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Talk today about two papers

* Fredrik D. Johansson, Uri Shalit, David Sontag

“Learning Representations for Counterfactual Inference”
ICML 2016

* Uri Shalit, Fredrik D. Johansson, David Sontag
“Estimating individual treatment effect: generalization

bounds and algorithms”
arXiv:1606.03976

Code: https://github.com/clinicalml/cfrnet




Causal inference from observational data

* Patient “Anna” comes in with hypertension
* Asian, 54, history of diabetes, blood pressure 150/95, ...

 Which of the treatments t will cause Anna to have lower
blood pressure?

* Calcium channel blocker (t = 1)
e ACE inhibitor (t = 0)

* Dataset of observational data
from many patients:
medications, blood tests,
past diagnoses, demographics ...




Causal inference from observational data

How to best use
observational data for

individual-level
causal inference?




Causal inference from observational data: Job training

* 1,000 unemployed persons

* Job training program with capacity of 100
* Training (t = 1)
* No training (t = 0)
* Who should get job training?
* For which persons will job training
have the most impact?

* Observational data about
thousands of people:
job history, job training, education,
skills, demographics...




Observational data

* Dataset of features, actions and
outcomes

 We do not control the actions

* We do not know the model generating
the actions



Causal inference from observational data and

reinforcement learning

* Robot on the sideline, learning by observing other
robots playing robot football

*Sideline-robot does not know the playing-robots’
internal model

* Form of off-policy
learning, learning from
demonstration
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Causal inference from observational data: Medication
* Patient “Anna” comes in with hypertension
e Asian, 54, history of diabetes, blood pressure 150/95, ...

* Which of the treatments t will lower Anna’s blood pressure?
* Calcium channel blocker (t = 1)
* ACE inhibitor (t = 0)

* Dataset of observational data

medications, blood tests,
past diagnoses, demographics ...

Build a regression model from
patient features and treatment
decisions to blood pressure




Regression modeling

* Build regression model from patient features and treatment decision to
blood pressure (BP) using our observational data

* Input:
Output:
Anna’s features x t = predicted BP
Anna’s features x t =0  Predicted BP

* Compare ?
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Not supervised learning!

* This is not a classic supervised learning problem

* Supervised learning is optimized to predict outcome,
not to differentiate the influenceof t = 1vs.t =0

* What if our high-dimensional model threw away the
feature of treatment t?

* Maybe there’s confounding:
younger patients tend to get medicationt = 1
older patients tend to get medicationt = 0



Potential outcomes (Rubin & Neyman)

For every sample x € X, and treatment t € {0,1}, there
is a potential outcome Y;|x

Blood pressure had they received treatment 1 Y;|x

Blood pressure had they received treatment O Yo|x

Individual treatment effect ITE(x):= E|Y1 — Y|x]

We observe only one potential outcome,
and not at random!




Example — patient blood pressure (BP)

Features: x = (age, gender), treatment: t € {0,1}

Factual (observed) set

(age, gender, BP after
treatment) medication

(40, F, 1) Y; = 140

(40, M, 1) Y; = 145
(65, F, 0) Y, = 170
(65, M, 0) Y, = 175
(70, F, 0) Y, = 165




Example — patient blood pressure (BP)

Features: x

(age, gender), treatment: t € {0,1}

Factual (observed) set

Counterfactual set

(age, gender, BP after
treatment) medication
(40, F, 1) Y, = 140
(40, M, 1) Y, = 145
(65, F, 0) Yo =170
(65, M, 0) Yo =175
(70, F, 0) Yo = 165

(age, gender, BP after
treatment) medication
(40, F, 0) Yy =7
(40, M, 0) Yy =7
(65, F, 1) Y; =7
(65, M, 1) Y, =7
(70, F, 1) Y, =?




Example — patient blood pressure (BP)

Prediction set

Counterfactual set

Features: x = (age, gender), treat

Factual (observed) set

(age, gender, BP after (age, gender, BP after
treatment) medication treatment) medication
(40, F, 1) Y, = 140 (40, 9) Yy =7
(40, M, 1) Y, = 145 (40, Yy =7
(65, F, 0) Yo =170 (65, 1) Y, =7
(65, M, 0) Yo =175 (65, Y, =7
(70, F, 0) Yo = 165 (70, Y, =?




Closely related to unsupervised
domain adaptation

No samples from the test set Prediction set
Can’t perform cross-validation! |counterfactual set

(age, gender, BP after (age, gender, BP after
treatment) medication treatment) medication
(40, F, 1) Y, = 140 (40, F, 0) Yo =7
(40, M, 1) Y, = 145 (40, M, ©0) Yy =2
(65, F, 0) Yo =170 (65, F, 1) Yy =7
(65, M, 0) Yo =175 (65, M, 1) Y, =7
(70, F, 0) Yo = 165 (70, F, 1) Y, =
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Our Work

*New neural-net based representation learning
algorithm with explicit regularization for
counterfactual estimation

*State-of-the-art on previous benchmark and on
real-world causal inference task

*First error bound for estimating individual
treatment effect (ITE)



When is this problem easier?
Randomized Controlled Trials
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When is this problem harder?
Observational study

Treatment

assignment non- .. O
random-> .} ” O

counterfactual and o 09O
factual have

different Features
distributions X

® Control, t =0
® Treated, t = 1



Learning more balanced representations

Features
X

® Control, t =0
® Treated, t = 1



Learning more balanced representations
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Learning more balanced representations
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Learning more balanced representations
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Learning more balanced representations
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Naive Neural Network for estimating
individual treatment effect (ITE)
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Vanilla Neural Network for
Counterfactual Regression (CFR)

Representation Prediction
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Balancing Neural Network for
Counterfactual Regression (CFR)
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MMD distance (Gretton et al. 2012)
Wasserstein distance (Villani 2008, Cuturi 2013)

treated .,control

dist(pe , P



. treated ..control),
dlst(pq, , Do ;

MMD distance (Gretton et al. 2012)
Wasserstein distance (Villani 2008, Cuturi 2013)

Inspired by Domain Adversarial Networks (Ganin et al., 2016):

(source domain, target domain) =2
(treated population, control population)

treated .,control

dist(pe , P
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Evaluating counterfactual inference

Train-test paradigm breaks
No observations from the counterfactual “test” set

Can’t do cross-validation for hyper-parameter selection

1) Simulated data: IHDP (Hill, 2011)

2) Real data: National Supported Work study (LaLonde, 1986,
Todd & Smith 2005)

The effect of job training on employment and income
Observational study with a randomized controlled trial subset




Evaluating counterfactual inference

Train-test paradigm breaks
No observations from the counterfactual “test” set

Can’t do cross-validation for hyper-parameter selection

1) Simulated data: IHDP (Hill, 2011)

2) Real data: National Supported Work study (LaLonde, 1986,
Todd & Smith 2005)

The effect of job training on employment and income

Observational study with a randomized controlled trial subset
3212 samples, 8 features incl. education and previous income




Evaluating models with randomized controlled trials data

* We can’t directly evaluate individual treatment effect (ITE) error
because we never see the counterfactual

* Every ITE estimator implies a policy
ITE(x) = f(x)

Policy 7t 5: X' — {0,1}
Treat all persons x with f(x) > A, for threshold A

* Every policy  has a policy-value:

E[Y;|(x) = 1]p(r = 1) + E[Yp|m(x) = 0]p( = 0)



Evaluating model performance using randomized data
(off-policy evaluation)

Randomized Controlled Trial Policy T
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Policy value: E[Y;|t(x) = 1]p(r = 1) + E[Yy|n(x) = 0]p(r = 0)



Experimental results — National Supported Work Study

* National Supported Work: randomized trial embedded in an observational study
* Policy risk estimated on randomized subsample

* CFR-2-2: our model, with 2 layers before ® and 2 layers after ®

£,-reg. logistic regression 0.23+0.00

. Lower
BART (Chipman, George & McCulloch, 2010) 0.24+0.01 .
Causal forests (Wager & Athey, 2015) 0.17+0.006 15
CFR-2-2 Vanilla 0.16:0.02 better
CFR-2-2 Wasserstein 0.15+0.02

CFR-2-2 MMD 0.13+0.02



Experimental results — National Supported Work Study
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Theory of causal effect inference

eStandard results in statistics: asymptotic rate of
convergence to true average effect

* Assumptions: we know true model (consistency)

*Our result: generalization error bound for
individual-level inference

* Assumptions: true model lies within large model
family, e.g. bounded Lipschitz functions
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* If “strong ignorability” holds, and if dist is “nice” with respect to
the true potential outcomes Y, and Y; and the representation @,
then for all normalized ® and h:
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“supervised learning generalization error”
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* If “strong ignorability” holds, and if dist is “nice” with respect to
the true potential outcomes Y, and Y; and the representation @,
then for all normalized ® and h:
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Summary

* Estimating Individual Treatment Effect is different
from supervised learning
* Bears strong connections to domain adaptation

* We give new representation learning algorithms for
estimating Individual Treatment Effect

e Use the MMD and Wasserstein distributional distances

* Experiments show our method is competitive or
better than state-of-the-art

* We give a new error bound for estimating Individual
Treatment Effect
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