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Latent Dirichlet allocation (LDA)

Topic models are powerful tools for exploring large data sets and for
making inferences about the content of documents
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Many applications in information retrieval, document summarization,
and classification
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Generative model for a document in LDA

1 Sample the document’s topic distribution θ (aka topic vector)

θ ∼ Dirichlet(α1:T )

where the {αt}Tt=1 are fixed hyperparameters. Thus θ is a distribution
over T topics with mean θt = αt/

∑
t′ αt′

2 For i = 1 to N, sample the topic zi of the i ’th word

zi |θ ∼ θ

3 ... and then sample the actual word wi from the zi ’th topic

wi |zi , ... ∼ βzi

where {βt}Tt=1 are the topics (a fixed collection of distributions on
words)
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Generative model for a document in LDA

1 Sample the document’s topic distribution θ (aka topic vector)

θ ∼ Dirichlet(α1:T )

where the {αt}Tt=1 are hyperparameters.The Dirichlet density is:

Pr(θ1, . . . , θT ) ∝
T∏

t=1

θαt−1
t

α1 = α2 = α3 =

θ1 θ2

log Pr(θ)

θ1 θ2

log Pr(θ)

α1 = α2 = α3 =
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Generative model for a document in LDA

3 ... and then sample the actual word wi from the zi ’th topic

wi |zi , ... ∼ βzi

where {βt}Tt=1 are the topics (a fixed collection of distributions on
words)
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Example of using LDA

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

Figure 1: The intuitions behind latent Dirichlet allocation. We assume that some
number of “topics,” which are distributions over words, exist for the whole collection (far left).
Each document is assumed to be generated as follows. First choose a distribution over the
topics (the histogram at right); then, for each word, choose a topic assignment (the colored
coins) and choose the word from the corresponding topic. The topics and topic assignments
in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from
data.

model assumes the documents arose. (The interpretation of LDA as a probabilistic model is
fleshed out below in Section 2.1.)

We formally define a topic to be a distribution over a fixed vocabulary. For example the
genetics topic has words about genetics with high probability and the evolutionary biology
topic has words about evolutionary biology with high probability. We assume that these
topics are specified before any data has been generated.1 Now for each document in the
collection, we generate the words in a two-stage process.

1. Randomly choose a distribution over topics.

2. For each word in the document

(a) Randomly choose a topic from the distribution over topics in step #1.

(b) Randomly choose a word from the corresponding distribution over the vocabulary.

This statistical model reflects the intuition that documents exhibit multiple topics. Each
document exhibits the topics with different proportion (step #1); each word in each document

1Technically, the model assumes that the topics are generated first, before the documents.

3

θd

z1d

zNd

β1

βT

(Blei, Introduction to Probabilistic Topic Models, 2011)
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Probabilistic inference in LDA (this talk)
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Sample topic distribution (useful for learning, capturing uncertainty)
∼ p(θ|w1:N)
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What this talk is not about

This talk is not about learning, i.e. the task of finding the topic-word
distributions:

Generative model for a document in LDA

3 ... and then sample the actual word wi from the zi’th topic

wi|zi, ... ∼ βzi

where {βt}T
t=1 are the topics (a fixed collection of distributions on

words)
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Learning in LDA is also a very interesting question (and open), but is
of a different nature:

Possible to succeed in learning but still have difficulty with inference

For example, often reasonable to assume that there are some
documents in corpora that are generated from a single topic
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MAP word-topic assignment – maxz1:N
p(z1:N |w1:N)

Let nt be the total # of words assigned to topic t, i.e. nt =
∑N

i=1 1[zi = t]

The conditional probability of topic assignment z1:N given words w1:N is:

Pr(z1, . . . , zN |w) ∝ Pr(z) Pr(w | z)

=
Γ(
∑

t αt)∏
t Γ(αt)

∏
t Γ(nt + αt)

Γ(
∑

t αt + N)

∏

i

Pr(wi |zi )

Let lit = log Pr(wi |zi = t) and define xit = 1[zi = t]

The MAP word-topic assignment problem WORD-LDA(α) is:

Φ = max
xit∈{0,1},nt

∑
t log Γ(nt + αt) +

∑
i,t xit lit

subject to
∑

t xit = 1,
∑

i xit = nt ,
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Exact maximization for small # of effective topics

Φ = max
xit∈{0,1},nt

∑
t log Γ(nt + αt ) +

∑
i,t xit lit

subject to
∑

t xit = 1,
∑

i xit = nt ,

If topic counts nt are known, then this is a weighted b-matching problem
(solvable in polynomial time)

Suppose τ is the # of topics in the MAP assignment and is small

Try all
(
T
τ

)
choices for the support of n!

for all subsets A ⊆ [T ] such that |A| = τ do
for all valid partitions n = (n1, n2, . . . , nT ), i.e., nt = 0 for t 6∈ A do

ΦA,n ←Weighted-B-Matching(A,n, l) +
∑

t log Γ(nt + αt)
end for

end for
return arg maxA,n ΦA,n

Total running time is O((NT )τ (N + τ)3), polynomial in N and T for fixed τ
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NP-hard for large # of effective topics

Φ = max
xit∈{0,1},nt

∑
t log Γ(nt + αt ) +

∑
i,t xit lit

subject to
∑

t xit = 1,
∑

i xit = nt ,
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Figure 1: (Left) A LDA instance derived from a k-set packing instance. (Center) Plot of
F (nt) = log Γ(nt + α) for various values of α. The x-axis varies nt, the number of words assigned
to topic t, and the y-axis shows F (nt). (Right) Behavior of log Γ(nt + α) as α → 0. The function
is stable everywhere but at zero, where the reward for sparsity increases without bound.

in the MAP assignment. Then, the MAP assignment x is found by solving the following
optimization problem:

max
xit∈{0,1}

�

i,t

xitlit (3)

subject to
�

t

xit = 1,
�

i

xit = n∗
t ,

which is equivalent to weighted b-matching in a bipartite graph (the words are on one side,
the topics on the other) and can be optimally solved in time O(bm3), where b = maxt n∗

t =
O(N) and m = N + T [Schrijver, 2003].

We call (n1, . . . , nT ) a valid partition when ni ≥ 0 and
�

t nt = N . Using weighted b-

matching, we can find a MAP assignment of words to topics by trying all
�
T
τ

�
= Θ(T τ )

choices of τ topics and all possible valid partitions with at most τ non-zeros.

for all subsets A ⊆ [T ] such that |A| = τ do
for all valid partitions n = (n1, n2, . . . , nT ) such that nt = 0 for t �∈ A do

ΦA,n ←Weighted-B-Matching(A,n, l) +
�

t log Γ(nt + αt)
end for

end for
return arg maxA,n ΦA,n

There are at most Nτ−1 valid partitions with τ non-zero counts. For each of these, we solve
the b-matching problem to find the most likely assignment of words to topics that satisfies
the cardinality constraints. Thus, the total running time is O((NT )τ (N + τ)3). This is
polynomial when the number of topics τ appearing in a document is a constant.

2.2 Inference is NP-hard for large numbers of topics

In this section, we show that probabilistic inference is NP-hard in the general setting where a
document may have a large number of topics in its MAP assignment. Let WORD-LDA(α)
denote the decision problem of whether Φ > V (see Eq. 2) for some V ∈ R, where the
hyperparameters αt = α for all topics. We consider both α < 1 and α ≥ 1 because, as
shown in Figure 1, the optimization problem is qualitatively different in these two cases.

Theorem 1. WORD-LDA(α) is NP-hard for all α > 0.

Proof. Our proof is a straightforward generalization of the approach used by Halperin and
Karp [2005] to show that the minimum entropy set cover problem is hard to approximate.

The proof is done by reduction from k-set packing (k-SP), for k ≥ 3. In k-SP, we are given
a collection of k-element sets over some universe of elements Σ with |Σ| = n. The goal
is to find the largest collection of disjoint sets. There exists a constant c < 1 such that
it is NP-hard to decide whether a k-SP instance has (i) a solution with n/k disjoint sets
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2.2 Inference is NP-hard for large numbers of topics

In this section, we show that probabilistic inference is NP-hard in the general setting where a
document may have a large number of topics in its MAP assignment. Let WORD-LDA(α)
denote the decision problem of whether Φ > V (see Eq. 2) for some V ∈ R, where the
hyperparameters αt = α for all topics. We consider both α < 1 and α ≥ 1 because, as
shown in Figure 1, the optimization problem is qualitatively different in these two cases.

Theorem 1. WORD-LDA(α) is NP-hard for all α > 0.

Proof. Our proof is a straightforward generalization of the approach used by Halperin and
Karp [2005] to show that the minimum entropy set cover problem is hard to approximate.

The proof is done by reduction from k-set packing (k-SP), for k ≥ 3. In k-SP, we are given
a collection of k-element sets over some universe of elements Σ with |Σ| = n. The goal
is to find the largest collection of disjoint sets. There exists a constant c < 1 such that
it is NP-hard to decide whether a k-SP instance has (i) a solution with n/k disjoint sets

3

F (nt) is strictly convex for nt ≥ 1. Preference for larger topics

When α < 1, F (0) is large, giving a strong sparsity reward
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Figure 1: (Left) A LDA instance derived from a k-set packing instance. (Center) Plot of
F (nt) = log Γ(nt + α) for various values of α. The x-axis varies nt, the number of words assigned
to topic t, and the y-axis shows F (nt). (Right) Behavior of log Γ(nt + α) as α → 0. The function
is stable everywhere but at zero, where the reward for sparsity increases without bound.
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hyperparameters αt = α for all topics. We consider both α < 1 and α ≥ 1 because, as
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There are at most Nτ−1 valid partitions with τ non-zero counts. For each of these, we solve
the b-matching problem to find the most likely assignment of words to topics that satisfies
the cardinality constraints. Thus, the total running time is O((NT )τ (N + τ)3). This is
polynomial when the number of topics τ appearing in a document is a constant.

2.2 Inference is NP-hard for large numbers of topics

In this section, we show that probabilistic inference is NP-hard in the general setting where a
document may have a large number of topics in its MAP assignment. Let WORD-LDA(α)
denote the decision problem of whether Φ > V (see Eq. 2) for some V ∈ R, where the
hyperparameters αt = α for all topics. We consider both α < 1 and α ≥ 1 because, as
shown in Figure 1, the optimization problem is qualitatively different in these two cases.

Theorem 1. WORD-LDA(α) is NP-hard for all α > 0.

Proof. Our proof is a straightforward generalization of the approach used by Halperin and
Karp [2005] to show that the minimum entropy set cover problem is hard to approximate.

The proof is done by reduction from k-set packing (k-SP), for k ≥ 3. In k-SP, we are given
a collection of k-element sets over some universe of elements Σ with |Σ| = n. The goal
is to find the largest collection of disjoint sets. There exists a constant c < 1 such that
it is NP-hard to decide whether a k-SP instance has (i) a solution with n/k disjoint sets
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When α < 1, F (0) is large, giving a strong sparsity reward
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NP-hard for large # of effective topics

Reduction from k-set packing: given a collection of k-element sets, find
largest collection of disjoint sets:

{1, 2, 3} {1, 2, 4} {4, 5, 6} {1, 3, 5}

For some constant c > 1, NP-hard to decide whether there is a solution with
n/k disjoint sets (covering all elements), or at most cn/k disjoint sets

Reduction is as follows (document consists of all words):

NP-hard for large # of effective topics

Reduction from k-set packing: given a collection of k-element sets, find
largest collection of disjoint sets:

{1, 2, 3} {1, 2, 4} {4, 5, 6} {1, 3, 5}

For some constant c > 1, NP-hard to decide whether there is a solution with
n/k disjoint sets (covering all elements), or at most cn/k disjoint sets

Each element gives a word, each set gives a topic. ptimal topic assignment
arranged to be nonoverlapping (hence packing)

w1 w2 w3 w4 w5 w6

t1 t2 t3 t4 t5

A LDA instance derived from a k-set packing instance
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One topic for each set

One word for each element

Pr(w | t) = 0 if word not in set

=
1

k
otherwise

If a perfect matching exists, MAP assignment will find it (because it uses as
few topics as possible)
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MAP topic distribution – maxθ p(θ|w1:N)

Let ψit = Pr(wi |zi = t). By Bayes’ rule, we have

p(θ|w) ∝ p(θ)
∏

i

p(wi | θ)

∝ (
∏

t

θαt−1
t )(

∏

i

∑

t

θtψit)

Taking the log and ignoring constants, we obtain the MAP topic distribution
problem:

maxθ
∑

t(αt − 1) log(θt) +
∑

i log(
∑

t θtψit)

subject to
∑

t θt = 1, 0 ≤ θt ≤ 1

When αt ≥ 1 for t = 1 . . .T , objective is concave in θ

Can solve in polynomial time, e.g. using exponentiated gradient (Kivinen
and Warmuth, 1995)

When αt < 1, objective becomes degenerate – left-hand side becomes ∞ for
θt = 0, overwhelming the likelihood term
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MAP topic distribution – maxθ p(θ|w1:N)

To prevent this degeneracy, we restrict θt to be bounded below by ε. The
TOPIC-LDA(ε, α) problem is:

maxθ
∑

t(αt − 1) log(θt) +
∑

i log(
∑

t θtψit)

subject to
∑

t θt = 1, ε ≤ θt ≤ 1.

Most common scenario is α < 1. For example, learning LDA model on
corpus of NIPS abstracts with T = 200, median value is αt = 0.01

Even though non-convex for α < 1, useful approximate inference algorithms
may still be obtained by performing local search

One applicable algorithm, for example, is the Concave-Convex Procedure
(Yuille and Rangarajan, 2003)
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MAP topic distribution – maxθ p(θ|w1:N)

max
θ

∑
t(αt − 1) log(θt) +

∑
i log(

∑
t θtψit)

subject to
∑

t θt = 1, ε ≤ θt ≤ 1.

Define the dynamic range of word wi to be κi = maxt,t′:ψit ,ψit′>0
ψit

ψit′

Let κ = maxi κi

Small hyperparameters encourage sparsity:

Theorem

For α < 1, all optimal solutions to TOPIC-LDA(ε, α) have θt ≤
(
e

1
1−α+2

)
ε or

θt ≥ κ−1e−3/αN−2T−1/α.

Thus, solving TOPIC-LDA(ε, α) corresponds to finding the non-trivial
support of θ

Motivates greedy algorithms for approximately maximizing
TOPIC-LDA(ε, α), analogous to set cover
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TOPIC-LDA(ε, α) is NP-hard for α < 1 and ε = o
(

(NT )−T
)

max
θ

∑
t(αt − 1) log(θt) +

∑
i log(

∑
t θtψit)

subject to
∑

t θt = 1, ε ≤ θt ≤ 1.

Reduction from set cover (again, document consists of all elements):

NP-hard for large # of effective topics

Reduction from k-set packing: given a collection of k-element sets, find
largest collection of disjoint sets:

{1, 2, 3} {1, 2, 4} {4, 5, 6} {1, 3, 5}

For some constant c > 1, NP-hard to decide whether there is a solution with
n/k disjoint sets (covering all elements), or at most cn/k disjoint sets

Each element gives a word, each set gives a topic. ptimal topic assignment
arranged to be nonoverlapping (hence packing)

w1 w2 w3 w4 w5 w6

t1 t2 t3 t4 t5

A LDA instance derived from a k-set packing instance
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One topic for each set

One word for each element

Pr(w | t) = 0 if word not in set

= c otherwise

Introduce dummy words (not in document) to force Pr(w | t) to be a
constant

Support of the MAP topic distribution θ (topics having non-negligible
probability) corresponds to the minimal set cover

Proof requires ε to be exponentially small in # words N and # topics T
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Sampling from the posterior

αt ≥ 1: Can approximately sample from p(θ|w1:N) in polynomial time

Density is log-concave when αt ≥ 1
Use algorithm from Lovasz and Vempala (2006) based on random walks

αt < (NT )−N : NP-hard to approximately sample from p(θ|w1:N)

Reduction from set cover
Non-trivial posterior probability given to sparsest possible θ vectors, so
set cover can be read off from marginals
Would need a very large and unusual corpus to learn such a small α

Open: computational complexity for α constant (less than 1)
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Discussion

Possible to give a poly-time approx. algorithm for MAP p(θ | w)
when effective number of topics per document is constant

α ≥ 1: MAP for p(z | w) NP-hard, whereas p(θ | w) easy. Why?

Can approximately sample from p(z | w) in polynomial time for α ≥ 1

Connections between inference in topic models and sparse signal
recovery (see also recent work by Zhu & Xing, UAI ’11)

Motivates study of greedy algorithms for MAP inference of topic
distribution, analogous to those used for set cover
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