Complexity of Inference in Latent Dirichlet Allocation

David Sontag (NYU)

Joint work with Daniel Roy (Cambridge)

March 7, 2012

Latent Dirichlet allocation (LDA)

• **Topic models** are powerful tools for exploring large data sets and for making inferences about the content of documents

 Many applications in information retrieval, document summarization, and classification

• LDA is one of the simplest and most widely used topic models

Generative model for a document in LDA

() Sample the document's **topic distribution** θ (aka topic vector)

 $\theta \sim \text{Dirichlet}(\alpha_{1:T})$

where the $\{\alpha_t\}_{t=1}^T$ are fixed hyperparameters. Thus θ is a distribution over T topics with mean $\theta_t = \alpha_t / \sum_{t'} \alpha_{t'}$

2 For i = 1 to N, sample the **topic** z_i of the *i*'th word

$$z_i | \theta \sim \theta$$

 \bigcirc ... and then sample the actual **word** w_i from the z_i 'th topic

$$w_i | z_i, ... \sim \beta_{z_i}$$

where $\{\beta_t\}_{t=1}^T$ are the *topics* (a fixed collection of distributions on words)

Generative model for a document in LDA

• Sample the document's **topic distribution** θ (aka topic vector) $\theta \sim \text{Dirichlet}(\alpha_{1:T})$

where the $\{\alpha_t\}_{t=1}^T$ are hyperparameters. The Dirichlet density is:

 \odot ... and then sample the actual **word** w_i from the z_i 'th topic

 $w_i | z_i, \ldots \sim \beta_{z_i}$

where $\{\beta_t\}_{t=1}^T$ are the *topics* (a fixed collection of distributions on words)

Example of using LDA

(Blei, Introduction to Probabilistic Topic Models, 2011)

David Sontag (NYU)

Complexity of Inference in LDA

March 7, 2012 6 / 19

Probabilistic inference in LDA (this talk)

• MAP word-topic assignment (discrete optimization, classification) $\max_{z_{1:N}} p(z_{1:N}|w_{1:N})$ (For any $\alpha > 0$)

	# topics in MAP assignment	Complexity	Intuition
Most common → setting	Small	Easy	First choose topic sizes, then match words to topics
	Large	NP-hard	Reduction from set packing

• MAP topic distribution (dimensionality reduction, information retrieval) $\max_{\theta} p(\theta | w_{1:N})$

	Dirichlet hyper- parameters	Complexity	Intuition
Most common setting →	$\alpha_t \ge 1$	Easy	Maximizing concave function
	$\alpha_t < 1$	NP-hard	Reduction from set cover

• Sample topic distribution (useful for learning, capturing uncertainty) $\sim p(\theta|w_{1:N})$

Dirichlet hyper-parameters	Complexity	Intuition
$\alpha_t \geq 1$	Easy	Log-concave distribution
$\alpha_t\approx 0$	NP-hard	Reduction from set cover

What this talk is **not** about

 This talk is not about learning, i.e. the task of finding the topic-word distributions:

politics .0100		religion .0500	<u>sports</u> .0105
president .0095		hindu .0092	baseball .0100
obama .0090		judiasm .0080	soccer .0055
washington .0085		ethics .0075	basketball .0050
religion .0060		buddhism .0016	football .0045

$$\beta_t = \left\{ p(w \mid z = t) \right\}$$

- Learning in LDA is also a very interesting question (and open), but is of a different nature:
 - Possible to succeed in learning but still have difficulty with inference
 - For example, often reasonable to assume that there are *some* documents in corpora that are generated from a **single** topic

MAP word-topic assignment – $\max_{z_{1:N}} p(z_{1:N}|w_{1:N})$

- Let n_t be the total # of words assigned to topic t, i.e. $n_t = \sum_{i=1}^N \mathbb{1}[z_i = t]$
- The conditional probability of topic assignment $z_{1:N}$ given words $w_{1:N}$ is:

$$\begin{aligned} \mathsf{Pr}(z_1, \dots, z_N | \mathbf{w}) &\propto \quad \mathsf{Pr}(\mathbf{z}) \, \mathsf{Pr}(\mathbf{w} \mid \mathbf{z}) \\ &= \quad \frac{\Gamma(\sum_t \alpha_t)}{\prod_t \Gamma(\alpha_t)} \frac{\prod_t \Gamma(n_t + \alpha_t)}{\Gamma(\sum_t \alpha_t + N)} \prod_i \mathsf{Pr}(w_i | z_i) \end{aligned}$$

- Let $I_{it} = \log \Pr(w_i | z_i = t)$ and define $x_{it} = 1[z_i = t]$
- The MAP word-topic assignment problem WORD-LDA(α) is:

$$\Phi = \max_{x_{it} \in \{0,1\}, n_t} \quad \sum_t \log \Gamma(n_t + \alpha_t) + \sum_{i,t} x_{it} l_{it}$$

subject to
$$\sum_t x_{it} = 1, \quad \sum_i x_{it} = n_t,$$

Exact maximization for small # of *effective* topics

$$\begin{split} \Phi &= \max_{\substack{x_{it} \in \{0,1\}, n_t \\ \text{subject to}}} \sum_t \log \Gamma(n_t + \alpha_t) + \sum_{i, t} x_{it} l_{it} \end{split}$$

- If topic counts n_t are known, then this is a weighted b-matching problem (solvable in polynomial time)
- Suppose τ is the # of topics in the MAP assignment and is small
- Try all $\binom{T}{\tau}$ choices for the support of **n**!

for all subsets $A \subseteq [T]$ such that $|A| = \tau$ do for all valid partitions $\mathbf{n} = (n_1, n_2, \dots, n_T)$, i.e., $n_t = 0$ for $t \notin A$ do $\Phi_{A,\mathbf{n}} \leftarrow \text{WEIGHTED-B-MATCHING}(A, \mathbf{n}, I) + \sum_t \log \Gamma(n_t + \alpha_t)$ end for end for return $\arg \max_{A,\mathbf{n}} \Phi_{A,\mathbf{n}}$

• Total running time is $O((NT)^{\tau}(N+\tau)^3)$, polynomial in N and T for fixed τ

NP-hard for large # of effective topics

- $F(n_t)$ is strictly convex for $n_t \ge 1$. Preference for larger topics
- When $\alpha < 1$, F(0) is large, giving a strong sparsity reward

NP-hard for large # of effective topics

- $F(n_t)$ is strictly convex for $n_t \ge 1$. Preference for larger topics
- When $\alpha < 1$, F(0) is large, giving a strong sparsity reward

NP-hard for large # of effective topics

• Reduction from *k*-set packing: given a collection of *k*-element sets, find largest collection of *disjoint* sets:

```
\{\bm{1},\bm{2},\bm{3}\}\ \{\bm{1},\bm{2},\bm{4}\}\ \{\bm{4},\bm{5},\bm{6}\}\ \{\bm{1},\bm{3},\bm{5}\}
```

- For some constant c > 1, NP-hard to decide whether there is a solution with n/k disjoint sets (covering *all* elements), or at most cn/k disjoint sets
- Reduction is as follows (document consists of all words):

One topic for each set $\Pr(w \mid t) = 0 \text{ if word not in set}$ $= \frac{1}{k} \text{ otherwise}$

One word for each element

• If a perfect matching exists, MAP assignment will find it (because it uses as few topics as possible)

MAP topic distribution – max_{θ} $p(\theta|w_{1:N})$

• Let
$$\psi_{it} = \Pr(w_i | z_i = t)$$
. By Bayes' rule, we have
 $p(\theta | \mathbf{w}) \propto p(\theta) \prod_i p(w_i | \theta)$
 $\propto (\prod_i \theta_t^{\alpha_t - 1}) (\prod_i \sum_i \theta_t \psi_{it})$

 Taking the log and ignoring constants, we obtain the MAP topic distribution problem:

$$\begin{array}{l} \max_{\theta} \sum_{t} (\alpha_{t} - 1) \log(\theta_{t}) + \sum_{i} \log(\sum_{t} \theta_{t} \psi_{it}) \\ \text{ubject to} \ \sum_{t} \theta_{t} = 1, \quad 0 \leq \theta_{t} \leq 1 \end{array}$$

- When $\alpha_t \geq 1$ for $t = 1 \dots T$, objective is **concave** in θ
- Can solve in polynomial time, e.g. using exponentiated gradient (Kivinen and Warmuth, 1995)
- When $\alpha_t < 1$, objective becomes degenerate left-hand side becomes ∞ for $\theta_t = 0$, overwhelming the likelihood term

S

MAP topic distribution – max_{θ} $p(\theta|w_{1:N})$

• To prevent this degeneracy, we restrict θ_t to be bounded below by ϵ . The TOPIC-LDA(ϵ, α) problem is:

$$\begin{split} \max_{\theta} & \sum_{t} (\alpha_t - 1) \log(\theta_t) + \sum_{i} \log(\sum_{t} \theta_t \psi_{it}) \\ \text{subject to } & \sum_{t} \theta_t = 1, \quad \epsilon \leq \theta_t \leq 1. \end{split}$$

- Most common scenario is $\alpha < 1$. For example, learning LDA model on corpus of NIPS abstracts with T = 200, median value is $\alpha_t = 0.01$
- Even though non-convex for $\alpha < 1$, useful approximate inference algorithms may still be obtained by performing local search
- One applicable algorithm, for example, is the Concave-Convex Procedure (Yuille and Rangarajan, 2003)

MAP topic distribution – max_{θ} $p(\theta|w_{1:N})$

$$\begin{split} \max_{\theta} & \sum_t (\alpha_t - 1) \log(\theta_t) + \sum_i \log(\sum_t \theta_t \psi_{it}) \\ \text{subject to } & \sum_t \theta_t = 1, \quad \epsilon \leq \theta_t \leq 1. \end{split}$$

- Define the dynamic range of word w_i to be $\kappa_i = \max_{t,t':\psi_{it},\psi_{it'}>0} \frac{\psi_{it}}{\psi_{it'}}$
- Let $\kappa = \max_i \kappa_i$
- Small hyperparameters encourage sparsity:

Theorem

For $\alpha < 1$, all optimal solutions to TOPIC-LDA (ϵ, α) have $\theta_t \leq (e^{\frac{1}{1-\alpha}+2})\epsilon$ or $\theta_t \geq \kappa^{-1}e^{-3/\alpha}N^{-2}T^{-1/\alpha}$.

- Thus, solving TOPIC-LDA(ε, α) corresponds to finding the non-trivial support of θ
- Motivates greedy algorithms for approximately maximizing TOPIC-LDA(ϵ, α), analogous to set cover

David Sontag (NYU)

Complexity of Inference in LDA

TOPIC-LDA(ϵ, α) is NP-hard for $\alpha < 1$ and $\epsilon = o((NT)^{-T})$

$$\begin{split} \max_{\theta} & \sum_{t} (\alpha_t - 1) \log(\theta_t) + \sum_{i} \log(\sum_{t} \theta_t \psi_{it}) \\ \text{subject to } & \sum_{t} \theta_t = 1, \quad \epsilon \leq \theta_t \leq 1. \end{split}$$

• Reduction from set cover (again, document consists of all elements):

One topic for each set $Pr(w \mid t) = 0$ if word not in set = c otherwise One word for each element

- Introduce dummy words (not in document) to force Pr(w | t) to be a constant
- Support of the MAP topic distribution θ (topics having non-negligible probability) corresponds to the minimal set cover
- Proof requires ϵ to be exponentially small in # words N and # topics T

- $\alpha_t \geq 1$: Can approximately sample from $p(\theta|w_{1:N})$ in polynomial time
 - Density is log-concave when $\alpha_t \geq 1$
 - Use algorithm from Lovasz and Vempala (2006) based on random walks
- $\alpha_t < (NT)^{-N}$: NP-hard to approximately sample from $p(\theta|w_{1:N})$
 - Reduction from set cover
 - Non-trivial posterior probability given to sparsest possible θ vectors, so set cover can be read off from marginals
 - $\bullet\,$ Would need a very large and unusual corpus to learn such a small $\alpha\,$
- **Open**: computational complexity for α constant (less than 1)

- Possible to give a poly-time approx. algorithm for MAP $p(\theta \mid \mathbf{w})$ when effective number of topics per document is constant
- $\alpha \geq 1$: MAP for $p(\mathbf{z} \mid \mathbf{w})$ NP-hard, whereas $p(\theta \mid \mathbf{w})$ easy. Why?
- Can approximately sample from $p(\mathbf{z} \mid \mathbf{w})$ in polynomial time for $\alpha \geq 1$
- Connections between inference in topic models and sparse signal recovery (see also recent work by Zhu & Xing, UAI '11)
- Motivates study of greedy algorithms for MAP inference of topic distribution, analogous to those used for set cover