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Causal	inference	from	observational	data
•Patient	“Anna”	comes	in	with	hypertension

• Asian,	54,	history	of	diabetes,	blood	pressure	150/95,	…	
•Which	of	the	treatments	𝑡 will	cause	Anna	to	have	lower	
blood	pressure?
• Calcium	channel	blocker	(𝑡 = 1)
• ACE	inhibitor	(𝑡 = 0)

•Dataset	of	observational	data
from	many	patients:	
medications,	blood	tests,	
past	diagnoses,	demographics	…



Causal	inference	from	observational	data

How	to	best	use	
observational	data for	

individual-level	
causal	inference?	



Causal	inference	from	observational	data:	Job	training
•1,000	unemployed	persons
• Job	training	program	with	capacity	of	100

• Training	(𝑡 = 1)
• No	training	(𝑡 = 0)

•Who	should	get	job	training?
• For	which	persons	will	job	training	
have	the	most	impact?

•Observational	data	about	
thousands	of	people:
job	history,	job	training,	education,
skills,	demographics…



•Dataset	of	features,	actions	and	
outcomes

•We	do	not	control	the	actions
•We	do	not	know	the	model	generating	
the	actions

Observational	data



Causal	inference	from	observational	data	and	
reinforcement	learning

•Robot	on	the	sideline,	learning	by	observing	other	
robots	playing	robot	football

•Sideline-robot	does	not	know	the	playing-robots’	
internal	model	

•Form	of	off-policy		
learning,	learning	from
demonstration
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•Patient	“Anna”	comes	in	with	hypertension
• Asian,	54,	history	of	diabetes,	blood	pressure	150/95,	…	

•Which	of	the	treatments	𝑡	will	lower	Anna’s	blood	pressure?
• Calcium	channel	blocker	(𝑡 = 1)
• ACE	inhibitor	(𝑡 = 0)

•Dataset	of	observational	data
medications,	blood	tests,	
past	diagnoses,	demographics	…

Causal	inference	from	observational	data:	Medication

Build	a	regression	model	from
patient	features	and	treatment
decisions	to	blood	pressure



predicted	BP

predicted	BP

• Build	regression	model	from	patient	features	and	treatment	decision	to	
blood	pressure	(BP)	using	our	observational	data

• Input:

• Compare

Regression	modeling	

Anna’s	features	𝑥 𝑡 = 1

Anna’s	features	𝑥

Output:

−

=
?

𝑡 = 0



𝑙𝑜𝑠𝑠(ℎ 𝑥, 𝑡 , 𝑦)… …

𝑡
treatment

𝑥
features

Regression	modeling	

ℎ



𝒍𝒐𝒔𝒔(𝒉 𝒙, 𝒕 , 𝒚)… …

𝑡
treatment

𝑥
features

Regression	modeling	

ℎ



𝑙𝑜𝑠𝑠(ℎ 𝑥, 𝑡 , 𝑦)… …

ℎ

𝒕
treatment

𝑥
features

Regression	modeling	



Not	supervised	learning!

•This	is	not	a	classic	supervised	learning	problem
•Supervised	learning	is	optimized	to	predict	outcome,	
not	to	differentiate	the	influence	of	𝑡 = 1 vs.	𝑡 = 0

•What	if	our	high-dimensional	model	threw	away	the	
feature	of	treatment	𝑡?

•Maybe	there’s	confounding:	
younger	patients	tend	to	get	medication	𝑡 = 1
older	patients	tend	to	get	medication	𝑡 = 0



Potential	outcomes	(Rubin	&	Neyman)
For	every	sample	𝑥 ∈ 𝒳,	and	treatment	𝑡 ∈ {0,1},	there	
is	a	potential	outcome	𝑌=|𝑥

Blood	pressure	had	they	received	treatment	1

Blood	pressure	had	they	received	treatment	0 𝑌?|𝑥

𝑌@|𝑥

Individual	treatment	effect			𝑰𝑻𝑬 𝒙 := 𝔼 𝒀𝟏 − 𝒀𝟎|𝒙
We	observe	only	one	potential	outcome,
and	not	at	random!



Example	– patient	blood	pressure	(BP)

Factual	(observed)	set
(age,	gender,	
treatment)

BP	after	
medication

(40, F, 1) 𝑌@ = 140
(40, M, 1) 𝑌@ = 145
(65, F, 0) 𝑌? = 170
(65, M, 0) 𝑌? = 175
(70, F, 0) 𝑌? = 165

Features:	𝑥	 = 	 (𝑎𝑔𝑒, 𝑔𝑒𝑛𝑑𝑒𝑟),		𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡: 	𝑡 ∈ {0,1}
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Factual	(observed)	set
(age,	gender,	
treatment)

BP	after	
medication

(40, F, 1) 𝑌@ = 140
(40, M, 1) 𝑌@ = 145
(65, F, 0) 𝑌? = 170
(65, M, 0) 𝑌? = 175
(70, F, 0) 𝑌? = 165

Counterfactual set
(age,	gender,	
treatment)

BP	after	
medication

(40, F, 0) 𝑌? =?
(40, M, 0) 𝑌? =?
(65, F, 1) 𝑌? =?
(65, M, 1) 𝑌@ =?
(70, F, 1) 𝑌@ =?

Prediction	set

• Closely	related	to	unsupervised	
domain	adaptation

• No	samples	from	the	test	set
• Can’t	perform	cross-validation!
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Our	Work
•New	neural-net	based	representation	learning	
algorithm	with	explicit	regularization	for	
counterfactual	estimation

•State-of-the-art	on	previous	benchmark	and	on
real-world	causal	inference	task

•First	error	bound	for	estimating	individual	
treatment	effect	(ITE)



Features
𝑥

Control,	𝑡 = 0
Treated,	𝑡 = 1

When	is	this	problem	easier?	
Randomized	Controlled	Trials	

Randomized	
treatment	à
counterfactual	and	
factual	have	
identical	
distributions



Features
𝑥

Control,	𝑡 = 0
Treated,	𝑡 = 1

When	is	this	problem	harder?	
Observational	study

Treatment	
assignment	non-
randomà
counterfactual	and	
factual	have	
different	
distributions



Learning	more	balanced	representations

Features
𝑥

Control,	𝑡 = 0
Treated,	𝑡 = 1



Learning	more	balanced	representations

Features
𝑥

Representation
Φ(𝑥)

Control,	𝑡 = 0
Treated,	𝑡 = 1



Learning	more	balanced	representations

𝑝=VWX=WY(𝑥)

Features
𝑥

Representation
Φ(𝑥)

Control,	𝑡 = 0
Treated,	𝑡 = 1



Learning	more	balanced	representations

𝑝Z[\=V[](𝑥)

Features
𝑥

Representation
Φ(𝑥)

Control,	𝑡 = 0
Treated,	𝑡 = 1



Learning	more	balanced	representations

𝑝^=VWX=WY(𝑥)

Features
𝑥

Representation
Φ(𝑥)

Control,	𝑡 = 0
Treated,	𝑡 = 1



Learning	more	balanced	representations

𝑝^Z[\=V[](𝑥)

Features
𝑥

Representation
Φ(𝑥)

Control,	𝑡 = 0
Treated,	𝑡 = 1



𝑙𝑜𝑠𝑠(ℎ 𝑥, 𝑡 , 𝑌=)… …

ℎ

𝑡
treatment

𝑥
features

Naïve	Neural	Network	for	estimating	
individual	treatment	effect	(ITE)



𝑙𝑜𝑠𝑠(ℎ Φ, 𝑡 , 𝑌=)… …Φ

𝑡

Representation	
Φ

Prediction	
ℎ

𝑡
treatment

𝑥
features

Vanilla	Neural	Network	for	
Counterfactual	Regression	(CFR)



Balancing	Neural	Network	for	
Counterfactual	Regression	(CFR)

𝑙𝑜𝑠𝑠(ℎ Φ, 𝑡 , 𝑌=)… …Φ

𝑡

𝑑𝑖𝑠𝑡(𝑝^=VWX=WY, 𝑝^Z[\=V[])

Representation	
Φ

𝑡
treatment

𝑥
features

Prediction	
ℎ



…

𝑑𝑖𝑠𝑡(𝑝^=VWX=WY, 𝑝^Z[\=V[])

Representation	
Φ

Prediction	
ℎ

𝑑𝑖𝑠𝑡 𝑝^=VWX=WY, 𝑝^Z[\=V[] :

MMD	distance	(Gretton et	al.	2012)
Wasserstein	distance	(Villani	2008,	Cuturi 2013)



…

𝑑𝑖𝑠𝑡(𝑝^=VWX=WY, 𝑝^Z[\=V[])

Representation	
Φ

Prediction	
ℎ

Inspired	by	Domain	Adversarial	Networks	(Ganin et	al.,	2016):

(source domain, target domain) à
(treated population, control population)

𝑑𝑖𝑠𝑡 𝑝^=VWX=WY, 𝑝^Z[\=V[] :

MMD	distance	(Gretton et	al.	2012)
Wasserstein	distance	(Villani	2008,	Cuturi 2013)
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Evaluating	counterfactual	inference
Train-test	paradigm	breaks
No	observations	from	the	counterfactual	“test”	set
Can’t	do	cross-validation	for	hyper-parameter	selection

1)	Simulated	data:	IHDP	(Hill,	2011)
2)	Real	data:	National	Supported	Work	study	(LaLonde,	1986,	
Todd	&	Smith	2005)	
The	effect	of	job	training	on	employment and	income
Observational	study	with	a	randomized	controlled	trial	subset



Evaluating	counterfactual	inference
Train-test	paradigm	breaks
No	observations	from	the	counterfactual	“test”	set
Can’t	do	cross-validation	for	hyper-parameter	selection

1)	Simulated	data:	IHDP	(Hill,	2011)
2)	Real	data:	National	Supported	Work	study	(LaLonde,	1986,	
Todd	&	Smith	2005)	
The	effect	of	job	training	on	employment and	income
Observational	study	with	a	randomized	controlled	trial	subset
3212	samples,	8	features incl.	education	and	previous	income



Evaluating	models	with	randomized	controlled	trials	data
• We	can’t	directly	evaluate	individual	treatment	effect	(ITE)	error	
because	we	never	see	the	counterfactual

• Every	ITE	estimator	implies	a	policy
𝐼𝑇𝐸c 𝑥 = 	𝑓(𝑥)

Policy	𝜋f,g:𝒳 → {0,1}
Treat	all	persons	𝑥	with	𝑓 𝑥 > 𝜆, for	threshold	𝜆

• Every	policy	𝜋	has	a	policy-value:	

𝔼 𝑌@ 𝜋 𝑥 = 1 𝑝 𝜋 = 1 + 𝔼 𝑌? 𝜋 𝑥 = 0 𝑝 𝜋 = 0



Randomized	Controlled	Trial Policy	𝜋

Agreement

Evaluating	model	performance	using	randomized	data
(off-policy	evaluation)

Control,	𝑡 = 0
Treated,	𝑡 = 1

Policy	value:	𝔼 𝑌@ 𝜋 𝑥 = 1 𝑝 𝜋 = 1 + 𝔼 𝑌? 𝜋 𝑥 = 0 𝑝 𝜋 = 0



• National	Supported	Work:	randomized	trial	embedded	in	an	observational	study
• Policy	risk	estimated	on	randomized	subsample
• CFR-2-2:	our	model,	with	2 layers	before	Φ	and	2	layers	after	Φ

Method Policy
risk	(std)

ℓ@-reg. logistic	regression 0.23±0.00
BART	(Chipman,	George &	McCulloch,	2010) 0.24±0.01
Causal	forests	(Wager	& Athey,	2015) 0.17±0.006
CFR-2-2 Vanilla 0.16±0.02
CFR-2-2	Wasserstein 0.15±0.02
CFR-2-2	MMD 0.13±0.02

Experimental	results	– National	Supported	Work	Study

Lower
is	

better



Experimental	results	– National	Supported	Work	Study

Lower
is	

better

Causal	forest
CFR	2-2	Vanilla
CFR	2-2	MMD
Random	Policy
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Theory	of	causal	effect	inference

•Standard	results	in	statistics:	asymptotic	rate	of	
convergence	to	true	average	effect
•Assumptions:	we	know	true	model	(consistency)

•Our	result:	generalization	error	bound	for	
individual-level	inference
•Assumptions:	true	model	lies	within	large	model	
family,	e.g.	bounded	Lipschitz	functions



Theorem (informal) 
• Let 𝑌m=

^,n(𝑥) = ℎ(Φ 𝑥 , 𝑡) for 𝑡 = 0,1
• 𝐼𝑇𝐸c ^,n(𝑥):= 𝑌m@

^,n(𝑥) − 𝑌m?
^,n(𝑥)

• If “strong ignorability” holds, and if 𝑑𝑖𝑠𝑡 is “nice” with respect to 
the true potential outcomes 𝑌? and 𝑌@	and the representation Φ, 
then for all normalized Φ	and ℎ:

𝔼o 𝑒𝑟𝑟𝑜𝑟 𝐼𝑇𝐸c ^,p(𝑥) ≤
2 s 𝔼o,= 𝑒𝑟𝑟𝑜𝑟 𝑌=t

^,p(𝑥) + 𝑑𝑖𝑠𝑡(𝑝^=VWX=WY, 𝑝^Z[\=V[])
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Expected	error	in	
estimating	ITE
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Theorem (informal) 

“supervised	learning	generalization	error”
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^,p(𝑥) + 𝑑𝑖𝑠𝑡(𝑝^=VWX=WY, 𝑝^Z[\=V[])
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Theorem (informal) 
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• Let 𝑌m=
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Theorem (informal) 

We	minimize	upper	bound	with	
respect	to	𝛷	and		ℎ
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Summary
•Estimating	Individual	Treatment	Effect	is	different	
from	supervised	learning	
• Bears	strong	connections	to	domain	adaptation

•We	give	new	representation	learning	algorithms	for	
estimating	Individual	Treatment	Effect
• Use	the	MMD	and	Wasserstein	distributional	distances

• Experiments	show	our	method	is	competitive	or	
better	than	state-of-the-art

•We	give	a	new	error	bound for	estimating	Individual	
Treatment	Effect
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