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Abstract

We present a new approach to population health, in which data-driven predictive models are learned for outcomes
such as type 2 diabetes. Our approach enables risk assessment from readily available electronic claims data on large
populations, without additional screening cost. Proposed model uncovers early and late-stage risk factors. Using admin-
istrative claims, pharmacy records, healthcare utilization, and laboratory results of 4.1 million individuals between 2005
and 2009, an initial set of 42,000 variables were derived that together describe the full health status and history of every
individual. Machine learning was then used to methodically enhance predictive variable set and fit models predicting
onset of type 2 diabetes in 2009-2011, 2010-2012, and 2011-2013. We compared the enhanced model with a parsi-
monious model consisting of known diabetes risk factors in a real-world environment, where missing values are com-
mon and prevalent. Furthermore, we analyzed novel and known risk factors emerging from the model at different age
groups at different stages before the onset. Parsimonious model using 21 classic diabetes risk factors resulted in area
under ROC curve (AUQ) of 0.75 for diabetes prediction within a 2-year window following the baseline. The enhanced
model increased the AUC to 0.80, with about 900 variables selected as predictive (p<0.0001 for differences between
AUCs). Similar improvements were observed for models predicting diabetes onset 1-3 years and 2—4 years after base-
line. The enhanced model improved positive predictive value by at least 50% and identified novel surrogate risk fac-
tors for type 2 diabetes, such as chronic liver disease (odds ratio [OR] 3.71), high alanine aminotransferase (OR 2.26),
esophageal reflux (OR 1.85), and history of acute bronchitis (OR 1.45). Liver risk factors emerge later in the process of
diabetes development compared with obesity-related factors such as hypertension and high hemoglobin Alc. In con-
clusion, population-level risk prediction for type 2 diabetes using readily available administrative data is feasible and
has better prediction performance than classical diabetes risk prediction algorithms on very large populations with
missing data. The new model enables intervention allocation at national scale quickly and accurately and recovers
potentially novel risk factors at different stages before the disease onset.

Key words: big data analytics; data mining; machine learning; predictive analytics; risk assessment; disease
prediction; longitudinal study

Introduction

The recent availability of the electronic health record
and claims datasets offers an unprecedented opportu-
nity to apply predictive analytics to improve the prac-
tice of medicine and to infer potentially novel risk
factors.' Successful examples of previously deployed
large-scale risk assessment models include hospital
readmission models,*” disease onset prediction,s’13
and prediction of healthcare utilization and cost.'*

'Department of Computer Science, New York University, New York, New York.

Type 2 diabetes is a global public health challenge.
The total number of people with diabetes (including
type 1 and 2) is estimated to rise from 171 million in
2000 to 366 million in 2030,'> and current statistics
show that the vast majority of diabetic patients are suf-
fering from type 2 diabetes.'® In 2002, the Centers for
Disease Control (CDC) Diabetes Prevention Program
(DPP)'” showed that intensive lifestyle intervention'®
focusing on exercise and weight loss was more effective
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at lowering the risk of type 2 diabetes than medication
with Metformin. Similar studies in other countries have
confirmed the benefits.'* '

Despite the academic success of the DPP, implemen-
tation of the program by major insurance or public
health service providers has been hindered by a number
of limitations. The interventions can only be cost-
effective when the target population has a high likelihood
of developing diabetes at the baseline.”* The DPP pro-
gram, which selected participants based on obesity
and elevated glucose levels, observed only an 11%
positive predictive value (PPV)'® (ie., only 11% of
the participants without any lifestyle or Metformin in-
tervention developed diabetes within 3 years). This em-
phasizes the need for models with better risk assessment
for diabetes onset. Traditional well-known models for
type 2 diabetes onset, including ARIC,*® San-Antonio,**
AUSDRISK,?® and FINDRISC,¢ provide potential solu-
tions for more accurate risk assessment, but these
models have another major limitation: they require a
time-consuming and costly screening step, which
again makes the interventions infeasible.

The primary purpose of our study is to develop a
population-level risk prediction model for type 2 diabe-
tes, which can be directly applied to health insurance
claims and other readily available clinical and utiliza-
tion data. Using machine learning, we methodically
discover surrogates for variables that would otherwise
be missing.

The secondary purpose of our study is to identify the
relative importance of different risk factors in terms of
how early they may predict onset of type 2 diabetes.
Observational studies using clinical and utilization
data provide a window into the lives of patients before
clinical diagnosis of type 2 diabetes at a scale much
larger than what would be feasible within the scope
of a clinical trial or prospective cohort study.

Materials and Methods
We performed a retrospective cohort study of beneficia-
ries of Independence Blue Cross (Independence), a
major insurance provider in southeastern Pennsylvania.
The primary data source for the study was Independence
claims data, which included enrollment information, uti-
lization records such as hospitalizations, outpatient vis-
its, laboratory orders, and medication fulfillment, for
all beneficiaries, and laboratory test results for 95% of
the laboratory claims.

Our initial population included ~4.1 million dei-
dentified Independence beneficiaries, at least 18 years
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of age, who enrolled in Independence’s insurance pro-
gram between the years 2005 and 2013.

Outcome

Our primary outcome was the confirmed diagnosis of
type 2 diabetes. A beneficiary was confirmed as having
type 2 diabetes if any of the following three criteria
were observed on two distinct days: (1) an Interna-
tional Classification of Diseases, Clinical Modification
(ICD-9-CM) code of 250.xx, listed as a hospital dis-
charge diagnosis or physician clinical encounter; (2)
use of a diabetes medication, including Glimepiride,
Glipizide, Glyburide, Chlorpropamide, Tolazamide,
Tolbutamide, Pioglitazone, Rosiglitazone, Acarbose,
Miglitol, Repaglinide, Nateglinide, Sitagliptin, Saxa-
gliptin, Linagliptin, Alogliptin, Pramlintide, Exenatide,
Liraglutide, Canagliflozin, and Insulin (any); or (3)
HbA1C value 26.5%. The list of medications was
based on existing diabetes outcome definitions,?” and
we excluded Metformin from the definition of diabetes
due to its significant usage in treatment of polycystic
ovarian syndrome® and prediabetes. To derive our
final outcome definition, we compared the perfor-
mance of multiple clinically relevant definitions of dia-
betes among a representative subgroup of beneficiaries
who, based on the Standard of Care for Diabetes,”’
could be definitively labeled as either having diabetes
or being free from diabetes (see Supplementary Mate-
rial, Part-A; Supplementary Data are available online
at www liebertpub.com/big).

Parsimonious model based

on known risk factors: baseline

We built a parsimonious baseline model, using risk fac-
tors derived from seven landmark studies of risk pre-
diction models for predicting incident diabetes:
ARIC,”> KORA,* FRAMINGHAM,*' AUSDRISC,*
FINDRISC,?® and the San-Antonio Model.** To build
our parsimonious model, we included every variable
that was used in any of these models for which we
had direct or surrogate measurements. The variables
include age (continuous variable), gender (binary indi-
cator), overweight (binary indicator), underweight (bi-
nary indicator), diagnosis of obesity (binary indicator),
hypercholesterolemia history (binary indicator), car-
diovascular disease history (binary indicator), lipid dis-
order history (binary indicator), history of high alcohol
in blood (binary indicator), history of unspecified hy-
pertension (binary indicator), prediabetic fasting glu-
cose level (binary variable, set to 1 if the fasting glucose
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level was 2100.0 and <125.0), high triglyceride level (bi-
nary variable, set to 1 if the triglyceride level was
>150.0), high C-reactive protein level (binary variable,
set to 1 if level >0.75 percentile),”® and a protective
HDL-C level (binary variable, set to 1 if value 240 for
male or 250 for female). We included the diagnosis
of obesity as a surrogate variable for high body-mass
index (BMI), and the diagnoses of hypertension and
hypertensive heart and renal diseases as surrogates
for elevated blood pressure. Because the cited models
were not developed for use with claims datasets, and
moreover in some cases we used surrogates for vari-
ables not observable in claims data, we retrained the
parameters of the parsimonious baseline using the
training data.

Enhanced model
We next built an enhanced model using beneficiary de-
mographics (11 continuous and binary variables), in-
cluding age as one continuous variable in addition to
three binary variables for age intervals of 18-39, 40-
64, and 65+ years, gender, and number of months
with vision and dental insurance coverage; all past
and current medical conditions (16,632 binary vari-
ables); temporal procedures received (457 variables
for each of three different time intervals); temporal
physician specialty visits (50 X 3 binary variables); tem-
poral laboratory orders and results (70003 binary
variables); and temporal medication utilization (990 3
binary variables). For all temporal variables, we calcu-
lated the feature over the past 6 months, 24 months,
and entire past history. If a variable was not observed,
it was referenced as 0 and we did not impute it.
Medical conditions were encoded as indicator vari-
ables based on all International Classification of Diseases
(ICD-9) diagnosis codes. In our initial studies, we had
used the Clinical Classification Software (CCS)>* hierar-
chy of ICD-9 codes in a temporal manner. However, we
saw no gain in the predictive power compared with
using individual diagnosis variables. To preserve the
granularity of the risk factors, we therefore did not en-
code past medical conditions temporally or hierarchi-
cally. Procedure information variables were based on
the Current Procedure Terminology (CPT) and ICD-9
procedural codes, each grouped by CCS.*> Additional
variables included indicators for visiting every physician
specialty possible in clinical encounters (which are
available in claims data) and indicators for all medica-
tions as specified by the national drug code and grouped
by therapeutic class codes.
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Patient laboratory measurement variables were based
on logical observation identifiers, names, and codes. We
used the 1000 most frequent laboratory tests based on
our cohort. For each of these laboratory tests at each
time span considered, we derived seven variables: an in-
dicator of whether the test was administered, an indica-
tor for whether the result was reported as low, high, or
normal according to the reference range of the labora-
tory, and whether the value increased, decreased, or
fluctuated.

In total, each beneficiary was represented as a set
of ~42,000 variables that summarized all their past
and current medical states. We emphasize that these
variables were not selected specifically for the purpose
of studying type 2 diabetes. Our approach thus has the
potential to discover novel risk factors associated with
type 2 diabetes.

Study framework and inclusion criteria

We designed our study to determine the risk of devel-
oping type 2 diabetes in three time spans into the fu-
ture. We built the feature vectors from beneficiary
data up to December 31, 2008. We then predicted
whether subjects were to develop type 2 diabetes within
a 2-year prediction window: immediately within the
following 2 years (i.e., between January 1, 2009, and
January 1, 2011); at least 1 year into the future (i.e., be-
tween January 1, 2010, and January 1, 2012); or at least
2 years into the future (i.e., between January 1, 2011,
and January 1, 2013). For each of these analyses, we ex-
cluded beneficiaries who had already developed diabe-
tes before the start of the prediction window. We
required a minimum of 6 months of enrollment before
December 31, 2008, to include the beneficiary in our
study. The framework is summarized in Figure 1. We
refer to the time span between data collection and the
beginning of the prediction window as the gap period.

Statistical analysis

We developed the prediction models using sparse, or L1-
regularized, logistic regression.”* This method provides a
computationally efficient alternative to commonly used
variable selection methods, such as forward selection
and backward elimination, and eliminates both variable
ordering bias and the need to adjust for the p-value
inflation coming from multiple comparison tests on
the same dataset.” LI regularization simultaneously
searches over all relevant and irrelevant variables.*® It
comes with a strong mathematical guarantee to recover
the true set of predictors and learn the corresponding
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FIG. 1. Framework for the prediction task. Features are derived from patient data up to time T. Outcome is
evaluated in the 2-year follow-up window after a gap of size W. Patients who have diabetes before T+ W, or
have insufficient enrollment, are excluded during training and evaluation (denoted as *). Patient outcome is
positive (denoted as +) if diabetes onset happens in the outcome evaluation period and negative (denoted
as —) otherwise.
- J/

beta coefficients, even when the number of samples is
smaller than the number of irrelevant variables.>’

L1 regularization works by adding a penalty to the
classification loss. This penalty is the sum of absolute
values of the coefficients (called L1 penalty) and guides
the optimization algorithm to select a beta coefficient
vector that pushes very low weights to zero when
those low weights do not improve the accuracy of
the prediction. As a result, the final beta coefficient
vectors will be sparse, interpretable, robust to noise,
and statistically powerful. Fast algorithms to optimize
the accuracy of such models are available.’**® We
use an algorithm based on Dual Coordinate Descent,>®
which handles massive datasets very efficiently, to
train these models from data.’>*® We optimized a
reweighted log likelihood to correct for the class imbal-
ance during the training. We use the area under the
ROC curve (AUC) as the primary evaluation metric.
AUC is invariant to the prior class probabilities and
thus suitable for imbalanced datasets.

We used randomly selected 67% of the data for
training, with the remaining 33% held out for the val-
idation set, and used a fivefold cross-validation on the
training data to choose the L1 regularization hyper-
parameter. For regularization parameters, we searched
over values of [0.001, 0.01, 0.1, 1, 10], and 0.1 was se-
lected to be optimum in all our settings and cross-
validation folds. We used the same methodology and

the reweighted log likelihood objective to fit the param-
eters of the parsimonious model. Additional details of
our method for presenting the results are included in
Supplementary Part-B.

For each predictive model, we calculated the AUC on
the validation set. We also report a PPV for the 100, 1000,
and 10,000 individuals predicted to develop diabetes
with highest probability based on our enhanced models,
compared with the parsimonious model, using the vali-
dation data. We calculated the odds ratio (OR) for each
discovered risk factor and present them for three age cat-
egories. In all cases, we report the unadjusted ORs di-
rectly calculated from the data, which link each risk
factor to diabetes onset independently of the other vari-
ables. For all reported risk factors, we reported 95% con-
fidence intervals (CIs) in addition to p-values for the
ORs. To report AUC Cls, we used a standard error
upper bound*' and reported 95% CIs. For PPV, we
reported 95% CL** In all comparisons, we used the
Wald test for reporting p-values of differences.

Results

Data

The original cohort included about 4.1 million benefi-
ciaries. A total of 793,153 beneficiaries matched the in-
clusion criteria for predicting onset of type 2 diabetes
between January 1, 2009, and January 1, 2011, using
beneficiaries’ data through December 31, 2008. These
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Table 1. Subjects’ characteristics of the cohort included
in training and validation

Total Population
Characteristic population with diabetes
Average age (SD) 47.69 (17.1) 58.57 (13.3)
Female ratio 55% 51%
Average length of data in years (SD) 33 (1.0 34 (1.0
Hypertension (ICD9 401) 30.2% 62%
Hypercholesterolemia (ICD9 272.0) 18.7% 33.6%

SD, standard deviation.

beneficiaries’ characteristics are included in Table 1. Of
these, 19,307 developed diabetes within the prediction
window. After training, 967 variables were selected
for the enhanced model. For predicting onset of type
2 diabetes between January 1, 2010, and January 1,
2012 (gap period 1 year), a total of 697,502 beneficiaries
matched the inclusion criteria; of these 13,835 benefi-
ciaries developed diabetes within the prediction win-
dow. After training, 769 variables were selected in the
enhanced model as predictive. For predicting onset of
type 2 diabetes between January 1, 2011, and January
1, 2013, 629,817 beneficiaries matched our inclusion
criteria, 8498 of which had a positive label in the pre-
diction window. After training, 538 variables were se-
lected as predictive.

Prediction results

For immediate prediction of diabetes, the enhanced
model had an AUC of 0.80 compared with an AUC
of 0.75 for the baseline parsimonious model (p<
0.0001). The AUCs of the enhanced models were
also superior to those of the parsimonious models for
prediction of diabetes in the 1- or 2-year gap periods
(Table 2). Similarly, PPV values for the top 100, 1000,
and 10,000 beneficiaries predicted to be diabetic were
between 1.6 and 2.3 times higher in the enhanced
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model than the parsimonious model (Table 2). Our
models are highly specific, and the sensitivity increases
to 21% at the 10,000 level. The ROC curves corre-
sponding to the enhanced versus parsimonious models
for different gap periods are included in Figure 2. Pre-
dicting onset of diabetes further into the future, with a
larger gap between data collection and the evaluation
window, is (expectedly) less accurate.

Table 3 shows the top predictive variables for imme-
diate onset of diabetes. Most top variables are directly
related to prediabetes or diabetes, including history
of prediabetes or related conditions, elevated glucose,
elevated HbA1c, and Metformin medication utilization.
However, other variables, such as history of sleep
apnea, acute bronchitis, hypothyroidism, and anemia,
as well as high serum alanine aminotransferase, have
significant predictive value for immediate confirmation
of onset of diabetes. Measures of healthcare utilization
also contribute to the prediction of onset of type 2 di-
abetes. Expanded lists of the laboratory values and dis-
ease history that are predictive of diabetes diagnosis are
included in Supplementary Tables S1 and S2. Notewor-
thy is the difference in the OR within the young,
middle-aged, and older population for different fac-
tors. Specifically, the OR of all risk factors is higher
when the factor is observed in younger individuals.
OR of factors such as elevated HbAlc and glucose in
the young population is almost thrice that of the middle-
aged population, and almost four times that of the
older population.

Table 4 shows the top predictive variables for diabe-
tes onset within 1 to 3 years after the data collection
period (gap=1). Not surprisingly, previously identi-
fied risk factors such as high glucose, high HbAlc, obe-
sity, and impaired fasting glucose emerged as strongly
predictive of diabetes diagnosis. Interestingly, 1 year

Table 2. Performance for prediction of diabetes, using patient data through December 31, 2008, within the different

prediction windows

Top 100° Top 1000° Top 10,000°
Prediction window Model AUC*®  Sensitivity Specificity PPV  Sensitivity Specificity PPV  Sensitivity Specificity PPV
2009-2011 Parsimonious model  0.75 0.001 0.999 0.12 0.014 0.996 0.10 0.114 0.967 0.08
Enhanced model 0.80 0.005 0.999 0.37 0.033 0.997 0.23 0.216 0.969 0.15
2010-2012 Parsimonious model 0.74 0.001 0.999 0.06 0.014 0.996 0.07 0.117 0.962 0.06
Enhanced model 0.78 0.002 0.999 0.15 0.035 0.996 0.17 0.203 0.963 0.10
2011-2013 Parsimonious model 0.72 0.0009 0.999 0.03 0.012 0.995 0.04 0.118 0.957 0.03
Enhanced model 0.76 0.003 0.999 0.10 0.024 0.995 0.07 0.195 0.958 0.06

“Differences in AUC significant with p<0.0001 in this validation set.
PAll reported values have 95% Cl of less than 0.002.

AUC, area under curve; Cl, confidence interval; PPV, positive predictive value.
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before the confirmed diagnosis of diabetes, shortness of
breath, esophageal reflux, and acute bronchitis also
have significant predictive value. Healthcare usage var-
iables such as need for emergency room service and
routine child health examination are also significant
in assessment of risk of impending diabetes. Expanded
lists of predictive laboratory values and disease history
are included in Supplementary Tables S3 and S4. The
top predictive variables for the model with the 2-year
gap are included in Supplementary Table S5.

Discussion
Related work on machine learning and data mining for
early detection of type 2 diabetes can be categorized
into three groups. The first group of related works
uses the classic clinical diabetes risk prediction stud-
ies,2>72%3% which focus on large cohorts, but rely on
small feature sets and logistic regression models. Our
parsimonious baseline is based on these models. The
second group uses classical diabetes risk factors as fea-
tures, but focuses on comparing machine learning
models such as Support Vector Machines,*> CART,**
and decision trees® to combine the features.**™*
These models do not consider the potential impact of
using a broader set of features. In contrast, our work
uses a broad, rich, set of features together with a linear
model trained with L1-regularized logistic regression.
Although it is beyond the scope of the current study
to explore in detail, we found that this was better
than or comparable with carefully tuned random for-
ests,”’ gradient-boosted decision trees,”’ and neural
networks®> on our dataset.

The third group of related work considers a broader
set of features, which can be utilized to predict out-
comes such as heart failure'>>> and the occurrence of

urgent care events and uncontrolled Alc for diabetic
patients.® These related works also use (variants of) lo-
gistic regression for predictive modeling. Our approach
is related to this group in terms of the generalizability
of the method to multiple outcomes. However, we
focus on diabetes onset as the outcome and provide
an in-depth analysis of the selected features. Moreover,
we investigate differences in risk factors at multiple
stages before the disease onset. The temporal aspect
of the risk factors, both in terms of early or late risk
factors,*® and also the temporal trends for variables
such as laboratory measurements®*>> are less stud-
ied. Temporal features are often studied for a hand-
ful of variables at a time, whereas in our study, we
utilize basic temporal patterns on all 1000 laboratory
measurements.

The present study is the largest study to date of early
detection of type 2 diabetes, both in terms of cohort
size and the number of variables considered. Model fit-
ting and validation were conducted using more than
42,000 variables. Hundreds of variables were selected
as predictive of future type 2 diabetes. We demonstrated
that compared with using a parsimonious set of vari-
ables, using big data and machine learning improves
PPVs by 67% and AUC by 6.6%. The resulting models
are already deployed at Independence Blue Cross for
the purpose of intervention allocation.

Our risk models do not require additional®® tests,
screening, or chart reviews beyond what is readily
available in health records and administrative data.
This allows our approach to scale to millions of bene-
ficiaries on a regular schedule. The reported sensitivity,
specificity, and positive predictive values for our mod-
els can provide guidance for intervention targeting. For
focused high-cost interventions, our method is able to
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PREDICTION OF TYPE 2 DIABETES FROM CLAIMS DATA

(with 37% positive predictive value compared with only
12% using the parsimonious baseline) select the most
vulnerable. When the interventions are more scalable,
they could be performed on the 10,000 most vulnerable
individuals, with a sensitivity of 21.6% in a validation set
of more than 220,000 beneficiaries compared with only
11.4% using traditional risk prediction methods.

Our study is strengthened by a derived definition for
diabetes, which was found to have a highly accurate
definition of diabetes in our dataset. This is an impor-
tant strength as prior studies of predictive modeling for
diabetes have primarily relied on screening tests and
clinical evaluation on specific clinical visits.** ">

Our models include both known risk factors for dia-
betes and less established risk factors, many of which
are likely surrogates for established risk factors. Many
of the strongest predictors in our models describe predi-
abetes or elements of the metabolic syndrome, including
elevated HbA1c, high blood sugar, and hyperlipidemia
(Tables 3 and 4). While obesity was found to be predic-
tive of diabetes in our model (Tables 3 and 4), it was
likely underreported in the insurance claims as only
6% of beneficiaries were documented as obese, despite
35% of the American population being defined as
obese according to the CDC.”” As a result, some less tra-
ditional risk factors found in our models may be acting
as partial surrogates for obesity and its risk on the devel-
opment of diabetes. For instance, esophageal reflux,
which is documented for 12.6% of our population
(Table 4), is known to have a high prevalence in obesity
and may act as a surrogate for obesity in our data.”®>’
Similarly, sleep apnea and markers of inflammation
such as leukocytosis have known associations with met-
abolic syndrome (Tables 3 and 4).°* We also found other
makers of cardiovascular disease, such as coronary ath-
erosclerosis (Supplementary Table S2), hypertension
(Tables 3 and 4), and kidney disease (Table 4 and Sup-
plementary Tables S1-S3), to be predictive of diabetes
onset. Although these conditions may be complications
of diabetes, they also may be risk factors or diagnosed
before diabetes onset.’*

A number of risk factors related to liver disease were
included in the predictive model for diabetes, includ-
ing elevated alanine aminotransferase (Table 3 and
Supplementary Tables S1 and S3) and the presence
of chronic liver disease (Table 3 and Supplementary
Tables S2 and S4). Elevated liver function tests are
early manifestations of insulin resistance®” and are de-
tectable earlier than fasting glycemia.®* Nonalcoholic
fatty liver disease (Supplementary Tables S2 and S4)
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has a well-documented association with both obesity
and diabetes.®®> Our method also selects hypothyroid-
ism (Table 3 and Supplementary Table S4), which
has known causal effects for insulin resistance,’® as
predictive. Our model also included a number of car-
diopulmonary findings, including acute bronchitis
(Tables 3 and 4), shortness of breath (Table 4), and
chest X-rays (Tables 3 and 4), as predictive for diabe-
tes. While we are unable to make any direct associated
link, these factors may reflect association between car-
diovascular diseases such as heart failure with subse-
quent diabetes or may point to an association that
individuals with acute pulmonary conditions may be
at risk for the development of diabetes.

Our study has several limitations. First, there may be
more missing data among beneficiaries who have only
recently enrolled in the health insurance plan or who
have little healthcare utilization, reducing the sensitiv-
ity of the model among these beneficiaries. A possible
solution would be to complement the administrative
data with data gathered by other sources, such as by
mobile health applications. Second, the study popula-
tion may not be representative of the whole of the
United States as 80% of the studied population resides
in the greater Philadelphia, which may contribute both
demographic and behavioral bias. However, we em-
phasize that our models can be easily retrained with
other insurance companies’ or providers’ data. Third,
since our outcome is derived from clinical and utiliza-
tion data, we are unable to determine if a person has
existing, but undiagnosed and untreated, type 2 diabe-
tes. Due to the lack of a true gold standard for diabetes
in our population, we were unable to confirm the sen-
sitivity of our diabetes definition. Fourth, our parsimo-
nious model used obesity as a surrogate measure for
BMI. We found that the obesity diagnosis was likely
underreported in our dataset, which may have limited
the accuracy of the parsimonious model. Nonetheless,
such limitations are common in claims datasets and
highlight why previous models may not always be prac-
tical for population-level risk assessment.

Conclusion

Machine learning on administrative data provides a
powerful new tool for population health and clinical
hypothesis generation for risk factor discovery, en-
abling population-level risk assessment that may help
guide interventions to the most at-risk population.
Using the approach described herein, it is possible to
identify patients likely to develop type 2 diabetes with
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at least 67% better PPV compared with traditional risk
assessment methods for 0-2 years into the future. The
extensive set of risk factors recovered by our method,
for different stages of disease onset, can be a basis for
additional hypothesis testing in medical research labo-
ratories. Finally, our approach is general enough to be
applied to different outcomes of interest, to build pre-
dictive models for different years into the future, and to
analyze the risk factors as they emerge at different
stages before the onset.
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