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1 Mapping from M{0,1} to cut polytope

Given a graphG = (V,E) andS ⊆ V , let δ(S) denote the vector ofRE defined for(i, j) ∈ E by,

δ(S)ij = 1 if |S ∩ {i, j}| = 1, and 0 otherwise. (1)

In other words, the setS gives the cut inG which separates the nodes inS from the nodes inV \ S;
δ(S)ij = 1 when i and j have different assignments. Thecut polytopeprojected ontoG is the
convex hull of the above cut vectors:

CUT2(G) =
{ ∑

S⊆Vn

λSδ(S) |
∑

S⊆Vn

λS = 1 andλS ≥ 0 for all S ⊆ Vn

}
. (2)

The cut polytope for the complete graph onn nodes is denoted simply by CUT2
n . LetM{0,1} denote

the marginal polytope for Ising models, which we will call thebinary marginal polytope:

M{0,1} :=
{
µ ∈ Rd | ∃p(x) s.t.µi = Ep[xi], µij = Ep[xixj ]

}
(3)

Suppose that we are given a MRF defined on the graphG = (V,E). To give the mapping between
the cut polytope and the binary marginal polytope we need to construct thesuspension graphof G,
denoted∇G. Let∇G = (V ′, E′), whereV ′ = V ∪{n+1} andE′ = E∪{(i, n+1) | i ∈ V }. The
suspension graph is necessary because a cut vectorδ(S) does not uniquely define an assignment to
the vertices inG – the vertices inS could be assigned either 0 or 1. Adding the extra node allows us
to remove this symmetry.
Definition 1. The linear bijectionξ from µ ∈ M{0,1} to x ∈ CUT2(∇G) is given byxi,n+1 = µi

for i ∈ V andxij = µi + µj − 2µij for (i, j) ∈ E.

Thus, the marginal polytope for binary pairwise MRFs1 is isomorphic to the cut polytope [2, 1, 3].

2 Projection graphs

Theorem. The projectionΨπ given by thesingle projection graphGπ is surjective.

Proof. SinceΨπ is a linear map, it suffices to show that, for every extreme pointµ′ ∈M{0,1}, there
exists someµ ∈ M such thatΨπ(µ) = µ′. The extreme points ofM andM{0,1} correspond one-
to-one with assignmentsx ∈ χn and{0, 1}n, respectively. Given an extreme pointµ′ ∈ M{0,1},
let x′(µ′) be its corresponding assignment. For each variablei, choose somes ∈ χi such that
πi(s) = x′(µ′)i, and assignxi(µ′) = s. The existence of suchs is guaranteed by our construction
of π (surjective). Definingµ = E[φ(x(µ′))] ∈M, we have thatΨπ(µ) = µ′.

2.1 Example

Consider thesingle projection graphshown in Figure 3 and the corresponding cycle inequality (see
eqns. 7-9 in paper), whereF is illustrated by cut edges. The following is an example of an extreme
point of LOCAL(G) which is violated by this cycle inequality:

µi;0 = µi;3 = .5, µj;1 = µj;2 = .5, µm;1 = µm;3 = .5, µk;2 = µk;3 = .5
µij;02 = µij;31 = .5, µim;01 = µim;33 = .5 (4)

µjk;13 = µjk;22 = .5, µmk;13 = µmk;32 = .5
1In the literature on cuts and metrics (e.g. [3]), this is called thecorrelation polytope, denoted by COR2n .
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Figure 1: Illustration of projection from the marginal polytope of a non-binary MRF to the binary
marginal polytope of a different graph. All valid inequalities for the binary marginal polytope yield
valid inequalities for the marginal polytope, though not all will be facets. These projections map
vertices to vertices, but the map will not always be onto.

Figure 2: Illustration of thek−projection graphfor one edge(i, j) ∈ E, whereχi = {0, 1, 2}. The
nodes and (some of) the edges are labeled with the values given to them by the linear mapping, e.g.
µi;0 or µij;02.

Figure 3: Illustration of thesingle projection graphGπ for a square graph, where all variables have
states{0, 1, 2, 3}. The three oblique lines indicate an invalid cut, since every cycle must be cut an
even number of times.
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3 Complexity

A natural question that is raised in this work is whether it is possible to efficiently test whether a
point is in the marginal polytope.

Theorem. The following decision problem is NP-hard: given a vectorµ ∈ RVn∪En
+ , decide if

µ ∈M.

Proof. Using the linear bijectionξ, the problem forM{0,1} is equivalent to the decision problem for
CUT2

n (the same as̀1-embeddability). The latter is shown to be NP-complete in [3]. Membership
in M{0,1} trivially reduces to membership inM.
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