Proof. Weller et al. (2016) define for a given variable i the function F iL(z), which returns for every 0 ≤ z ≤ 1 the
constrained optimum:

F iL(z) = max
η∈L
ηi=z

f(η)

9The flip-set, if exists, is easy to find by making a single pass over the graph (see Weller (2015) for more details).
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Given this definition, they show that for a balanced model, F iL(z) is a linear function (Weller et al., 2016, Theorem 6).

Let m be the optimal score, let η1 be the unique optimum integral vertex in minimal form so f(η1) = m, and any other
integral vertex has value at most m − α. Denote the state of η1 at coordinate i by z∗ = η1i , and consider computing
the constrained optimum holding ηi to various states. By assumption, any other integral vertex has value at most m − α,
therefore,

F iL(z∗) = m

F iL(1− z∗) ≤m− α

(the second line holds with equality if there exists a second-best solution η2 s.t. η2i 6= η1i ). Since F iL(z) is a linear function,
we have that:

F iL(1/2) ≤ m− α/2 (11)

Next, towards contradiction, suppose that there exists a fractional vertex ηf with value f(ηf ) > m − α/2. Let j be a
fractional coordinate, so ηfj = 1

2 (since vertices are half-integral). Our assumption implies that F jL(1/2) > m − α/2, but
this contradicts Eq. (11). Therefore, we conclude that any fractional solution has value at most f(ηf ) ≤ m− α/2.

It is possible to check in polynomial time if a model is balanced, if it has a unique optimum, and compute α. This can
be done by computing the difference in value to the second-best. In order to find the second-best: one can constrain each
variable in turn to differ from the state of the optimal solution, and recompute the MAP solution; finally, take the maximum
over all these trials.

A.2. Proof of Proposition 4.4

Proposition 4.4 If all variables satisfy the condition:

θ̄i ≥ −
∑
j∈N−i

θ̄ij + β, or θ̄i ≤ −
∑
j∈N+

i

θ̄ij − β

for some β > 0, then the model is (β/2)-tight.

Proof. For any binary pairwise models, given singleton terms {ηi}, the optimal edge terms are given by (for details see
Weller et al., 2016):

ηij(ηi, ηj) =

{
min(ηi, ηj) if θ̄ij > 0

max(0, ηi + ηj − 1) if θ̄ij < 0

Now, consider a variable i and let Ni be the set of its neighbors in the graph. Further, define the sets N+
i = {j ∈ Ni|θ̄ij >

0} and N−i = {j ∈ Ni|θ̄ij < 0}, corresponding to attractive and repulsive edges, respectively. We next focus on the parts
of the objective affected by the value at ηi (recomputing optimal edge terms); recall that all vertices are half-integral:

ηi = 1 ηi = 1/2 ηi = 0

θ̄i +
∑

j∈N+
i

ηj=1

θ̄ij + 1
2

∑
j∈N+

i

ηj=
1
2

θ̄ij +
∑

j∈N−i
ηj=1

θ̄ij + 1
2

∑
j∈N−i
ηj=

1
2

θ̄ij
1
2 θ̄i + 1

2

∑
j∈N+

i

ηj∈{ 1
2 ,1}

θ̄ij + 1
2

∑
j∈N−i
ηj=1

θ̄ij 0

It is easy to verify that the condition θ̄i ≥ −
∑
j∈N−i

θ̄ij +β guarantees that ηi = 1 in the optimal solution. We next bound
the difference in objective values resulting from setting ηi = 1/2.

∆f =
1

2

θ̄i +
∑
j∈N+

i
ηj=1

θ̄ij +
∑
j∈N−i

ηj∈{ 1
2 ,1}

θ̄ij

 ≥ 1

2

θ̄i +
∑
j∈N−i

θ̄ij

 ≥ β/2
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Figure 5. Training with a noisy version of the ‘Scene’ dataset. Various quantities of interest are shown as a function of training iterations.
(Left) Training with LP relaxation. (Middle) Training with ILP. (Right) Integrality margin (bin widths are scaled differently).

Similarly, when θ̄i ≤ −
∑
j∈N+

i
θ̄ij − β, then ηi = 0 in any optimal solution. The difference in objective values from

setting ηi = 1/2 in this case is:

∆f = −1

2

θ̄i +
∑
j∈N+

i

ηj∈{ 1
2 ,1}

θ̄ij +
∑
j∈N−i
ηj=1

θ̄ij

 ≥ −1

2

θ̄i +
∑
j∈N+

i

θ̄ij

 ≥ β/2

Notice that for more fractional coordinates the difference in values can only increase, so in any case the fractional solution
is worse by at least β/2.

B. Additional Experimental Results
In this section we present additional experimental results for the ‘Scene’ dataset. Specifically, we inject random Gaussian
noise to the input features in order to reduce the signal in the singleton scores and increase the role of the pairwise
interactions. This makes the problem harder since the prediction needs to account for global information.

In Fig. 5 we observe that with exact training the exact loss is minimized, causing the exact-hinge to decrease, since it is
upper bounded by the loss (middle, top). On the other hand, the relaxed-hinge (and relaxed loss) increase during training,
which results in a large integrality gap and fewer tight instances. In contrast, with relaxed training the relaxed loss is
minimized, which causes the relaxed-hinge to decrease. Since the exact-hinge is upper bounded by the relaxed-hinge
it also decreases, but both hinge terms decrease similarly and remain very close to each other. This results in a small
integrality gap and tightness of almost all instances.

Finally, in contrast to other settings, in Fig. 5 we observe that with exact training the test tightness is noticeably higher
(about 20%) than the train tightness (Fig. 5, middle, bottom). This does not contradict our bound from Theorem 4.1, since
in fact the test fractionality is even lower than the bound suggests. On the other hand, this result does indicate that train
and test tightness may sometimes behave differently, which means that we might need to increase the size of the trainset in
order to get a tighter bound.


