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Abstract

In many practical problems—from tracking air-
craft based on radar data to building a bibli-
ographic database based on citation lists—we
want to reason about an unbounded number of
unseen objects with unknown relations among
them. Bayesian networks, which define a fixed
dependency structure on a finite set of variables,
are not the ideal representation language for this
task. This paper introduces contingent Bayesian
networks (CBNs), which represent uncertainty
about dependencies by labeling each edge with
a condition under which it is active. A CBN
may contain cycles and have infinitely many vari-
ables. Nevertheless, we give general conditions
under which such a CBN defines a unique joint
distribution over its variables. We also present a
likelihood weighting algorithm that performs ap-
proximate inference in finite time per sampling
step on any CBN that satisfies these conditions.

1 Introduction

One of the central tasks an intelligent agent must perform is
to make inferences about the real-world objects that under-
lie its observations. This type of reasoning has a wide range
of practical applications, from tracking aircraft based on
radar data to building a bibliographic database based on ci-
tation lists. To tackle these problems, it makes sense to use
probabilistic models that represent uncertainty about the
number of underlying objects, the relations among them,
and the mapping from observations to objects.

Over the past decade, a number of probabilistic model-
ing formalisms have been developed that explicitly repre-
sent objects and relations. Most work has focused on sce-
narios where, for any given query, there is no uncertainty
about the set of relevant objects. In extending this line of
work to unknown sets of objects, we face a difficulty: un-
less we place an upper bound on the number of underlying
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Figure 1: A graphical model (with plates representing repeated
elements) for the balls-and-urn example. This is a BN if we dis-
regard the labels BallDrawnk =n on the edges TrueColorn →
ObsColork for k∈{1, . . . ,K}, n∈{1, 2, . . .}. With the labels,
it is a CBN.

objects, the resulting model has infinitely many variables.
We have developed a formalism called BLOG (Bayesian
LOGic) in which such infinite models can be defined con-
cisely [7]. However, it is not obvious under what conditions
such models define probability distributions, or how to do
inference on them.

Bayesian networks (BNs) with infinitely many variables
are actually quite common: for instance, a dynamic BN
with time running infinitely into the future has infinitely
many nodes. These common models have the property that
each node has only finitely many ancestors. So for finite
sets of evidence and query variables, pruning away “bar-
ren” nodes [15] yields a finite BN that is sufficient for an-
swering the query. However, generative probability models
with unknown objects often involve infinite ancestor sets,
as illustrated by the following stylized example from [13].

Example 1. Suppose an urn contains some unknown num-
ber of balls N , and suppose our prior distribution for N
assigns positive probability to every natural number. Each
ball has a color—say, black or white—chosen indepen-
dently from a fixed prior. Suppose we repeatedly draw a
ball uniformly at random, observe its color, and return it
to the urn. We cannot distinguish two identically colored
balls from each other. Furthermore, we have some (known)
probability of making a mistake in each color observation.



Given our observations, we might want to predict the total
number of balls in the urn, or solve the identity uncertainty
problem: computing the posterior probability that (for ex-
ample) we drew the same ball on our first two draws.

Fig. 1 shows a graphical model for this example. There is
an infinite set of variables for the true colors of the balls;
each TrueColorn variable takes the special value null when
N < n. Each BallDrawnk variable takes a value between 1
andN , indicating the ball drawn on draw k. The ObsColork
variable then depends on TrueColor(BallDrawnk). In this BN,
all the infinitely many TrueColorn variables are ancestors
of each ObsColork variable. Thus, even if we prune barren
nodes, we cannot obtain a finite BN for computing the pos-
terior over N . The same problem arises in real-world iden-
tity uncertainty tasks, such as resolving coreference among
citations that refer to some underlying publications [10].

Bayesian networks also fall short in representing scenarios
where the relations between objects or events—and thus
the dependencies between random variables—are random.

Example 2. Suppose a hurricane is going to strike two
cities, Alphatown and Betaville, but it is not known which
city will be hit first. The amount of damage in each city de-
pends on the level of preparations made in each city. Also,
the level of preparations in the second city depends on the
amount of damage in the first city. Fig. 2 shows a model for
this situation, where the variable F takes on the value A or
B to indicate whether Alphatown or Betaville is hit first.

In this example, suppose that we have a good estimate of
the distribution for preparations in the first city, and of the
conditional probability distribution (CPD) for preparations
in the second city given damage in the first. The obvious
graphical model to draw is the one in Fig. 2, but it has a
figure-eight-shaped cycle. Of course, we can construct a
BN for the intended distribution by choosing an arbitrary
ordering of the variables and including all necessary edges
to each variable from its predecessors. Suppose we use the
ordering F, PA, DA, PB , DB . Then P (PA|F =A) is easy
to write down, but to compute P (PA|F =B) we need to
sum out PB and DB . There is no acyclic BN that reflects
our causal intuitions.

Using a high-level modeling language, one can represent
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Figure 2: A cyclic BN for the hurricane scenario. P stands for
preparations, D for damage, A for Alphatown, B for Betaville,
and F for the city that is hit first.

scenarios such as those in Figs. 1 and 2 in a compact and
natural way. However, as we have seen, the BNs corre-
sponding to such models may contain cycles or infinite an-
cestor sets. The assumptions of finiteness and acyclicity are
fundamental not just for BN inference algorithms, but also
for the standard theorem that every BN defines a unique
joint distribution.

Our approach to such models is based on the notion of
context-specific independence (CSI) [1]. In the balls-and-
urn example, in the context BallDrawnk =n, ObsColork has
only one other ancestor — TrueColorn. Similarly, the BN
in Fig. 2 is acyclic in the context F =A and also in the con-
text F =B. To exploit these CSI properties, we define two
generalizations of BNs that make CSI explicit. The first
is partition-based models (PBMs), where instead of spec-
ifying a set of parents for each variable, one specifies an
arbitrary partition of the outcome space that determines the
variable’s CPD. In Sec. 2, we give an abstract criterion that
guarantees that a PBM defines a unique joint distribution.

To prove more concrete results, we focus in Sec. 3 on
the special case of contingent Bayesian networks (CBNs):
possibly infinite BNs where some edges are labeled with
conditions. CBNs combine the use of decision trees for
CPDs [1] with the idea of labeling edges to indicate when
they are active [3]. In Sec. 3, we provide general conditions
under which a contingent BN defines a unique probability
distribution, even in the presence of cycles or infinite an-
cestor sets. In Sec. 4 we explore the extent to which results
about CBNs carry over to the more general PBMs. Then
in Sec. 5 we present a sampling algorithm for approximate
inference in contingent BNs. The time required to generate
a sample using this algorithm depends only on the size of
the context-specifically relevant network, not the total size
of the CBN (which may be infinite). Experimental results
for this algorithm are given in Sec. 6. We omit proofs for
reasons of space; the proofs can be found in our technical
report [8].

2 Partition-based models

We assume a set V of random variables, which may
be countably infinite. Each variable X has a domain
dom (X); we assume in this paper that each domain is at
most countably infinite. The outcome space over which we
would like to define a probability measure is the product
space Ω , ×(X ∈V)dom (X). An outcome ω ∈Ω is an as-
signment of values to all the variables; we write X(ω) for
the value of X in ω.

An instantiation σ is an assignment of values to a subset
of V . We write vars (σ) for the set of variables to which
σ assigns values, and σX for the value that σ assigns to a
variable X ∈ vars (σ). The empty instantiation is denoted
∅. An instantiation σ is said to be finite if vars (σ) is fi-
nite. The completions of σ, denoted comp(σ), are those
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Figure 3: A simple contingent BN.

outcomes that agree with σ on vars (σ):

comp(σ) , {ω ∈Ω : ∀X ∈ vars (σ) , X(ω)=σX}

If σ is a full instantiation — that is, vars (σ) = V — then
comp(σ) consists of just a single outcome.

To motivate our approach to defining a probability measure
on Ω, consider the BN in Fig. 3, ignoring for now the la-
bels on the edges. To completely specify this model, we
would have to provide, in addition to the graph structure,
a conditional probability distribution (CPD) for each vari-
able. For example, assuming the variables are binary, the
CPD for X would be a table with 8 rows, each correspond-
ing to an instantiation of X’s three parents. Another way of
viewing this is that X’s parent set defines a partition of Ω
where each CPT row corresponds to a block (i.e., element)
of the partition. This may seem like a pedantic rephrasing,
but partitions can expose more structure in the CPD. For
example, suppose X depends only on V when U =0 and
only on W when U =1. The tabular CPD for X would
still be the same size, but now the partition for X only has
four blocks: comp(U =0, V =0), comp(U =0, V =1),
comp(U =1,W =0), and comp(U =1,W =1).

Definition 1. A partition-based model Γ over V consists of

• for each X ∈V , a partition ΛΓ
X

of Ω where we write
λΓ
X
(ω) to denote the block of the partition that the out-

come ω belongs to;
• for each X ∈V and block λ∈ΛΓ

X
, a probability dis-

tribution pΓ(X|λ) over dom (X).

A PBM defines a probability distribution over Ω. If V is
finite, this distribution can be specified as a product expres-
sion, just as for an ordinary BN:

P (ω) ,
∏

X ∈V

pΓ(X(ω)|λ
Γ
X(ω)) (1)

Unfortunately, this equation becomes meaningless when
V is infinite, because the probability of each outcome ω

will typically be zero. A natural solution is to define the
probabilities of finite instantiations, and then rely on Kol-
mogorov’s extension theorem (see, e.g., [2]) to ensure that
we have defined a unique distribution over outcomes. But
Eq. 1 relies on having a full outcome ω to determine which
CPD to use for each variable X .

How can we write a similar product expression that in-
volves only a partial instantiation? We need the notion of a
partial instantiation supporting a variable.

Definition 2. In a PBM Γ, an instantiation σ supports
a variable X if there is some block λ∈ΛΓ

X
such that

comp(σ) ⊆ λ. In this case we write λΓ
X
(σ) for the unique

element of ΛΓ
X

that has comp(σ) as a subset.

Intuitively, σ supports X if knowing σ is enough to tell
us which block of ΛΓ

X
we’re in, and thus which CPD to

use for X . In Fig. 3, (U =0, V =0) supports X , but
(U =1, V =0) does not. In an ordinary BN, any instan-
tiation of the parents of X supports X .

An instantiation σ is self-supporting if every X ∈ vars (σ)
is supported by σ. In a BN, if U is an ancestral set (a set
of variables that includes all the ancestors of its elements),
then every instantiation of U is self-supporting.

Definition 3. A probability measure P over V satisfies a
PBM Γ if for every finite, self-supporting instantiation σ:

P (comp(σ)) =
∏

X ∈ vars(σ)

pΓ(σX |λ
Γ
X(σ)) (2)

A PBM is well-defined if there is a unique probability mea-
sure that satisfies it. One way a PBM can fail to be well-
defined is if the constraints specified by Eq. 2 are incon-
sistent: for instance, if they require that the instantiations
(X =1, Y =1) and (X =0, Y =0) both have probability
0.9. Conversely, a PBM can be satisfied by many distribu-
tions if, for example, the only self-supporting instantiations
are infinite ones — then Def. 3 imposes no constraints.

When can we be sure that a PBM is well-defined? First,
recall that a BN is well-defined if it is acyclic, or equiv-
alently, if its nodes have a topological ordering. Thus, it
seems reasonable to think about numbering the variables in
a PBM. A numbering of V is a bijection π from V to some
prefix of N (this will be a proper prefix if V is finite, and
the whole set N if V is countably infinite). We define the
predecessors of a variable X under π as:

Predπ[X] , {U ∈V : π(U) < π(X)}

Note that since each variable X is assigned a finite number
π(X), the predecessor set Predπ[X] is always finite.

One of the purposes of PBMs is to handle cyclic scenarios
such as Example 2. Thus, rather than speaking of a single
topological numbering for a model, we speak of a support-
ive numbering for each outcome.

Definition 4. A numbering π is a supportive numbering
for an outcome ω if for each X ∈V , the instantiation
Predπ[X](ω) supports X .

Theorem 1. A PBM Γ is well-defined if, for every outcome
ω ∈Ω, there exists a supportive numbering πω .



The converse of this theorem is not true: a PBM may hap-
pen to be well-defined even if some outcomes do not have
supportive numberings. But more importantly, the require-
ment that each outcome have a supportive numbering is
very abstract. How could we determine whether it holds
for a given PBM? To answer this question, we now turn to
a more concrete type of model.

3 Contingent Bayesian networks

Contingent Bayesian networks (CBNs) are a special case
of PBMs for which we can define more concrete well-
definedness criteria, as well as an inference algorithm. In
Fig. 3 the partition was represented not as a list of blocks,
but implicitly by labeling each edge with an event. The
meaning of an edge from W to X labeled with an event E,
which we denote by (W → X | E), is that the value of W
may be relevant to the CPD for X only when E occurs. In
Fig. 3, W is relevant to X only when U =1.

Using the definitions of V and Ω from the previous section,
we can define a CBN structure as follows:

Definition 5. A CBN structure G is a directed graph where
the nodes are elements of V and each edge is labeled with
a subset of Ω.

In our diagrams, we leave an edge blank when it is labeled
with the uninformative event Ω. An edge (W → X | E) is
said to be active given an outcome ω if ω ∈E, and active
given a partial instantiation σ if comp(σ) ⊆ E. A variable
W is an active parent of X given σ if an edge from W to
X is active given σ.

Just as a BN is parameterized by specifying CPTs, a CBN is
parameterized by specifying a decision tree for each node.

Definition 6. A decision tree T is a directed tree where
each node is an instantiation σ, such that:

• the root node is ∅;
• each non-leaf node σ splits on a variable XT

σ such
that the children of σ are {(σ;XT

σ =x) : x ∈
dom

(

XT
σ

)

}.

U=1

U=0
V=1

V=0

W=1

W=0 V=1

V=0

(a) (b)

Figure 4: Two decision trees for X in Fig. 3. Tree (a) respects
the CBN structure, while tree (b) does not.

Two decision trees are shown in Fig. 4. If a node splits on
a variable that has infinitely many values, then it will have

infinitely many children. This definition also allows a de-
cision tree to contain infinite paths. However, each node
in the tree is a finite instantiation, since it is connected to
the root by a finite path. We will call a path truncated if
it ends with a non-leaf node. Thus, a non-truncated path
either continues infinitely or ends at a leaf. An outcome ω
matches a path θ if ω is a completion of every node (in-
stantiation) in the path. The non-truncated paths starting
from the root are mutually exclusive and exhaustive, so a
decision tree defines a partition of Ω.

Definition 7. The partition ΛT defined by a decision tree
T consists of a block of the form {ω ∈Ω : ω matches θ}
for each non-truncated path θ starting at the root of T .

So for each variable X , we specify a decision tree TX , thus
defining a partition ΛX , Λ(TX). To complete the param-
eterization, we also specify a function pB(X =x|λ) that
maps each λ∈ΛX to a distribution over dom (X). How-
ever, the decision tree forX must respect the CBN structure
in the following sense.

Definition 8. A decision tree T respects the CBN structure
G at X if for every node σ ∈T that splits on a variable W ,
there is an edge (W → X | E) in G that is active given σ.

For example, tree (a) in Fig. 4 respects the CBN structure
of Fig. 3 at X . However, tree (b) does not: the root instan-
tiation ∅ does not activate the edge (V → X | U = 0), so
it should not split on V .

Definition 9. A contingent Bayesian network (CBN) B
over V consists of a CBN structure GB, and for each vari-
able X ∈V:

• a decision tree T B
X

that respects GB at X , defining a
partition ΛB

X
, Λ(T B

X
);

• for each block λ∈ΛB
X

, a probability distribution
pB(X|λ) over dom (X).

It is clear that a CBN is a kind of PBM, since it defines a
partition and a conditional probability distribution for each
variable. Thus, we can carry over the definitions from the
previous section of what it means for a distribution to sat-
isfy a CBN, and for a CBN to be well-defined.

We will now give a set of structural conditions that ensure
that a CBN is well-defined. We call a set of edges in G
consistent if the events on the edges have a non-empty in-
tersection: that is, if there is some outcome that makes all
the edges active.

Theorem 2. Suppose a CBN B satisfies the following:

(A1) No consistent path in GB forms a cycle.
(A2) No consistent path in GB forms an infinite reced-

ing chain X1 ← X2 ← X3 ← · · · .
(A3) No variable X ∈V has an infinite, consistent set

of incoming edges in GB.

Then B is well-defined.



A CBN that satisfies the conditions of Thm. 2 is said to be
structurally well-defined. If a CBN has a finite set of vari-
ables, we can check the conditions directly. For instance,
the CBN in Fig. 2 is structurally well-defined: although it
contains a cycle, the cycle is not consistent.

The balls-and-urn example (Fig. 1) has infinitely many
nodes, so we cannot write out the CBN explicitly. How-
ever, it is clear from the plates representation that this
CBN is structurally well-defined as well: there are no
cycles or infinite receding chains, and although each
ObsColork node has infinitely many incoming edges, the
labels BallDrawnk =n ensure that exactly one of these
edges is active in each outcome. In [8], we discuss the
general problem of determining whether the infinite CBN
defined by a high-level model is structurally well-defined.

4 CBNs as implementations of PBMs

In a PBM, we specify an arbitrary partition for each vari-
able; in CBNs, we restrict ourselves to partitions generated
by decision trees. But given any partition Λ, we can con-
struct a decision tree T that yields a partition at least as
fine as Λ—that is, such that each block λ∈ΛT is a subset
of some λ′ ∈Λ. In the worst case, every path starting at the
root in T will need to split on every variable. Thus, every
PBM is implemented by some CBN, in the following sense:

Definition 10. A CBN B implements a PBM Γ over the
same set of variables V if, for each variable X ∈V , each
block λ∈ΛB

X
is a subset of some block λ′ ∈ΛΓ

X
, and

pB(X|λ) = pΓ(X|λ
′).

Theorem 3. If a CBN B implements a PBM Γ and B is
structurally well-defined, then Γ is also well-defined, and
B and Γ are satisfied by the same unique distribution.

Thm. 3 gives us a way to show that a PBM Γ is well-
defined: construct a CBN B that implements Γ, and then
use Thm. 2 to show that B is structurally well-defined.
However, the following example illustrates a complication:

Example 3. Consider predicting who will go to a weekly
book group meeting. Suppose it is usually Bob’s responsi-
bility to prepare questions for discussion, but if a historical
fiction book is being discussed, then Alice prepares ques-
tions. In general, Alice and Bob each go to the meeting
with probability 0.9. However, if the book is historical fic-
tion and Alice isn’t going, then the group will have no dis-
cussion questions, so the probability that Bob bothers to go
is only 0.1. Similary, if the book is not historical fiction and
Bob isn’t going, then Alice’s probability of going is 0.1. We
will use H , GA and GB to represent the binary variables
“historical fiction”, “Alice goes”, and “Bob goes”.

This scenario is most naturally represented by a PBM. The
probability that Bob goes is 0.1 given ((H =1)∧(GA=0))
and 0.9 otherwise, so the partition for GB has two blocks.
The partition for GA has two blocks as well.

H

GA GB

GA=0GB=0

GB=1

GB=0
H=1

H=0

0.9

0.1

0.9
GA:

GA=1

GA=0
H=1

H=0

0.1

0.9

0.9
GB:

H

GA GB
H=1

H=0

H=1

H=0
GB=1

GB=0

0.9

0.1

0.9
GA:

H=1

H=0

GA=1

GA=0

0.9

0.1

0.9

GB:

Figure 5: Two CBNs for Ex. 3, with decision trees and probabil-
ities for GA and GB .

The CBNs in Fig. 5 both implement this PBM. There are
no decision trees that yield exactly the desired partitions for
GA and GB : the trees in Fig. 5 yield three blocks instead
of two. Because the trees on the two sides of the figure
split on the variables in different orders, they respect CBN
structures with different labels on the edges. The CBN on
the left has a consistent cycle, while the CBN on the right
is structurally well-defined.

Thus, there may be multiple CBNs that implement a given
PBM, and it may be that some of these CBNs are struc-
turally well-defined while others are not. Even if we are
given a well-defined PBM, it may be non-trivial to find a
structurally well-defined CBN that implements it. Thus,
algorithms that apply to structurally well-defined CBNs —
such as the one we define in the next section — cannot be
extended easily to general PBMs.

5 Inference

In this section we discuss an approximate inference al-
gorithm for CBNs. To get information about a given
CBN B, our algorithm will use a few “black box” ora-
cle functions. The function GET-ACTIVE-PARENT(X,σ)
returns a variable that is an active parent of X given
σ but is not already included in vars (σ). It does this
by traversing the decision tree T B

X
, taking the branch

associated with σU when the tree splits on a variable
U ∈ vars (σ), until it reaches a split on a variable not in-
cluded in vars (σ). If there is no such variable — which
means that σ supports X — then it returns null. We
also need the function COND-PROB(X,x, σ), which re-
turns pB(X =x|σ) whenever σ supports X , and the func-
tion SAMPLE-VALUE(X,σ), which randomly samples a
value according to pB(X|σ).

Our inference algorithm is a form of likelihood weight-



function CBN-LIKELIHOOD-WEIGHTING(Q, e,B,N )
returns an estimate of P (Q|e)
inputs: Q, the set of query variables

e, evidence specified as an instantiation
B, a contingent Bayesian network
N , the number of samples to be generated

W← a map from dom (Q) to real numbers, with values
lazily initialized to zero when accessed

for j = 1 to N do
σ,w←CBN-WEIGHTED-SAMPLE(Q, e,B)
W[q]←W[q] + w where q = σQ

return NORMALIZE(W[Q])

function CBN-WEIGHTED-SAMPLE(Q, e,B)
returns an instantiation and a weight

σ←∅; stack← an empty stack; w← 1
loop

if stack is empty
if some X in (Q ∪ vars (e)) is not in vars (σ)

PUSH(X , stack )
else

return σ, w

while X on top of stack is not supported by σ
V ←GET-ACTIVE-PARENT(X ,σ)
push V on stack

X ← POP(stack )
if X in vars (e)

x← eX

w←w × COND-PROB(X , x ,σ)
else

x← SAMPLE-VALUE(X ,σ)
σ← (σ, X = x )

Figure 6: Likelihood weighting algorithm for CBNs.

ing. Recall that the likelihood weighting algorithm for
BNs samples all non-evidence variables in topological or-
der, then weights each sample by the conditional probabil-
ity of the observed evidence [14]. Of course, we cannot
sample all the variables in an infinite CBN. But even in a
BN, it is not necessary to sample all the variables: the rele-
vant variables can be found by following edges backwards
from the query and evidence variables. We extend this no-
tion to CBNs by only following edges that are active given
the instantiation sampled so far. At each point in the algo-
rithm (Fig. 6), we maintain an instantiation σ and a stack
of variables that need to be sampled. If the variable X on
the top of the stack is supported by σ, we pop X off the
stack and sample it. Otherwise, we find a variable V that is
an active parent of X given σ, and push V onto the stack.
If the CBN is structurally admissible, this process termi-
nates in finite time: condition (A1) ensures that we never
push the same variable onto the stack twice, and conditions
(A2) and (A3) ensure that the number of distinct variables
pushed onto the stack is finite.

As an example, consider the balls-and-urn CBN (Fig. 1).
If we want to query N given some color observations,

the algorithm begins by pushing N onto the stack. Since
N (which has no parents) is supported by ∅, it is im-
mediately removed from the stack and sampled. Next,
the first evidence variable ObsColor1 is pushed onto the
stack. The active edge into ObsColor1 from BallDrawn1
is traversed, and BallDrawn1 is sampled immediately be-
cause it is supported by σ (which now includes N ). The
edge from TrueColorn (for n equal to the sampled value of
BallDrawn1) to ObsColor1 is now active, and so TrueColorn
is sampled as well. Now ObsColor1 is finally supported by
σ, so it is removed from the stack and instantiated to its
observed value. This process is repeated for all the obser-
vations. The resulting sample will get a high weight if the
sampled true colors for the balls match the observed colors.

Intuitively, this algorithm is the same as likelihood weight-
ing, in that we sample the variables in some topological or-
der. The difference is that we sample only those variables
that are needed to support the query and evidence variables,
and we do not bother sampling any of the other variables
in the CBN. Since the weight for a sample only depends
on the conditional probabilities of the evidence variables,
sampling additional variables would have no effect.

Theorem 4. Given a structurally well-defined CBN B,
a finite evidence instantiation e, a finite set Q of query
variables, and a number of samples N , the algorithm
CBN-LIKELIHOOD-WEIGHTING in Fig. 6 returns an es-
timate of the posterior distribution P (Q|e) that converges
with probability 1 to the correct posterior asN →∞. Fur-
thermore, each sampling step takes a finite amount of time.

6 Experiments

We ran two sets of experiments using the likelihood weight-
ing algorithm of Fig. 6. Both use the balls and urn setup
from Ex. 1. The first experiment estimates the number of
balls in the urn given the colors observed on 10 draws; the
second experiment is an identity uncertainty problem. In
both cases, we run experiments with both a noiseless sen-
sor model, where the observed colors of balls always match
their true colors, and a noisy sensor model, where with
probability 0.2 the wrong color is reported.

The purpose of these experiments is to show that inference
over an infinite number of variables can be done using a
general algorithm in finite time. We show convergence of
our results to the correct values, which were computed by
enumerating equivalence classes of outcomes with up to
100 balls (see [8] for details). More efficient sampling al-
gorithms for these problems have been designed by hand
[9]; however, our algorithm is general-purpose, so it needs
no modification to be applied to a different domain.

Number of balls: In the first experiment, we are predict-
ing the total number of balls in the urn. The prior over the
number of balls is a Poisson distribution with mean 6; each
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Figure 7: Posterior distributions for the total number of balls
given 10 observations in the noise-free case (top) and noisy case
(bottom). Exact probabilities are denoted by ’×’s and connected
with a line; estimates from 5 sampling runs are marked with ’+’s.

ball is black with probability 0.5. The evidence consists
of color observations for 10 draws from the urn: five are
black and five are white. For each observation model, five
independent trials were run, each of 5 million samples.1

Fig. 7 shows the posterior probabilities for total numbers of
balls from 1 to 15 computed in each of the five trials, along
with the exact probabilities. The results are all quite close
to the true probability, especially in the noisy-observation
case. The variance is higher for the noise-free model be-
cause the sampled true colors for the balls are often incon-
sistent with the observed colors, so many samples have zero
weights.

Fig. 8 shows how quickly our algorithm converges to the
correct value for a particular probability, P (N =2|obs).
The run with deterministic observations stays within 0.01
of the true probability after 2 million samples. The noisy-
observation run converges faster, in just 100,000 samples.

Identity uncertainty: In the second experiment, three
balls are drawn from the urn: a black one and then two
white ones. We wish to find the probability that the second
and third draws produced the same ball. The prior distribu-

1Our Java implementation averages about 1700 sam-
ples/sec. for the exact observation case and 1100 samples/sec. for
the noisy observation model on a 3.2 GHz Intel Pentium 4.
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Figure 8: Probability that N = 2 given 10 observations (5 black,
5 white) in the noise-free case (top) and noisy case (bottom).
Solid line indicates exact value; ’+’s are values computed by 5
sampling runs at intervals of 100,000 samples.

tion over the number of balls is Poisson(6). Unlike the pre-
vious experiment, each ball is black with probability 0.3.

We ran five independent trials of 100,000 samples on the
deterministic and noisy observation models. Fig. 9 shows
the estimates from all five trials approaching the true proba-
bility as the number of samples increases. Note that again,
the approximations for the noisy observation model con-
verge more quickly. The noise-free case stays within 0.01
of the true probability after 70,000 samples, while the noisy
case converges within 10,000 samples. Thus, we perform
inference over a model with an unbounded number of ob-
jects and get reasonable approximations in finite time.

7 Related work

There are a number of formalisms for representing context-
specific independence (CSI) in BNs. Boutilier et al. [1]
use decision trees, just as we do in CBNs. Poole and
Zhang [12] use a set of parent contexts (partial instantia-
tions of the parents) for each node; such models can be
represented as PBMs, although not necessarily as CBNs.
Neither paper discusses infinite or cyclic models. The idea
of labeling edges with the conditions under which they are
active may have originated in [3] (a working paper that is
no longer available); it was recently revived in [5].
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Figure 9: Probability that draws two and three produced the same
ball for noise-free observations (top) and noisy observations (bot-
tom). Solid line indicates exact value; ’+’s are values computed
by 5 sampling runs.

Bayesian multinets [4] can represent models that would
be cyclic if they were drawn as ordinary BNs. A multi-
net is a mixture of BNs: to sample an outcome from a
multinet, one first samples a value for the hypothesis vari-
able H , and then samples the remaining variables using
a hypothesis-specific BN. We could extend this approach
to CBNs, representing a structurally well-defined CBN as
a (possibly infinite) mixture of acyclic, finite-ancestor-set
BNs. However, the number of hypothesis-specific BNs re-
quired would often be exponential in the number of vari-
ables that govern the dependency structure. On the other
hand, to represent a given multinet as a CBN, we simply
include an edge V → X with the label H = h whenever
that edge is present in the hypothesis-specific BN for h.

There has also been some work on handling infinite ances-
tor sets in BNs without representing CSI. Jaeger [6] states
that an infinite BN defines a unique distribution if there is
a well-founded topological ordering on its variables; that
condition is more complete than ours in that it allows a
node to have infinitely many active parents, but less com-
plete in that it requires a single ordering for all contexts.
Pfeffer and Koller [11] point out that a network containing
an infinite receding path X1 ← X2 ← X3 ← · · · may
still define a unique distribution if the CPDs along the path
form a Markov chain with a unique stationary distribution.

8 Conclusion

We have presented contingent Bayesian networks, a for-
malism for defining probability distributions over possi-
bly infinite sets of random variables in a way that makes
context-specific independence explicit. We gave structural
conditions under which a CBN is guaranteed to define a
unique distribution—even if it contains cycles, or if some
variables have infinite ancestor sets. We presented a sam-
pling algorithm that is guaranteed to complete each sam-
pling step in finite time and converge to the correct poste-
rior distribution. We have also discussed how CBNs fit into
the more general framework of partition-based models.

Our likelihood weighting algorithm, while completely gen-
eral, is not efficient enough for most real-world prob-
lems. Our future work includes developing an efficient
Metropolis-Hastings sampler that allows for user-specified
proposal distributions; the results of [10] suggest that such
a system can handle large inference problems satisfactorily.
Further work at the theoretical level includes handling con-
tinuous variables, and deriving more complete conditions
under which CBNs are guaranteed to be well-defined.
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