Learning representations for counterfactual inference

Fredrik D. Johansson^{*2}, Uri Shalit^{*1}, David Sontag¹ *Equal Contribution

NIPS 2016 Deep Learning Symposium December 2016

Talk today about two papers

- Fredrik D. Johansson, Uri Shalit, David Sontag "Learning Representations for Counterfactual Inference" ICML 2016
- Uri Shalit, Fredrik D. Johansson, David Sontag "Estimating individual treatment effect: generalization bounds and algorithms" arXiv:1606.03976

Code: <u>https://github.com/clinicalml/cfrnet</u>

Causal inference from observational data

- Patient "Anna" comes in with hypertension
 - Asian, 54, history of diabetes, blood pressure 150/95, ...
- Which of the treatments *t* will cause Anna to have lower blood pressure?
 - Calcium channel blocker (t = 1)
 - ACE inhibitor (t = 0)
- Dataset of *observational data* from many patients: medications, blood tests, past diagnoses, demographics ...

Causal inference from observational data

- Patient "Anna" comes in with hypertension
 - Asian, 54
- Which of t
 blood pres
 Calcium c
 ACE inhib

How to best use observational data for individual-level causal inference?

50/95, ... o have lower

 Dataset of *observational data* from many patients: medications, blood tests, past diagnoses, demographics ...

Causal inference from observational data: Job training

- 1,000 unemployed persons
- Job training program with capacity of 100
 - Training (t = 1)
 - No training (t = 0)
- Who should get job training?
 - For which persons will job training have the most impact?
- Observational data about thousands of people: job history, job training, education, skills, demographics...

Observational data

- Dataset of features, actions and outcomes
- We do not control the actions
- We do not know the model generating the actions

Causal inference from observational data and reinforcement learning

- Robot on the sideline, learning by observing other robots playing robot football
- Sideline-robot does not know the playing-robots' internal model
- Form of off-policy learning, learning from demonstration

Outline

Background

Model

Experiments

Theory

Outline

Background

Model

Experiments

Theory

Causal inference from observational data: Medication

- Patient "Anna" comes in with hypertension
 - Asian, 54, history of diabetes, blood pressure 150/95, ...
- Which of the treatments t will lower Anna's blood pressure?
 - Calcium channel blocker (t = 1)
 - ACE inhibitor (t = 0)
- Dataset of *observational data* medications, blood tests, past diagnoses, demographics ...

Build a regression model from patient features and treatment decisions to blood pressure

Regression modeling

• Build regression model from patient features and treatment decision to blood pressure (BP) using our observational data

• Input:

Not supervised learning!

- This is not a classic supervised learning problem
- Supervised learning is optimized to predict outcome, not to differentiate the influence of t = 1 vs. t = 0
- What if our high-dimensional model threw away the feature of treatment *t*?
- Maybe there's **confounding**: younger patients tend to get medication t = 1older patients tend to get medication t = 0

Potential outcomes (Rubin & Neyman) For every sample $x \in \mathcal{X}$, and treatment $t \in \{0,1\}$, there is a potential outcome $Y_t | x$

Blood pressure had they received treatment 1 $Y_1|x$

Blood pressure had they received treatment 0 $Y_0 | x$

Individual treatment effect $ITE(x) := \mathbb{E}[Y_1 - Y_0|x]$

We observe only one potential outcome, and not at random!

Example – patient blood pressure (BP) Features: $x = (age, gender), treatment: t \in \{0,1\}$

•	•
(age, gender,	BP after
treatment)	medication
(40, F, 1)	$Y_1 = 140$
(40, M, 1)	$Y_1 = 145$
(65, F, 0)	$Y_0 = 170$
(65, M, 0)	$Y_0 = 175$
(70, F, 0)	$Y_0 = 165$

Factual (observed) set

Example – patient blood pressure (BP) Features: $x = (age, gender), treatment: t \in \{0,1\}$

Factual (observed) set		Counterfa	Counterfactual set		
(age, gender, treatment)	BP after medication	(age, gender, treatment)	BP after medication		
(40, F, 1)	$Y_1 = 140$	(40, F, <mark>0</mark>)	$Y_0 = ?$		
(40, M, 1)	$Y_1 = 145$	(40, M, <mark>0</mark>)	$Y_0 = ?$		
(65, F, 0)	$Y_0 = 170$	(65, F, <mark>1</mark>)	$Y_1 = ?$		
(65, M, 0)	$Y_0 = 175$	(65, M, <mark>1</mark>)	$Y_1 = ?$		
(70, F, 0)	$Y_0 = 165$	(70, F, 1)	$Y_1 = ?$		

Example – patient blood pressure (BP)

Features: x = (age, gender), treatm Prediction set

Factual (observed) set		
(age, gender, treatment)	BP after medication	
(40, F, 1)	$Y_1 = 140$	
(40, M, 1)	$Y_1 = 145$	
(65, F, 0)	$Y_0 = 170$	
(65, M, 0)	$Y_0 = 175$	
(70, F, 0)	$Y_0 = 165$	

Counterfactual set			
(age, gen	der,	BP after	
treatme	nt)	medication	
(40, F,	0)	$Y_0 = ?$	
(40, M,	0)	$Y_0 = ?$	
(65, F,	1)	$Y_1 = ?$	
(65, M,	1)	$Y_1 = ?$	
(70, F,	1)	$Y_1 = ?$	

•	 Closely related to unsupervised domain adaptation 				
•	No samples from the test set			Prediction set	
•	Can't perform	cross-validati	on! Counterfactual set		
	(age, gender, treatment)	BP after medication	(aູ tr	ge, gender, reatment)	BP after medication
	(40, F, 1)	$Y_1 = 140$	(4	0, F, <mark>0</mark>)	$Y_0 = ?$
	(40, M, 1)	$Y_1 = 145$	(4	0, M, <mark>0</mark>)	$Y_0 = ?$
	(65, F, 0)	$Y_0 = 170$	(6	5, F, <mark>1</mark>)	$Y_0 = ?$
	(65, M, 0)	$Y_0 = 175$	(6	5, M, 1)	$Y_1 = ?$
	(70, F, 0)	$Y_0 = 165$	(7	0, F, 1)	$Y_1 = ?$

Outline

Background

Model

Experiments

Theory

Outline

Background

Model

Experiments

Theory

Our Work

- •New neural-net based **representation learning** algorithm with explicit regularization for counterfactual estimation
- State-of-the-art on previous benchmark and on real-world causal inference task
- First error bound for estimating individual treatment effect (ITE)

When is this problem easier? Randomized Controlled Trials

Randomized treatment → counterfactual and factual have identical distributions

• Control,
$$t = 0$$

Treated,
$$t = 1$$

When is this problem harder? Observational study

Treatment assignment nonrandom-> counterfactual and factual have different distributions

• Control,
$$t = 0$$

Freated,
$$t = 1$$

Features

 ${\mathcal X}$

• Control, t = 0

Treated, t = 1

Naïve Neural Network for estimating individual treatment effect (ITE)

Outline

Background

Model

Experiments

Theory

Outline

Background

Model

Experiments

Theory

Evaluating counterfactual inference

Train-test paradigm breaks No observations from the counterfactual "test" set Can't do cross-validation for hyper-parameter selection

1) Simulated data: IHDP (Hill, 2011)

2) Real data: National Supported Work study (LaLonde, 1986, Todd & Smith 2005)

The effect of job training on <u>employment</u> and income

Observational study with a randomized controlled trial subset

Evaluating counterfactual inference

Train-test paradigm breaks No observations from the counterfactual "test" set Can't do cross-validation for hyper-parameter selection

1) Simulated data: IHDP (Hill, 2011)

2) Real data: National Supported Work study (LaLonde, 1986, Todd & Smith 2005)

The effect of job training on <u>employment</u> and income

Observational study with a *randomized controlled trial subset* 3212 samples, 8 features incl. education and previous income

Evaluating models with randomized controlled trials data

- We can't directly evaluate individual treatment effect (ITE) error because we never see the counterfactual
- Every ITE estimator implies a policy $\widehat{ITE}(x) = f(x)$

Policy $\pi_{f,\lambda}$: $\mathcal{X} \to \{0,1\}$ Treat all persons x with $f(x) > \lambda$, for threshold λ

• Every policy π has a policy-value:

 $\mathbb{E}[Y_1|\pi(x) = 1]p(\pi = 1) + \mathbb{E}[Y_0|\pi(x) = 0]p(\pi = 0)$

Evaluating model performance using randomized data (off-policy evaluation)

Policy value: $\mathbb{E}[Y_1|\pi(x) = 1]p(\pi = 1) + \mathbb{E}[Y_0|\pi(x) = 0]p(\pi = 0)$

Experimental results – National Supported Work Study

- National Supported Work: randomized trial embedded in an observational study
- Policy risk estimated on randomized subsample
- CFR-2-2: our model, with 2 layers before Φ and 2 layers after Φ

Method	Policy risk (std)	
ℓ_1 -reg. logistic regression	0.23±0.00	1
BART (Chipman, George & McCulloch, 2010)	0.24±0.01	Lower
Causal forests (Wager & Athey, 2015)	0.17±0.006	IS
CFR-2-2 Vanilla	0.16±0.02	better
CFR-2-2 Wasserstein	0.15±0.02	
CFR-2-2 MMD	0.13 ±0.02	

Experimental results – National Supported Work Study

Outline

Background

Model

Experiments

Theory

Outline

Background

Model

Experiments

Theory of causal effect inference

- •Standard results in statistics: asymptotic rate of convergence to true average effect
 - •Assumptions: we know true model (consistency)
- •Our result: generalization error bound for individual-level inference
 - Assumptions: true model lies within large model family, e.g. bounded Lipschitz functions

- Let $\hat{Y}_t^{\Phi,h}(x) = h(\Phi(x), t)$ for t = 0, 1
- $I\widehat{TE}^{\Phi,h}(x) := \widehat{Y}_1^{\Phi,h}(x) \widehat{Y}_0^{\Phi,h}(x)$

 If "strong ignorability" holds, and if *dist* is "nice" with respect to the true potential outcomes Y₀ and Y₁ and the representation Φ, then for all normalized Φ and h:

$$\mathbb{E}_{x}\left[error\left(\widehat{ITE}^{\Phi,h}(x)\right)\right] \leq 2 \cdot \mathbb{E}_{x,t}\left[error\left(\widehat{Y}_{t}^{\Phi,h}(x)\right)\right] + dist(p_{\Phi}^{treated}, p_{\Phi}^{control})$$

- Let $\hat{Y}_{t}^{\Phi,h}(x) = h(\Phi(x),t)$ for t = 0,1
- $\widehat{ITE}^{\Phi,h}(x) := \widehat{Y}_1^{\Phi,h}(x) \widehat{Y}_0^{\Phi,h}(x)$

• If "strong *Expected error in estimating ITE* , and if *dist* is "nice" with respect to Y_0 and Y_1 and the representation Φ , then for a $\mathbb{E}_x \left[error \left(I \widehat{T} E^{\Phi,h}(x) \right) \right] \leq \mathbb{E}_{x,t} \left[error \left(\widehat{Y}_t^{\Phi,h}(x) \right) \right] + dist(p_{\Phi}^{treated}, p_{\Phi}^{control})$

- Let $\hat{Y}_t^{\Phi,h}(x) = h(\Phi(x), t)$ for t = 0, 1
- $I\widehat{TE}^{\Phi,h}(x) := \widehat{Y}_1^{\Phi,h}(x) \widehat{Y}_0^{\Phi,h}(x)$

 If "strong ignorability" holds, and if *dist* is "nice" with respect to the true potential outcomes Y₀ and Y₁ and the representation Φ, then for all normalized Φ and h:

$$\mathbb{E}_{x}\left[error\left(\widehat{ITE}^{\Phi,h}(x)\right)\right] \leq 2 \cdot \mathbb{E}_{x,t}\left[error\left(\widehat{Y}_{t}^{\Phi,h}(x)\right)\right] + dist(p_{\Phi}^{treated}, p_{\Phi}^{control})$$

"supervised learning generalization error"

- Let $\hat{Y}_t^{\Phi,h}(x) = h(\Phi(x), t)$ for t = 0, 1
- $I\widehat{TE}^{\Phi,h}(x) := \widehat{Y}_1^{\Phi,h}(x) \widehat{Y}_0^{\Phi,h}(x)$

 If "strong ignorability" holds, and if *dist* is "nice" with respect to the true potential outcomes Y₀ and Y₁ and the representation Φ, then for all normalized Φ and h:

$$\mathbb{E}_{x}\left[error\left(\widehat{ITE}^{\Phi,h}(x)\right)\right] \leq 2 \cdot \mathbb{E}_{x,t}\left[error\left(\widehat{Y}_{t}^{\Phi,h}(x)\right)\right] + dist(p_{\Phi}^{treated}, p_{\Phi}^{control}),$$

Distance between Φ -induced distributions

- Let $\hat{Y}_{t}^{\Phi,h}(x) = h(\Phi(x),t)$ for t = 0,1
- $I\widehat{TE}^{\Phi,h}(x) := \widehat{Y}_1^{\Phi,h}(x) \widehat{Y}_0^{\Phi,h}(x)$

We minimize upper bound with respect to Φ and h

$$\mathbb{E}_{x}\left[error\left(\widehat{ITE}^{\Phi,h}(x)\right)\right] \leq 2 \cdot \mathbb{E}_{x,t}\left[error\left(\widehat{Y}_{t}^{\Phi,h}(x)\right)\right] + dist(p_{\Phi}^{treated}, p_{\Phi}^{control})$$

Summary

- Estimating Individual Treatment Effect is different from supervised learning
 - Bears strong connections to domain adaptation
- We give new representation learning algorithms for estimating Individual Treatment Effect
 - Use the MMD and Wasserstein distributional distances
- Experiments show our method is competitive or better than state-of-the-art
- We give a new error bound for estimating Individual Treatment Effect

Acknowledgments: Justin Chiu (FAIR), Marco Cuturi (ENSAE / CREST), Jennifer Hill (NYU), Aahlad Manas (NYU), Sanjong Misra (U. Chicago), Esteban Tabak (NYU) and Stefan Wager (Columbia)

Thank you!

- Fredrik D. Johansson, Uri Shalit, David Sontag *"Learning Representations for Counterfactual Inference"* ICML 2016
- Uri Shalit, Fredrik D. Johansson, David Sontag "Estimating individual treatment effect: generalization bounds and algorithms" arXiv:1606.03976