
Approximate Inference in Graphical Models using LP

Relaxations

by

David Alexander Sontag

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

c© David Alexander Sontag, MMX. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

September 3, 2010

Certified by. .
Tommi S. Jaakkola

Professor
Thesis Supervisor

Accepted by .
Terry P. Orlando

Chairman, Department Committee on Graduate Students

Approximate Inference in Graphical Models using LP Relaxations
by

David Alexander Sontag

Submitted to the Department of Electrical Engineering and Computer Science
on September 3, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Graphical models such as Markov random fields have been successfully applied to a wide
variety of fields, from computer vision and natural language processing, to computational
biology. Exact probabilistic inference is generally intractable in complex models having
many dependencies between the variables.

We present new approaches to approximate inference based on linear programming (LP)
relaxations. Our algorithms optimize over the cycle relaxation of the marginal polytope,
which we show to be closely related to the first lifting of the Sherali-Adams hierarchy, and
is significantly tighter than the pairwise LP relaxation.

We show how to efficiently optimize over the cycle relaxation using a cutting-plane
algorithm that iteratively introduces constraints into the relaxation. We provide a criterion
to determine which constraints would be most helpful in tightening the relaxation, and give
efficient algorithms for solving the search problem of finding the best cycle constraint to
add according to this criterion.

By solving the LP relaxations in the dual, we obtain efficient message-passing algorithms
that, when the relaxations are tight, can provably find the most likely (MAP) configuration.
Our algorithms succeed at finding the MAP configuration in protein side-chain placement,
protein design, and stereo vision problems.

Thesis Supervisor: Tommi S. Jaakkola
Title: Professor

2

Acknowledgments

First and foremost, let me thank my adviser, Tommi Jaakkola, for guiding me through my
graduate studies. He has been encouraging and supportive of my research, from beginning
to end. I went into his office with nearly every crazy idea that I had (there were many),
and he listened patiently and helped me formalize them into concrete directions to pursue,
many of which made it into this thesis. He has tremendous insight into what approaches
will succeed.

My thesis committee consisted of Tommi Jaakkola, David Karger, and Amir Globerson.
All three provided valuable feedback on this thesis. It was David who, in my second year of
graduate school, pointed me to the literature on cutting plane algorithms and polyhedral
combinatorics. Thesis aside, working with David has been very rewarding. Each of our
meetings results in a long list of new ideas to think about.

Amir Globerson has been both a good friend and a close colleague. I was very lucky
to have started working with him early in my graduate career. He has been an important
adviser, not just on research topics, but on how to balance work and family life, and many
other things (for example, he helped me figure out how to propose to my wife).

I would also like to thank my collaborators Talya Meltzer and Yair Weiss. Working with
Talya has been a lot of fun. I first met Yair when he showed up at Tommi’s reading group
when I was presenting a paper. When I found out who he was, I became very nervous!
Turns out he’s a nice guy. His support during my job search was invaluable.

There are many colleagues, faculty, and friends that have helped me immeasurably
throughout my graduate studies. A few deserve special recognition. My officemate through-
out all of graduate school, Dan Roy, was always there for me, whether it was helping me
move between apartments or bringing a poster to NIPS when it didn’t finish printing in
time for my own flight. Our conversations were some of the highlights of my time at MIT.

Graduate school wouldn’t have been the same without Krzysztof Onak, Alex Andoni,
and Mihai Patrascu. Besides our many fun social activities, they were always a useful sound-
ing board when tackling a theoretical question. The same goes for many other members of
the theory group at MIT.

There were many other faculty members at MIT that helped shape my research di-
rections. Particular thanks go to Regina Barzilay, Bonnie Berger, Michael Collins, Michel
Goemans, Piotr Indyk, Leslie Kaelbling, and Tomas Lozano-Perez. Thanks also to my of-
ficemate Christy Sauper for so happily bearing with me these last couple of years, and to
Tommi’s group: John Barnett, Neha Gupta, Patrik Hoyer, Patrycja Missiuro, Jason Rennie,
Russ Salakhutdinov, and Yu Xin.

I would also like to acknowledge the National Science Foundation who provided me
with a graduate fellowship supporting the first three years of my Ph.D., and Google for a
graduate fellowship that supported my last year of graduate studies.

Finally, my biggest thanks go to my loving and supportive family. This thesis is dedi-
cated to my wife, Violeta. Thank you for sharing this journey with me.

3

Contents

1 Introduction 8
1.1 Examples of Graphical Models . 9

1.1.1 Stereo Vision . 9
1.1.2 Protein Design . 10

1.2 The Challenge of Inference . 10
1.3 Inference using Linear Programming Relaxations 11
1.4 Summary of Contributions . 12

2 Background 15
2.1 Markov Random Fields . 15

2.1.1 Ising Models . 16
2.2 The Marginal Polytope . 17

2.2.1 Maximum a Posteriori Estimation 18
2.2.2 Variational Inference . 18

2.3 Inference as Combinatorial Optimization . 19
2.4 Belief Propagation . 21
2.5 Linear Programming Relaxations . 22

2.5.1 Pairwise Relaxation . 22
2.5.2 Higher-Order Relaxations . 25

2.6 Cutting-Plane Algorithms . 27

3 Tightening using the Cycle Relaxation 30
3.1 Cycle Relaxation . 30
3.2 Cycle Inequalities . 32
3.3 Equivalent Formulations for Binary Models 33
3.4 k-ary Cycle Inequalities . 35

3.4.1 Relationship to Cycle Relaxation . 38
3.4.2 Separation Algorithm . 39
3.4.3 Experiments on Protein Side-Chain Placement 42

3.5 Related Work . 43
3.6 Discussion . 44

4 Solving LP Relaxations via Dual Decomposition 46
4.1 Dual Decomposition for LP Relaxations . 47

4.1.1 Relating the Different Dual Formulations 49
4.1.2 MPLP . 51

4.2 Coordinate Descent Algorithms . 52

4

4.3 Block Coordinate Descent using Spanning Trees 54
4.3.1 Empirical Evaluation . 57
4.3.2 A Monotone Version of TRW . 58

4.4 Primal Recovery . 59
4.5 Discussion . 62

5 Tightening LP Relaxations for MAP using Message Passing 63
5.1 MAP and its LP Relaxation . 64

5.1.1 Choosing Clusters in the LP Relaxation 65
5.2 Dual LP Relaxation . 65

5.2.1 The Generalized MPLP Algorithm 66
5.2.2 Choosing Clusters in the Dual LP Relaxation 67
5.2.3 The Dual Algorithm . 68

5.3 Related Work . 69
5.4 Experiments . 70

5.4.1 Side-Chain Prediction . 70
5.4.2 Protein Design . 71
5.4.3 Stereo Vision . 72

5.5 Bound Criterion in Sparse Graphs . 74
5.6 Discussion . 75

6 Clusters and Coarse Partitions in LP Relaxations 77
6.1 Coarsened Constraints in the Primal LP Relaxation 77
6.2 Dual LP and Message Passing Algorithm 79
6.3 Choosing the Partitionings . 81
6.4 Experiments . 83
6.5 Discussion . 85

7 Solving the Cycle Relaxation in the Dual 87
7.1 Cycle Inequalities in the Dual . 88

7.1.1 Using Cycle Inequalities within Message Passing 88
7.1.2 Separation Algorithm . 90

7.2 Separating the Cycle Relaxation . 92
7.2.1 NP-Hardness Results . 94

7.3 Discussion . 96

8 Discussion 99

A Appendix 102
A.1 Derivation of Dual of Pairwise LP Relaxation 102
A.2 Dual Coordinate Descent with Triplet Clusters 103
A.3 Derivation of Dual with Cycle Inequalities 104

5

List of Figures

1-1 Example of a graphical model used for stereopsis. 9
1-2 Example of a graphical model used for protein design. 10

2-1 Illustration of the marginal polytope of a MRF. 17
2-2 The pairwise consistency constraints. 22
2-3 Illustration of the local consistency polytope (relaxation of marginal polytope). 23
2-4 Examples of Markov random fields where the pairwise LP relaxation is known

to have integer solutions. 24
2-5 Example of a triplet cluster. 25
2-6 Illustration of the cutting-plane algorithm. 28
2-7 Discussion of which constraints to add to the relaxation. 29

3-1 Illustration of how cycle consistency can be equivalently enforced by trian-
gulating the cycle and using triplet clusters. 31

3-2 Illustration of the projection graph used to derive k-ary cycle inequalities. . 35
3-3 Illustration of the fractional point and the objective used to prove that the

k-ary cycle inequalities are strictly weaker than the cycle relaxation. 37
3-4 Algorithm for finding the most violated cycle inequality. 40
3-5 Illustration of graph used in shortest path algorithm for finding the most

violated cycle inequality. 41
3-6 Application of k-ary cycle inequalities to protein side-chain prediction. . . . 42

4-1 Sketch of the dual of the LP relaxation. 47
4-2 Monotone transformations between different representations. 49
4-3 Max-product tree block update algorithm. 54
4-4 Sequential tree block update algorithm. 56
4-5 Number of iterations to find MAP assignment in an Ising model using the

sequential tree block update algorithm. 57

5-1 The generalized MPLP updates for an LP relaxation with three node clusters. 67
5-2 Comparison of different schedules for adding clusters to tighten the LP re-

laxation on a side-chain prediction problem. 71
5-3 “Tsukuba” images used in stereopsis experiments. Also, a visualization of

the MAP assignment found by the dual algorithm and of the clusters used
in tightening the relaxation. 73

5-4 Dual objective and value of decoded integer solution for one of the reduced
“Tsukuba” stereo models. 74

5-5 Comparison of different schedules for adding squares in one of the stereo
problems. 75

6

6-1 Illustration of coarsened consistency constraints. 78
6-2 The message passing updates for solving the dual LP given in Eq. 6.7. . . 80
6-3 Comparison with algorithm from Chapter 5 for the protein design problem. 84

7-1 Illustration of dual coordinate descent step on a cycle inequality. 89

A-1 The new coordinate descent updates for an LP relaxation with three node
clusters. 104

7

Chapter 1

Introduction

In recent years, advances in science and low-cost permanent storage have resulted in the
availability of massive data sets. Together with advances in machine learning, this data has
the potential to lead to many new breakthroughs. For example, high-throughput genomic
and proteomic experiments can be used to enable personalized medicine. Large data sets
of search queries can be used to improve information retrieval. Historical climate data can
be used to understand global warming and to better predict weather. However, to take
full advantage of this data, we need models that are capable of explaining the data, and
algorithms that can use the models to make predictions about the future.

The goal of this thesis is to develop theory and practical algorithms for probabilistic
inference in very large statistical models. We focus on a class of statistical models called
graphical models that describe multivariate probability distributions which factor accord-
ing to a graph structure. Graphical models provide a useful abstraction for quantifying
uncertainty, describing complex dependencies in data while making the model’s structure
explicit so that it can be exploited by algorithms. These models have been widely applied
across diverse fields such as statistical machine learning, computational biology, statistical
physics, communication theory, and information retrieval.

For example, consider the problem of predicting the relative orientations of a protein’s
side-chains with respect to its backbone structure, a fundamental question about protein
folding. Given an appropriate energy function, the prediction can be made by finding the
side-chain configuration that has minimal energy. This is equivalently formulated as infer-
ence in a graphical model, where the distribution is given in terms of compatibility functions
between pairs of side-chains and the backbone that take into consideration attractive and
repulsive forces.

Statistical models are powerful because, once estimated, they enable us to make predic-
tions with previously unseen observations (e.g., to predict the folding of a newly discovered
protein). The key obstacle to using graphical models is that exact inference is known to be
NP-hard, or computationally intractable. Finding the most likely protein side-chain config-
uration, for example, is a difficult combinatorial optimization problem. Many applications
of graphical models have hundreds to millions of variables and long-range dependencies. To
be useful, probabilistic inference needs to be fast and accurate.

We next describe two applications of graphical models to stereopsis and protein design.
These problems will serve as running examples in the thesis of graphical models for which
we need efficient inference algorithms.

8

output: disparity!input: two images!

X2!

X1!

X3!

(Tappen and Freeman ‘03)!

Figure 1-1: Example of how graphical models can be used for computer stereo vision. On
the left we show the input, which are two images. We then construct a graphical model
where we have one node for each pixel, and edges between neighboring pixels. Finally we
perform inference in the model to find the most likely assignment of depth to the pixels,
shown on the right (see text for more detail).

1.1 Examples of Graphical Models

1.1.1 Stereo Vision

The stereopsis problem, also called stereo vision, is as follows. We are given two images
(e.g., one image coming from your left eye, and the other from your right eye), and the goal
is to determine the depth of all the objects in the image from the viewer. The depth of any
pixel is inversely proportional to its disparity, namely how much a pixel in the left image is
horizontally shifted to obtain the corresponding pixel in the right image. Calculating these
disparities is difficult for a number of reasons. First, there is a large amount of ambiguity:
for any one pixel in the left image, there may be a large number of similar looking pixels
in the right image. Second, in cases when there is occlusion, there may not even exist a
corresponding pixel. Nonetheless, humans are able to very accurately estimate depth using
stereopsis, and a natural question is whether we can automate the process on a computer.

Humans use a large amount of prior knowledge when performing stereopsis. For example,
we may expect continuity of depth for two neighboring pixels with constant color (intensity),
with changes in depth occurring near the edges of objects. We also have prior knowledge
of what objects and shapes exist in the world. For example, if we see a person sitting on a
couch, we know that the couch does not simply disappear behind the person. Thus, we have
a prior model of the world that we use in interpreting what we see. The process of taking in
evidence, accounting for prior beliefs, and making a prediction, is called inference. Humans
do it pretty well, so why not computers? Designing algorithms for automated inference is
a fundamental problem in artificial intelligence.

Graphical models provide a mathematical means of specifying prior beliefs in such a
way that we can design algorithms for automated inference. A graphical model is specified
by an undirected graph where we have one node for every random variable, and edges
denote explicit dependencies between variables. We can model stereo vision as a graphical
model (see Figure 1-1) where we have one variable per pixel location in the left image,
whose states denote the disparity to the corresponding pixel in the right image (Tappen &
Freeman, 2003). For each random variable and for each of its possible states (corresponding
to a particular disparity), the model specifies a local cost that is based on the intensity
differences between the two pixels. The model also specifies a pairwise cost that penalizes
for neighboring pixels having different disparities. The penalty is larger for pairs of pixels

9

Protein backbone!

Side-chains!

(Yanover, Meltzer, Weiss ‘06)!

X3!

X1!

X2 !

X4!

Figure 1-2: Example of a graphical model used for protein design.

that have a small intensity difference, as these are intuitively more likely to be from the
same object (with identical depth). The graphical model then uses these costs to specify a
probability distribution over the states of the random variables.

1.1.2 Protein Design

Many problems in structural biology can be formulated as graphical models. The protein
design problem is to design a protein that will fold into some desired structure. This is
important for antibody design, for improving the stability and shelf-life of drugs, and for
designing new drugs. A protein consists of a sequence of amino acids that are joined together
to form what is called the backbone structure. While part of each amino acid is used to
form the backbone, another part, called the side-chain, protrudes from the backbone. It is
the interactions between the side-chains that gives the protein its overall conformation.

We show in Figure 1-2 a simple graphical model that can be used to solve the protein
design problem (Yanover et al., 2006). Assume that we are handed the target backbone
structure, and our goal is to choose amino acids for each position along the backbone such
that the overall fold, taking into consideration the side-chain placements, is as stable as
possible. We have one variable for each position, where each state specifies both a choice of
amino acid and the angular orientation of its side-chain relative to the backbone structure.
Our model corresponds to an energy function, taking into consideration both attractive
and repulsive forces, that tells us the likelihood of any particular configuration of the side-
chains. A frequently made assumption is that the energy function decomposes as the sum
of pairwise energy terms that only consider the interaction of two side-chains at a time.
Amino acids that are far from one another with respect to the backbone are assumed not
to interact, and thus we do not have an edge between them in the graphical model.

1.2 The Challenge of Inference

To perform inference means to reason about the underlying state of the random variables
in our model. There are many different ways to quantify the model’s uncertainty in any
particular assignment. For example, one important inference problem is to compute the
marginal probability of a variable being in any one of its states, ignoring the states of all
the other variables. Computing marginals involves summing over the probability assigned
by the model to all of the exponentially many assignments to the other variables.

Another fundamental inference problem underlying many applications of graphical mod-
els is to find the most likely configuration of the probability distribution, called the max-
imum a posteriori (MAP) assignment. This is typically the inference problem that we

10

are most interested in when trying to solve the stereo vision and protein design problems
described in the previous section. This thesis is primarily focused on solving the MAP
inference problem.

The difficulty in designing algorithms for inference is in finding an efficient way to reason
about the large number of possible assignments to the variables in the model. Although
inference can be exactly performed in polynomial time for some graphical models that have
particularly simple structure, such as low treewidth, most graphical models arising from
real-world applications – for example, the stereo vision and the protein design problems
– do not have such structure. In terms of worst-case theoretical guarantees, inference is
NP-hard, and in many cases cannot even be approximated (Shimony, 1994).

However, as we motivated earlier with regards to stereo vision, it is not at all clear
that real-world inference problems are as difficult as the theoretical worst case. Humans
can estimate depth from stereo images both accurately and quickly. Although the graph
structure of a graphical model may appear complex, the parameters that define the model
may have significant structure that can be exploited to efficiently perform inference. Thus, a
key problem is to design algorithms that can take advantage of this structure in performing
inference.

The graphical models that we consider in this thesis involve discrete random variables. In
this setting, MAP inference can be cast as an integer linear program. There are many ways
to try to solve the MAP inference problem, from local search in the space of assignments,
to optimization. One particularly successful class of approximate inference algorithms are
called message passing algorithms (Yedidia et al., 2005). Message passing algorithms solve
the inference problem by passing messages along edges of the graph that summarize each
variable’s beliefs. After a node receives messages from its neighbors, it updates its belief
about the uncertainty in its own assignment, and then propagates this to the rest of the
graph. An assignment can then be decoded from the beliefs by choosing the most likely
state according to each node’s belief. The algorithms are very simple to implement and
run quickly, making them applicable to very large-scale inference tasks. However, these
algorithms can have trouble converging, and in difficult inference problems tend not to give
good results.

1.3 Inference using Linear Programming Relaxations

This thesis focuses on a class of approximate inference algorithms based on linear program-
ming (LP) relaxations. The LP relaxation is obtained by formulating inference as an integer
linear program and then relaxing the integrality constraints on the variables. The linear
program has variables for each node that specify its marginal distribution, and variables for
each edge in the graphical model that specify the edge’s marginal distribution.

Most previous linear programming approaches to approximate inference optimize over
the pairwise LP relaxation, which enforces that the edge marginals are consistent with the
single node marginals. If the solution to the pairwise LP relaxation is integral then it can
be shown to be the MAP solution. In this case, we say that the LP relaxation is tight.
Otherwise, since the relaxation optimizes over a larger solution space, its optimum provides
an upper bound on the value of the MAP assignment.

For the protein design problem, and many others, the complex model and repulsive
energy terms generally result in fractional, or inexact, solutions. These situations arise
because there are frustrated cycles where a fractional solution can obtain a higher objective

11

value by letting the edge marginals along the cycle be globally inconsistent.
We can try to avoid these fractional solutions by instead optimizing over a tighter LP re-

laxation. In particular, we would like to construct a relaxation that is close to the marginal
polytope, the exact (but very large) polyhedral formulation of the MAP inference problem.
There are well-known methods for tightening relaxations, such as the Sherali-Adams hierar-
chy of relaxations which uses cluster consistency constraints to enforce the consistency of all
edge marginals in a cluster, for all clusters of some fixed size. However, these approaches are
typically computationally infeasible to solve because they tighten the relaxation uniformly
across all of the problem. For graphical models of even moderate size, even the first lifting
of the Sherali-Adams hierarchy is too slow to optimize over. The difficulty is finding the
right trade-off between computation and accuracy. Stated another way, the whole game is
in finding the right relaxation to solve.

The LP relaxation only needs to be tight in the vicinity of the optimal solution, not for
all possible problem instances. Thus, if we had a way of efficiently searching for constraints
to use in tightening the relaxation, we could use this to tighten the relaxation only where
it matters.

In this thesis, we develop theory and algorithms that allow us to tighten the relax-
ation in a problem-specific way, using additional computation just for the hard parts of
each instance. The general approach is to iteratively tighten the relaxation, adding valid
constraints one-by-one to improve accuracy. After solving the initial LP relaxation, if the
solution is fractional, we look for constraints that are violated by the solution and add these
constraints to the relaxation. Then we re-solve using the tighter relaxation, and repeat. For
this to succeed, we need to solve the search problem of finding which constraints to add to
the relaxation. We also need a fast way of solving each of the LPs.

In summary, the key problems are: finding the right set of constraints to use in tightening
the relaxation; giving algorithms to quickly solve the LPs; and solving the search problem
of finding good constraints from within this set to use in tightening the relaxation.

1.4 Summary of Contributions

In what follows, we summarize the main contributions of this thesis, addressing many of
the key problems raised in the previous section.

1. We introduce the cycle relaxation of the marginal polytope. (Chapter 3)

The cycle relaxation is analogous to the pairwise relaxation, except that it enforces the
consistency of cycles with edges, rather than edges with nodes. The cycle relaxation
resolves frustration along cycles of the graph, and is significantly tighter than the
pairwise relaxation. For graphical models on binary variables, we show that the cycle
relaxation, the cycle inequalities, and the first lifting of the Sherali-Adams hierarchy
are all equivalent.

We give a method of deriving valid constraints for the marginal polytope from any
constraint that is known for the cut polytope. Our key realization is that valid con-
straints can be constructed by a series of projections onto the cut polytope. Using
this technique, we derive the k-ary cycle inequalities, an exponentially large class of
valid constraints for the marginal polytope of non-binary graphical models.

We show how to efficiently solve the separation problem of finding the most violated
k-ary cycle inequality, by computing shortest paths in a graph. We also show how

12

these constraints are related to, but slightly weaker than, the cycle relaxation.

2. We show how to solve the LP relaxations using message passing algorithms.
(Chapter 4)

We give a general framework for understanding and deriving message passing al-
gorithms based on block coordinate descent in the dual of the LP relaxation. We
introduce a new technique for proving that many dual formulations are equivalent, by
using monotonic transformations. We give a new interpretation of the MPLP algo-
rithm (Globerson & Jaakkola, 2007b) using this framework, providing insight into why
it solves inference problems faster than previous approaches such as max-sum diffusion
(Schlesinger et al., 1976). Also using this framework, we show how a slight change to
the TRW algorithm (Wainwright et al., 2005a) makes it monotonic and convergent.
The resulting algorithm is well-suited for distributed computation of inference.

We show how to use such combinatorial algorithms within message passing algorithms
to solve tractable subproblems. For example, a spanning tree in a graphical model
could be solved using dynamic programming. Our formulation allows one to make use
of all tractable subproblems (e.g., all spanning trees) during inference, rather than
having to fix a decomposition into subproblems before performing inference.

We also characterize when it is possible to decode the MAP assignment from the
beliefs of any LP-based message passing algorithm. Our results provide insight into
the limitations of algorithms even outside of this class. In particular, we show that
convex BP (Weiss et al., 2007), which does not explicitly solve a LP relaxation, can
only find the MAP assignment if the pairwise LP relaxation is tight.

3. We introduce a criterion to use together with message passing to decide
which clusters to use in tightening the relaxation. (Chapters 5 & 6)

We give a greedy bound minimization criterion to solve the cluster selection problem.
The criterion chooses to add the cluster that would decrease the dual objective the
most on the next coordinate-descent step. We use this within an algorithm that
iteratively tightens the LP relaxation directly in the dual LP, alternating between
message passing and choosing new clusters to add to the relaxation.

Our approach makes tightening the pairwise relaxation practical for the first time.
Surprisingly, we find that for many real-world problems, adding a few well-chosen
constraints allows us to exactly find the MAP assignment. Using these techniques,
we are able to solve protein side-chain placement, protein design, and stereo vision
problems.

We also propose a new class of cluster consistency constraints that are suitable for
graphical models where the variables have large state spaces, and show how to use
them together with this algorithm. By partitioning the state space of a cluster and
enforcing consistency only across partitions, we obtain a class of constraints that,
although less tight, are computationally feasible for large problems.

4. We solve the search problem for cycle constraints. (Chapter 7)

We give an algorithm that, in nearly linear time, finds the best cycle of arbitrary length
to add to the relaxation, according to the greedy bound criterion suggested above.
We obtain the result by considering the problem of finding a frustrated cycle using
the criterion applied to k-ary cycle inequalities, rather than consistency constraints.

13

This turns out to be substantially easier, allowing us to efficiently solve the search
problem. We show how to use this search algorithm within the message passing
algorithms described earlier.

We also consider the computational complexity of the search problem for consistency
constraints. We show that, for graphical models involving just binary variables, and
when the LP relaxation with the existing constraints has been solved to optimality, the
bound criterion for both the cycle inequalities and for the consistency constraints are
equivalent. Thus, under these conditions, we also obtain an efficient search algorithm
for consistency constraints. We show that, in all other cases, the search problem with
respect to consistency constraints is NP-hard.

14

Chapter 2

Background

2.1 Markov Random Fields

Let x ∈ χn denote an assignment to n random variables X1, . . . Xn, where each variable Xi

has k discrete states, χi = {0, 1, . . . , k − 1}. A Markov random field is a joint distribution
on X1, . . . , Xn that is specified by a vector of d real-valued sufficient statistics φl(x) for
l = 1, . . . , d, and a parameter vector θ ∈ Rd:

Pr(x;θ) =
1

Z(θ)
exp

(
〈θ, φ(x)〉

)
, Z(θ) =

∑

x∈χn
exp

(
〈θ, φ(x)〉

)
(2.1)

where 〈θ, φ(x)〉 denotes the dot product of the parameters and the sufficient statistics. Z(θ)
is the normalization constant, also called the partition function.

In this thesis, we focus on pairwise Markov random fields (MRFs), given by a graph
G = (V,E) with vertices V and edges E. In pairwise MRFs, the sufficient statistics are
restricted to be only over the nodes and edges of the graph. In the most general form,
they are indicator functions denoting local assignments to nodes and edges,1 i.e. φi,xi(x) =
1[Xi = xi] and φij;xixj (x) = 1[Xi = xi, Xj = xj]. We can combine the parameter vectors
and the sufficient statistics to obtain the potential function for an edge, θij(xi, xj), which is
a function χi×χj → R. Using this notation, the joint distribution for a pairwise MRF can
be written more simply as

Pr(x;θ) =
1

Z(θ)
exp

(∑

ij∈E
θij(xi, xj) +

∑

i∈V
θi(xi)

)
. (2.2)

For pairwise MRFs, the dimension d of the sufficient statistic vector φ(x) is d =
∑

i∈V |χi|+∑
ij∈E |χi||χj |, or simply k|V |+ k2|E| when each variable has exactly k states.
Although we mainly consider pairwise MRFs, we note that any graphical model can

be converted into a pairwise MRF by introducing new variables and enforcing that they
are consistent with the original variables (Wainwright & Jordan, 2008, p.289). However,
the state spaces of the new variables can be very large. In some cases, more efficient
algorithms can be obtained by taking advantage of special structure in higher-order MRFs
(see Section 2.4).

1Notation: Although the edges are undirected, we interpret the edge ij ∈ E as having a canonical ordering
of the variables. Also, the indicator function 1[Xi = xi] takes value 1 if Xi = xi, and is 0 otherwise.

15

This thesis concerns algorithms for solving the maximum a posteriori (MAP) inference
problem of finding the most likely assignment to the variables in the graphical model. Both
the protein design and stereo vision problems that we discussed in Chapter 1 use MAP
inference to make predictions. Since the partition function is a constant and the exponential
is monotonic, finding the MAP assignment is equivalent to finding the assignment xM that
maximizes

θ(x) =
∑

ij∈E
θij(xi, xj) +

∑

i∈V
θi(xi). (2.3)

This is a difficult discrete optimization problem and, in general, is NP-complete (see Sec-
tion 2.3).

As we mentioned in the introduction, there are many other types of inference questions.
For example, we may want to compute the probability of an assignment x under the model.
This is important for evaluating the likelihood of data under the model, and is useful for
model selection, hypothesis testing, and learning. Although the numerator of Eq. 2.2 is
easily calculated, the partition function Z(θ) is substantially more difficult, corresponding to
a summation over all possible assignments to the model. Calculating Z(θ) can be shown to
be #P-hard, although fully-polynomial approximation algorithms do exist for some special
cases (Jerrum & Sinclair, 1993).

We may also be interested in computing marginal probabilities for the variables in the
model. We use the following notation to refer to the single node and edge marginals:

µi(xi) = Eθ[φi;xi(x)] = Pr(Xi = xi;θ) (2.4)

µij(xi, xj) = Eθ[φij;xixj (x)] = Pr(Xi = xi, Xj = xj ;θ). (2.5)

We show in Section 2.2.2 how the techniques that we develop in the thesis are also applicable
to the inference problems of estimating the partition function and marginals.

2.1.1 Ising Models

The Ising model is a special case of Markov random fields where the variables have only
two states and the model is parameterized in terms of edge agreements and disagreements.
Here, the sufficient statistics are given by the indicator function xij = 1 if xi = xj , and
xij = −1 if xi 6= xj . We have one parameter λij ∈ R for each edge of the model. The joint
distribution of an Ising model with no external field is then

Pr(x;λ) =
1

Z(λ)
exp

(∑

ij∈E
λijxij

)
. (2.6)

Ising models and their non-binary extensions (called Potts models) were originally used
in statistical mechanics to study magnetism in materials (beginning in the early 1920s).
Their study led to the development of many of the algorithmic techniques that we will
discuss in this thesis, such as the work of Barahona. It is straightforward to show that any
binary pairwise MRF can be transformed into an equivalent Ising model (Sontag, 2007).
Also, finding the most likely assignment in an Ising model is equivalent to a cut problem.
For example, if λ ≤ 0, then the MAP assignment for graph G = (V,E) corresponds to the
maximum cut of G with edge weights λ.

16

Marginal polytope!
1!
0!
0!
1!
1!
0!
1"
0"
0"
0"
0!
1!
0!
0!
0!
0!
1!
0"

�µ =

= 0!

= 1! = 0!X2!

X1!

X3 !

0!
1!
0!
1!
1!
0!
0"
0"
1"
0"
0!
0!
0!
1!
0!
0!
1!
0"

�µ� =

= 1!

= 1! = 0!X2!

X1!

X3 !

1

2

�
�µ� + �µ

�

valid marginal probabilities!

(Wainwright & Jordan, ’03)!

Edge assignment for"
X1X3!

Edge assignment for"
X1X2!

Edge assignment for"
X2X3!

Assignment for X1 "

Assignment for X2 "

Assignment for X3!

Figure 2-1: Illustration of the marginal polytope for a Markov random field with three nodes
that have states in {0, 1}. The vertices correspond one-to-one with global assignments to
the variables in the MRF. The marginal polytope is alternatively defined as the convex hull
of these vertices, where each vertex is obtained by stacking the node indicator vectors and
the edge indicator vectors for the corresponding assignment.

2.2 The Marginal Polytope

At the core of our approach is an equivalent formulation of inference problems in terms of
an optimization over the marginal polytope. The marginal polytope is the set of realizable
mean vectors µ that can arise from some joint distribution on the graphical model:

M(G) =
{
µ ∈ Rd | ∃ θ ∈ Rd s.t. µ = EPr(x;θ)[φ(x)]

}
(2.7)

Said another way, the marginal polytope is the convex hull of the φ(x) vectors, one for each
assignment x ∈ χn to the variables of the Markov random field. The dimension d of φ(x) is
a function of the particular graphical model. In pairwise MRFs where each variable has k
states, each variable assignment contributes k coordinates to φ(x) and each edge assignment
contributes k2 coordinates to φ(x). Thus, φ(x) will be of dimension k|V |+ k2|E|.

We illustrate the marginal polytope in Figure 2-1 for a binary-valued Markov random
field on three nodes. In this case, φ(x) is of dimension 2 · 3 + 22 · 3 = 18. The figure shows
two vertices corresponding to the assignments x = (1, 1, 0) and x′ = (0, 1, 0). The vector
φ(x) is obtained by stacking the node indicator vectors for each of the three nodes, and then
the edge indicator vectors for each of the three edges. φ(x′) is analogous. There should be
a total of 9 vertices (the 2-dimensional sketch is inaccurate in this respect), one for each
assignment to the MRF.

Any point inside the marginal polytope corresponds to the vector of node and edge
marginals for some graphical model with the same sufficient statistics. By construction, the

17

vertices, also called extreme points, are one-to-one with assignments to the MRF. These
are marginal vectors arising from delta distributions. We call a point µ integral if µ ∈ Zd.
The only integral points in the marginal polytope are its vertices.

2.2.1 Maximum a Posteriori Estimation

We can now formulate the MAP problem as a linear program over the marginal polytope,

max
x∈χn

〈θ, φ(x)〉 = max
y∈
{
φ(x) : x∈χn

} 〈θ,y〉 = max
µ∈M(G)

〈θ,µ〉. (2.8)

The first equality holds because the sufficient statistics vector φ(x) is 1-1 with assignments
x. The marginal polytope M(G) is the convex hull of the discrete set

{
φ(x) : x ∈ χn

}
.

The second equality holds because the optimal value of a linear program over a polytope
can be shown to be obtained by one of its vertices. When the MAP assignment x∗ is unique,
the maximizing µ∗ is equal to φ(x∗).

We show in Section 2.3 that a large number of NP-hard combinatorial optimization
problems (e.g., maximum cut) can be posed as finding the MAP assignment in a Markov
random field. Thus, unless P=NP, in general there will be a superpolynomial number of
constraints that define the marginal polytope (clearly there are also an exponential number
of vertices, one for each assignment), and we cannot hope to optimize over it efficiently.

2.2.2 Variational Inference

The inference task of calculating marginals is to evaluate the marginal vector µ = Eθ[φ(x)].
The log-partition function logZ(θ), a convex function of θ, plays a critical role in these
calculations. In particular, we can write the log-partition function in terms of its Fenchel-
Legendre conjugate (Wainwright & Jordan, 2008):

logZ(θ) = sup
µ∈M(G)

{〈θ,µ〉+H(µ)} , (2.9)

where H(µ) is the entropy of the maximum entropy distribution with marginals µ, and is
also convex. The value µ∗ ∈M(G) that maximizes Eq. 2.9 is precisely the desired marginal
vector corresponding to Pr(x;θ).

It is illustrative to compare Eq. 2.9, the optimization problem that calculates both the
partition function and the marginals, with Eq. 2.8, the optimization problem to find the
MAP assignment. The only difference is that Eq. 2.9 has an additional non-linear entropy
term in the objective. Both M(G) and the entropy H(µ) are difficult to characterize in
general and have to be approximated. We call the resulting approximate marginal vectors
– which may not be in the marginal polytope – pseudomarginals.

Many well-known approximate inference algorithms can be interpreted as making some
approximation to Eq. 2.9. For example, mean field algorithms optimize over a non-convex
inner bound on the marginal polytope by restricting the marginal vectors to those coming
from simpler, e.g., fully factored, distributions. The entropy can be evaluated exactly in
this case (the distribution is simple).

Alternatively, we can relax the optimization to be over an outer bound on the marginal
polytope and also bound the entropy function. Most message passing algorithms for com-
puting marginal probabilities optimize over pseudomarginals that are locally consistent,

18

enforcing only that the edge marginals are consistent with the single node marginals. In
Section 2.5.1 we introduce the pairwise LP relaxation which has precisely these constraints.

Belief propagation can be seen as optimizing pseudomarginals over the pairwise relax-
ation with the (non-convex) Bethe approximation to the entropy (Yedidia et al., 2001).
The tree-reweighted sum-product algorithm (Wainwright et al., 2005b), on the other hand,
uses a concave upper bound on the entropy, expressed as a convex combination of en-
tropies corresponding to the spanning trees of the original graph. The log-determinant
relaxation (Wainwright & Jordan, 2006) is instead based on a semi-definite outer bound on
the marginal polytope combined with a Gaussian approximation to the entropy function.

For the remainder of this thesis we will focus on the MAP problem, giving both effi-
cient algorithms for solving its linear programming relaxation and methods for tightening
the relaxation. However, all of the techniques that we develop are also applicable to the
problems of approximating marginals and the partition function, with the distinction that
the convex optimization would involve an objective which is non-linear (including the addi-
tional entropy term) instead of linear. See Sontag (2007) and Wainwright & Jordan (2008)
for more details.

2.3 Inference as Combinatorial Optimization

A large number of well-studied combinatorial optimization problems can be posed as MAP
inference in a graphical model. In this section we discuss a few of these related problems,
illustrating the hardness of the general MAP problem, inapproximability results, and tech-
niques that may be more broadly useful. The algorithms that we develop in this thesis
to solve the MAP inference problem also apply to all of the combinatorial optimization
problems that we discuss here, and thus have implications well beyond machine learning
and probabilistic inference.

We begin by considering the MAP inference problem in pairwise Markov random fields
with binary variables. This problem is equivalent to quadratic boolean optimization; see
Boros & Hammer (2002) for a survey of pseudo-boolean optimization. One particularly
important special case of quadratic boolean optimization is the maximum cut problem,
which corresponds to finding the MAP assignment in an Ising model with antiferromagnetic
potentials, or negative edge weights. Maximum cut is known to be NP-complete, and,
furthermore, is hard to approximate better than 16

17OPT (Trevisan et al., 2000). Goemans
& Williamson (1995) give a .878-approximation algorithm which is based on solving a semi-
definite relaxation of the marginal polytope. Assuming the unique games conjecture, this
is the best possible polynomial time approximation ratio, unless P=NP (Khot et al., 2004).
We discuss integrality gaps for the relaxations and more in Section 2.5.2.

Another special case of MAP inference in pairwise MRFs with binary variables is cor-
relation clustering (Bansal et al., 2002). Given a graph and similarity or dissimilarity
measurements along each edge, correlation clustering attempts to partition the vertices into
clusters. This task is motivated by clustering problems in machine learning, and was further
studied in the theoretical computer science community. The difficulty with applying the
approximation algorithm for maximum cut to this problem is that the edge weights can be
both positive and negative, which affects the analysis of the rounding algorithm.

Partially motivated by the correlation clustering problem, Charikar & Wirth (2004)
study MaxQP, which is the same as the MAP problem in Ising models with arbitrary
potentials, and thus is much more closely aligned with real-world MAP inference problems.

19

The authors give an Ω(1/ log n) approximation algorithm, where n is the number of variables
in the MRF, also based on semi-definite programming. This approach is closely related to
the study of Grothendieck’s inequality (Alon & Naor, 2004; Alon et al., 2005).

On the positive side, MAP inference in Ising models with ferromagnetic potentials, or
positive edge weights, is equivalent to the minimum cut problem, which can be solved in
nearly linear time (Karger, 2000).2 This special case of Markov random fields was first
observed by Greig et al. (1989), and has become extremely influential in computer vision
where such edge potentials are commonly used image segmentation, among other problems
(Boykov & Kolmogorov, 2004). There has been significant interest in the computer vision
and machine learning communities in using these efficient combinatorial algorithms for non-
binary MRFs. For example, Boykov et al. (2001) showed how to use local search together
with graph cuts to approximately find the MAP assignment in non-binary MRFs.

The metric labeling problem (Kleinberg & Tardos, 1999) is an instance of MAP in a
non-binary MRF where there is a metric space on the variables’ states and the edge poten-
tials are proportional to the distance according to this metric. Metric labeling generalizes
several combinatorial optimization problems such as multiway cut (Dahlhaus et al., 1994).
Metric labeling has a O(1/ log k)-approximation, where k is the number of states per vari-
able, which can be obtained using either combinatorial algorithms or an LP relaxation
(Kleinberg & Tardos, 1999; Chekuri et al., 2005). Two interesting special cases of metric
labeling, corresponding to linearly ordered states and tree metrics, can be solved exactly in
polynomial time (Ishikawa, 2003; Felzenszwalb et al., 2010).

In the quadratic assignment problem (QAP) we are given two n × n matrices A =
(aij) and B = (bij), and the goal is to find a permutation π of 1, . . . , n that minimizes∑n

i=1

∑n
j=1 aπ(i),π(j)bij . QAP can be posed as MAP in a non-binary MRF with n variables

X1, . . . , Xn, each having n states. To enforce a valid permutation the potential θij(xi, xj) =
−∞ if xi = xj , and otherwise is θij(xi, xj) = axi,xjbij . Generalizations of QAP have many
applications in machine learning, such as statistical machine translation where it has been
used as a model of word alignment (Lacoste-Julien et al., 2006). Closely related is the
facility location problem; see Lazic et al. (2010) for a recent paper on facility location that
applies many of the techniques developed in this thesis.

The protein side-chain placement problem, which we discuss much further in this the-
sis, can be formulated as a non-binary pairwise MRF. Methods to solve this optimization
problem have been studied in the computational chemistry literature. One of the most ef-
fective methods is called dead-end elimination, and corresponds to iteratively applying local
rules that attempt to rule out variables’ states as not being part of the MAP assignment
(Goldstein, 1994; Pierce et al., 2000).

Finally, the decoding problem for low-density parity-check codes (LDPCs), and other
codes, corresponds to MAP inference in a non-pairwise Markov random field with binary
variables (see, e.g., Mceliece et al., 1998). An iterative algorithm called belief propagation,
discussed further in the next section, was found to be surprisingly effective at these inference
problems, and spurred a significant amount of research in the theoretical computer science
community. Linear programming relaxations can also be shown to give provably good
information-theoretic rates (Feldman et al., 2005; Vontobel & Koetter, 2006; Arora et al.,

2MAP inference in Ising models with arbitrary external fields, or node potentials, can be transformed into
an s-t minimum cut problem, solvable in polynomial time, where the new terminals s and t are connected
to all of the original nodes. The weights of edges to s are given by the positive fields, and the weights of
edges to t are given by the (absolute value of the) negative fields.

20

2009). Several authors have considered the problem of tightening these LP relaxations; see,
for example, Dimakis et al. (2009). We note, however, that the constraints used by Dimakis
et al. (2009) are specifically for this coding problem and are not more broadly applicable to
other MRFs.

As we mentioned, the Goemans-Williamson approximation algorithm for maximum cut
is based on semi-definite programming. Recently, several authors have considered fast
algorithms for obtaining the same approximation guarantee, without having to solve the
SDP to optimality (Arora & Kale, 2007; Trevisan, 2009). Arora et al. (2005) give algorithms
based on multiplicative weights to solve the SDP relaxation of MaxQP. Some MAP inference
problems can be transformed into packing problems, where the fractional packing LP can
be shown to be equivalent to the pairwise LP relaxation (see Section 2.5.1). In these cases,
the fractional packing problem can be approximately solved using combinatorial algorithms
(Plotkin et al., 1995; Awerbuch & Khandekar, 2008). It would be extremely interesting
to obtain combinatorial algorithms that could efficiently solve LP or SDP relaxations for
non-binary pairwise MRFs more generally.

2.4 Belief Propagation

We saw in the previous section that inference in graphical models corresponds to solving
a large class of integer linear programs. Many special cases can be solved efficiently, such
as the minimum cut and maximum weight matching problems. One desirable property for
an approximate inference algorithm is that it should be able to solve simple cases exactly,
such as graphical models that are tree-structured.

Belief propagation (BP) is a heuristic for approximate inference that is simple to code
and scales very well with problem size. BP is an example of a message-passing algorithm,
and works by iteratively passing messages along edges of the graph. On tree-structured
graphical models, BP can be seen to be equivalent to a dynamic programming algorithm
for inference, and thus solves the inference problem exactly.3 We will be primarily concerned
with the max-product belief propagation algorithm in this thesis, which approximates the
MAP inference problem.

Although belief propagation is not guaranteed to give exact results on graphical models
with cycles, it has often been observed empirically to give excellent results. Much research
has been devoted to understanding its empirical success. For example, Weiss (1997) shows
that, for a graphical model that only has a single cycle, when BP converges (it might not)
it gives exact results. Bayati et al. (2008) show that BP gives exact results when applied
to maximum weight bipartite matching problems that have a unique solution.

However, in many problems, belief propagation may not even converge to a solution.
Murphy et al. (1999) observe that convergence problems are highly correlated with BP not
finding a good solution to the MAP problem. Intuitively the problem is that of “double
counting,” in which evidence is passed around the graph multiple times without being rec-
ognized as the same evidence already considered in previous belief updates. The problem
is only compounded in graphs with short cycles. There have been several attempts to im-
prove BP’s accuracy, most notably by the generalized Belief Propagation (GBP) algorithm
(Yedidia et al., 2005).

3The following two-pass schedule corresponds to the dynamic programming algorithm: Send messages
from the leaves to the root, and then from the root back to the leaves.

21

Xj!

Xi!

Xk!

Figure 2-2: The pairwise consistency constraints ensure that two edges that have a node in
common must have edge marginal distributions that are consistent on that node.

The approach pursued in this thesis is to directly solve a linear programming relaxation
of the MAP inference problem. For all of the examples above where BP is known to do
well – tree structured graphical models and inference problems arising from minimum cut
and matchings – the LP relaxation also gives provably exact results. In Chapter 4 we show
that the LP relaxation can be solved by a message-passing algorithm that is very similar to
belief propagation. Another advantage of the BP heuristic is that it can be used together
with combinatorial algorithms (Duchi et al., 2007; Gupta et al., 2007). We will show that
the same is true for the linear programming approaches discussed in this thesis.

2.5 Linear Programming Relaxations

We discussed in Section 2.2.2 how the problems of approximating the partition function,
estimating marginal probabilities, and finding the MAP assignment in graphical models can
be formulated as (non-)linear optimization over the marginal polytope. Since optimizing
over the marginal polytope is difficult, we could instead try relaxing the marginal polytope,
optimizing over only a small number of its constraints. As we discussed in Section 2.3,
linear programming relaxations have long been studied in combinatorial optimization, and
often lead to approximation guarantees.

The marginal polytope is defined by the difficult global constraint that the edge marginals
in µ must arise from some common joint distribution. The LP relaxations presented in this
section relax this global constraint, instead enforcing it only over some subsets of the vari-
ables.

2.5.1 Pairwise Relaxation

The pairwise LP relaxation, also known as the first-order relaxation, has constraints that
enforce that the marginals for every pair of edges that share a variable are consistent with
each other on that variable (see Figure 2-2). These pairwise consistency constraints, also
called local consistency constraints, are given by:

LOCAL(G) =




µ ∈ Rd

∣∣∣∣∣∣∣∣

∑
xj
µij(xi, xj) = µi(xi) ∀ij ∈ E, xi∑

xi
µij(xi, xj) = µj(xj) ∀ij ∈ E, xj∑

xi
µi(xi) = 1 ∀i ∈ V

µi(xi) ≥ 0, µij(xi, xj) ≥ 0





(2.10)

The pairwise LP relaxation is then given by the following optimization problem:

max
µ∈LOCAL(G)

〈θ,µ〉 . (2.11)

22

max θ · µ

µ ∈

θ
New, fractional
vertices!

Figure 2-3: Sketch of the local consistency polytope, which is a relaxation of the marginal
polytope (shown with dashed lines). Whereas the marginal polytope had only integral
vertices (red), the relaxation introduces new fractional vertices (blue).

LOCAL(G) is an outer bound on M(G), i.e. M(G) ⊆ LOCAL(G), because every
marginal vector µ that is consistent with some joint distribution must satisfy these marginal-
ization constraints. Another way to verify that these constraints are valid is to observe that
they are satisfied by each of the integral vertices φ(x) ∈ M(G). Then, since the con-
straints are linear, they must also hold for any convex combination of the vertices ofM(G),
i.e. all points in M(G). Since we are now maximizing over a larger space, we have that
maxµ∈M(G)〈θ,µ〉 ≤ maxµ∈LOCAL(G)〈θ,µ〉, i.e. the relaxation provides an upper bound on
the value of the MAP assignment.

In general, the local consistency polytope, LOCAL(G), has both integral and fractional
vertices (see Figure 2-3). In particular, all of the vertices of the marginal polytope are also
vertices of the local consistency polytope. It is straightforward to show that there are no
new integer points that satisfy the constraints of LOCAL(G). Thus, we obtain a certificate
of optimality for this relaxation: if we solve the pairwise LP relaxation and obtain an integer
solution, it is guaranteed to be a MAP assignment.

There are several classes of graphical models – corresponding both to the choice of
graph structure, and the parameters – where the pairwise LP relaxation is known to be
tight, meaning that on these instances the LP relaxation is guaranteed to have an integer
solution. For example, if the graphical model has a tree structure (see Figure 2-4(a)), the
junction tree theorem can be used to prove that the local consistency polytope has only
integer extreme points.

As we mentioned earlier, several well-known combinatorial optimization problems can
be posed as inference in a graphical model. Consider, for example, a graphical model for
finding the maximum matching on a bipartite graph. In formulating the graphical model
for matching, some of the potentials θij(xi, xj) have value −∞. The corresponding local
assignments will clearly never be optimal, so we can consider the projection of the marginal
polytope onto the assignment µij(xi, xj) = 0. In this case, the local consistency polytope,
after projection, is isomorphic to the matching polytope, and has only integer solutions.

Much is known about the MAP problem in binary-valued pairwise MRFs because this
special case is equivalent to the maximum cut problem. In this case, the marginal polytope is
isomorphic to the cut polytope, the convex hull of all valid graph cuts (Deza & Laurent, 1997;
Sontag, 2007). The pairwise LP relaxation can be shown to have the following properties
in this setting:

• The fractional vertices are half integral (Deza & Laurent, 1997). Each edge marginal

23

(a) Tree structured MRF

θij(xi, xj) = 1 if !

0 otherwise"

xi = xj

(b) MRF with attractive potentials

Figure 2-4: Examples of Markov random fields where the pairwise LP relaxation is known
to have integer solutions. (a) When the graphical model decomposes according to a tree
structure. (b) When the variables are binary and the potential functions are submodular,
or attractive.

µij(xi, xj) is either integral, or is equal to

xj = 0 xj = 1
xi = 0 .5 0
xi = 1 0 .5

or
xj = 0 xj = 1

xi = 0 0 .5
xi = 1 .5 0

.

See Example 1 below for a MRF where the LP relaxation has a fractional solution.

• Persistency, which guarantees that there exists a MAP assignment that extends the
integer parts of a fractional vertex (Nemhauser & Trotter, 1975; Boros & Hammer,
2002). This can be applied to some non-binary MRFs by using a clever transformation
of the problem into a binary MRF (Kohli et al., 2008).

• Gives a 2-approximation when applied to the maximum cut problem.4

• The relaxation is tight when the edge potentials are submodular, meaning that there
exists some labeling of the states of each variable as 0 or 1 such that, for all edges,

θij(0, 0) + θij(1, 1) ≥ θij(1, 0) + θij(0, 1) (2.12)

(Johnson, 2008, p.119). In Ising models, this property is typically referred to as the
potentials being attractive or ferromagnetic. We discussed non-binary generalizations
of this in Section 2.3 with regards to the metric labeling problem.

Inconsistencies cause fractional solutions

In graphs with cycles, inconsistencies can easily arise that lead to fractional solutions to the
pairwise LP relaxation.

Example 1. Consider the simple three node MRF shown in Figure 2-4(b). Suppose that
instead of having attractive potentials, the edge potentials were repulsive, e.g.

θij(xi, xj) = 1 if xi 6= xj , and 0 otherwise. (2.13)

4To put this in perspective: A 2-approximation for max-cut could also be obtained using a randomized
algorithm that simply labels each variable 0 or 1 uniformly at random.

24

x3!

x1!

x2
!

Figure 2-5: Example of a triplet cluster. A higher-order relaxation might enforce that µ12,
µ23, and µ13 are consistent, meaning that they are the marginals of some joint distribution
on X1, X2, X3.

In this case, the pairwise LP relaxation can be shown to have the following optimal solution
for each of the edge marginals:

µij(0, 1) = µij(1, 0) = .5, µij(0, 0) = µij(1, 1) = 0. (2.14)

It is easy to see that the edge consistency constraints are satisfied – each of the node
marginals has values µi(0) = µi(1) = .5. The pairwise relaxation has value 3, whereas any
integer solution will have value at most 2.

In contrast, there are also fractional points in in the interior of the marginal polytope
that are neither vertices of the marginal polytope nor of the local consistency polytope. For
example, the point that for all edges has

µij(xi, xj) =
xj = 0 xj = 1

xi = 0 .25 .25
xi = 1 .25 .25

(2.15)

is fractional, but is equal to the average of all the integral vertices and is thus in the marginal
polytope. Except for degenerate cases where the LP relaxation has many solutions, these
benign fractional points are never optimal – one of the vertices will obtain a higher objective
value.

2.5.2 Higher-Order Relaxations

Higher-order relaxations tighten the LP relaxation by enforcing that the edge marginals are
consistent with one another on larger subsets of the variables. Consider, for example, the
graphical model shown in Figure 2-5. The pairwise LP relaxation only enforced consistency
of any pair of edges. We can tighten the relaxation by enforcing the joint consistency of
edges in a cluster of variables, such as X1, X2, X3.

The approach that we consider is an example of a lift-and-project method. Rather than
explicitly enforcing the joint consistency of the edge marginals µ12,µ23,µ13 using inequal-
ities, we introduce new variables into the LP that together represent the joint distribution
of X1, X2, X3, and then enforce that the edge marginals are consistent with these new vari-
ables. The lifting refers to our introducing new variables into the relaxation, whereas the
projection refers to the objective function only making use of the original variables, and so
the actual polytope that is optimized can be understood as a projection of the lifted one.

25

Continuing the example, we do this by introducing new variables τ123(x1, x2, x3) – corre-
sponding to the joint distribution of X1, X2, X3 – into the LP, and enforcing the constraints

∑

x1,x2,x3

τ123(x1, x2, x3) = 1, (2.16)

∑

x1

τ123(x1, x2, x3) = µ23(x2, x3), ∀x2, x3 (2.17)

∑

x2

τ123(x1, x2, x3) = µ13(x1, x3), ∀x1, x3 (2.18)

∑

x3

τ123(x1, x2, x3) = µ12(x1, x2), ∀x1, x2 (2.19)

in addition to the constraints that τ123(x1, x2, x3) ≥ 0 for all x1, x2, x3. The non-negativity
and normalization constraints together imply that τ 123 is some valid joint distribution over
variables X1, X2, X3. The last three equality constraints enforce that the edge marginals
are consistent with this joint distribution.

More generally, we can consider a sequence of tighter and tighter relaxations obtained by
using these cluster consistency constraints on all clusters of increasingly large size. Defining

LOCALt(G) =




µ ≥ 0

∣∣∣∣∣∣∣
∃
{
τ c : c ⊆ V,
|c| ≤ t

}

∑
xc
τc(xc) = 1, τ c ≥ 0∑

xc\h
τc(xc) = τh(xh), ∀c, h ⊆ c,xh,∑

xc\{i,j}
τc(xc) = µij(xi, xj), ∀c ⊇ {i, j}, xi, xj





to be the relaxation using clusters of size at most t, we have the containment

LOCAL(G) ⊇ LOCAL3(G) ⊇ LOCAL4(G) ⊇ . . . ⊇M(G),

where the tightest relaxation explicitly represents the joint distribution τV over all of the
variables, and is thus equivalent to the marginal polytope. For any graph of treewidth t,
LOCALt+1(G) can be shown to have only integral vertices, and so this sequence will be exact
earlier (Wainwright & Jordan, 2008, p.227). This sequence of relaxations is known in the
polyhedral combinatorics and theoretical computer science literature as the Sherali-Adams
hierarchy (Sherali & Adams, 1990; Wainwright & Jordan, 2004, 2008).

This thesis will be largely devoted to a study of the first lifting of the Sherali-Adams
hierarchy, which we can state more simply as

TRI(G) =





µ ≥ 0

∣∣∣∣∣∣∣∣∣∣∣

∃τ ≥ 0,

∑
xj
µij(xi, xj) = µi(xi) ∀ij ∈ E, xi∑

xi
µij(xi, xj) = µj(xj) ∀ij ∈ E, xj∑

xi
µi(xi) = 1 ∀i ∈ V

τij(xi, xj) = µij(xi, xj) ∀ij ∈ E, xi, xj∑
xk
τijk(xi, xj , xk) = τij(xi, xj), ∀i, j, k





. (2.20)

We show in Chapter 3 that TRI(G) rules out the fractional solution from Example 1.

Relationship to Sherali-Adams, Lovász-Schrijver, and Lasserre Hierarchies

Two other lift-and-project techniques that are frequently studied in integer programming
are the Lovász-Schrijver and Lasserre hierarchies (Laurent, 2003; Wainwright & Jordan,

26

2004). In contrast to the Sherali-Adams hierarchy, these correspond to semi-definite outer
bounds on the marginal polytope. Alizadeh (1993) gives an efficient interior-point algorithm
for solving semidefinite programs.

Let µ be a marginal vector on Kn, the complete graph with n nodes. By definition, µ
must be the marginals of some joint distribution Pr(x;θ). Thus, M1(µ) = Eθ[(1 x)T (1 x)],
the matrix of second moments (i.e., edge marginals) for the vector (1 x), must be positive
semi-definite. We then obtain the following outer bound on the marginal polytope of com-
plete graphs: SDEF1(Kn) = {µ ∈ R+ |M1(µ) � 0} . We can use this outer bound on a
sparse MRF by adding variables for the remaining pairwise marginals.

Higher-order moment matrices must also be positive semi-definite, leading to a sequence
of tighter and tighter relaxations known as the Lasserre hierarchy. One difficulty with using
these semi-definite relaxations is that it is difficult to take advantage of the sparsity of the
graph.5 For example, Rendl et al. (2009) commented, with regards to their state-of-the-art
SDP-based method:

“for sparse problems it is not advisable to use our approach. Since linear
programming based methods are capable of exploiting sparsity, solutions might
be obtained much faster when applying these methods to sparse data.”

Since MAP inference is NP-hard, if lifting a constant number of levels in any of these
hierarchies were guaranteed to result in a tight relaxation, this would imply that P=NP.
However, this does not rule out better approximation guarantees as a result of using a
tighter relaxation. LP and SDP-based approximation algorithms typically work by solving
the relaxation and then rounding the optimal fractional solution into an (integer) assign-
ment in such a way that one can guarantee that the integer assignment has value close to
that of the relaxation. We can rule out better approximation algorithms using this tech-
nique by illustrating an integrality gap, i.e. an objective function such that the fractional
solution is far from the best integer solution. We show in the next section how to con-
struct a fractional solution that satisfies the first lifting of the Sherali-Adams hierarchy (see
Example 3). However, illustrating such fractional solutions for higher levels of the hier-
archy is substantially more difficult. de la Vega & Kenyon-Mathieu (2007) and Charikar
et al. (2009) give integrality gaps for different levels of the Sherali-Adams hierarchy, lower
bounding the approximation guarantees achievable using these relaxations together with
this proof technique. In the process, they show how to construct a fractional point for each
level of the hierarchy, which may be of independent interest. Khot & Saket (2009) show
that even when augmented with the basic SDP relaxation, any constant number of rounds
of Sherali-Adams still has an integrality gap that corresponds to the Goemans-Williamson
approximation ratio.

It is important to note that these are theoretical worst case results. We will show in this
thesis that, despite the existence of integrality gaps, the first few levels of the Sherali-Adams
hierarchy suffice to give integer solutions for many real-world inference problems.

2.6 Cutting-Plane Algorithms

The difficulty with using these higher-order relaxations is that the size of the LPs, both
in terms of the number of constraints and the variables, grows exponentially in the size

5This is related to the semi-definite matrix completion problem.

27

max θ · µ

µ ∈

θ

µ∗

(a)

max θ · µ

µ ∈

θ

µ∗

(b)

max θ · µ

µ ∈

µ∗

θ

(c)

max θ · µ

µ ∈

θ

µ∗

(d)

Figure 2-6: Illustration of the cutting-plane algorithm. (a) Solve the LP relaxation. (b)
Find a violated constraint, add it to the relaxation, and repeat. (c) Result of solving the
tighter LP relaxation. (d) Finally, we find the MAP assignment.

of the clusters considered. Even optimizing over TRI(G), the first lifting of the Sherali-
Adams hierarchy, is impractical for all but the smallest of graphical models. Our approach
is motivated by the observation that it may not be necessary to add all of the constraints
that make up a higher-order relaxation such as TRI(G). In particular, it possible that the
pairwise LP relaxation alone is close to being tight, and that only a few carefully chosen
constraints would suffice to obtain an integer solution.

Our algorithms tighten the relaxation in a problem-specific way, using additional com-
putation just for the hard parts of each instance. We illustrate the general approach in
Figure 2-6. This is an example of a cutting-plane algorithm. We first solve the pairwise LP
relaxation. If we obtain an integer solution, then we have found the MAP assignment and
can terminate. Otherwise, we look for a valid constraint to add to the relaxation. By valid,
we mean that the constraint should not cut off any of the integral vertices. For example,
we show in Figure 2-7 an example of an invalid constraint that happens to cut off the MAP
assignment (so it could never be found by solving the new LP). Once we find a violated
valid constraint, we add it to the relaxation and then repeat, solving the tighter relaxation.

Cutting-plane algorithms have a long history in combinatorial optimization. Gomory
(1958) invented a generic recipe for constructing valid inequalities for integer linear pro-
gramming problems. Gomory cuts play a major role in commercial ILP solvers, such as
CPLEX’s branch-and-cut algorithm. However, for many combinatorial optimization prob-
lems it is possible to construct special purpose valid inequalities that are more effective
than Gomory cuts. For example, the cycle inequalities are known to be valid for the cut
polytope, and have been studied in polyhedral combinatorics because of its relevance to
max cut and Ising models. There is a huge literature in the operations research community
on cutting-plane algorithms for max cut that use the cycle inqualities (Barahona & Anbil,
2000; Liers et al., 2004; Frangioni et al., 2005).

To apply the cutting-plane approach, we must answer several key questions:

1. What are valid constraints for the marginal polytope?

We already discussed the pairwise and higher-order relaxations. In Chapter 3 we
introduce the cycle relaxation and the k-ary cycle inequalities, which will be more
efficient to optimize over.

2. How do we efficiently solve the linear program, even for the pairwise LP

28

max θ · µ

µ ∈

θ
Invalid!

constraint"

µ∗

Useless !

constraint"

Figure 2-7: We want to choose constraints that are both valid and useful. A valid constraint
is one that does not cut off any of the integer points. One way to guarantee that the con-
straints added are useful is to use them within the cutting-plane algorithm. Constraints are
added if they separate the current fractional solution from the rest of the integer solutions.
Note that the tightest valid constraints to add are the facets of the marginal polytope.

relaxation?

We address this in Chapter 4, showing how to use the technique of dual decomposition
to solve the dual of the LP relaxation efficiently.

3. How do we efficiently find violated constraints?

Such an algorithm is called a separation algorithm, and must be designed with respect
to any class of constraints. We show how to design a separation algorithm for the k-
ary cycle inequalities in Chapter 3. In Chapters 5 and 7 we give separation algorithms
that work directly in the dual of the LP relaxation.

The above problems are shared by the cutting-plane approaches for max cut, and in
many cases have not yet been solved. For example, in their conclusions, Liers et al. (2004)
comment that

“In practical computations, around 90% of the total running time is spent
in solving the linear programs by the simplex algorithm. Therefore, a topic of
current research is to study the performance of branch-and-cut by replacing the
simplex algorithm with fast approximate linear program solvers. The rationale
for using an approximate solver is that especially in the beginning of the op-
timization process the current relaxation is not a “tight” relaxation of the cut
polytope anyway.”

Frangioni et al. (2005) study Lagrangian relaxation approaches to solving the max cut prob-
lem, which bear some similarity to the dual algorithms that we propose in Chapter 4. Our
dual algorithms for tightening the LP relaxation, given in Chapter 5 and Chapter 7, are a
delayed column generation method, where variables rather than constraints are iteratively
added to the LP (Bertsimas & Tsitsiklis, 1997). By solving and tightening the LP relax-
ations completely in the dual, our algorithms resolve many of the problems raised by Liers
et al. (2004), and thus may also be of interest to the operations research community.

In the next chapter we will describe the class of constraints that we will use in tightening
the relaxation. Broadly speaking, these constraints all enforce that the edge marginals for
every cycle of the graph are consistent with one another.

29

Chapter 3

Tightening using the Cycle
Relaxation

In the previous chapter we saw how the pairwise LP relaxation, although having some
theoretical guarantees, can often have fractional solutions. In these cases, it may only
provide a loose upper bound on the value of the MAP assignment. In this chapter we
propose using the cycle relaxation of the marginal polytope, which will be shown to be
significantly tighter than the pairwise relaxation, yet tractable to optimize over. We begin
by defining the cycle relaxation, and then discuss connections between it and other well-
studied relaxations of the marginal polytope.

At a high level, the cycle relaxation enforces that the edge pseudomarginals along every
cycle of the graph should be consistent with some joint distribution on the variables of
the cycle. For binary MRFs, we will show that the cycle relaxation is equivalent to the
first lifting of the Sherali-Adams hierarchy, i.e. using cluster consistency constraints on all
triplet clusters. The cycle relaxation formulation is particularly convenient for showing how
many seemingly different approaches are actually solving the same relaxation. The main
computational advantage of using the cycle relaxation is that we will be able to formulate
efficient separation algorithms for it, enabling us to use the cutting-plane methodology. Be-
sides having powerful theoretical guarantees, we show empirically that the cycle relaxation
is tight for many real-world inference problems.

3.1 Cycle Relaxation

Given a graphical model G = (V,E), and set of edges C ⊆ E that form a cycle in G,
we say that the pseudomarginals µ̂ satisfy the cycle consistency constraints for C if µ̂ ∈
CYCLE(C), where the feasible space CYCLE(C) is defined as:1

CYCLE(C) =

{
µ ∈ Rd

∣∣∣∣∣ ∃τC ≥ 0,

∑
xC\i,j

τC(xC) = µij(xi, xj) ∀ij ∈ C, xi, xj∑
xC
τC(xC) = 1

}
.

1We use C to refer to both a set of edges (e.g., with notation ij ∈ C), and the variables involved in these
edges. The notation xC refers to an assignment to all of the variables in the cycle C, and C\{i, j} refers to
the set of variables in C except for i or j. Also,

∑
xC\i,j

τC(xC) means the sum over all assignments xC\i,j

to the variables in C\{i, j} of τC(xC\i,j , xi, xj), where xi and xj are instantiated outside of the sum.

30

1

2 3

4

56

1

2
2 2 3

3

4

555
6

6

Figure 3-1: Illustration of how cycle consistency can be equivalently enforced by triangulat-
ing the cycle and using triplet clusters. The original cycle is shown on the left (solid edges).
The dashed edges denote the edges that are added during triangulation. Each orange trian-
gle corresponds to one triplet cluster, with the red arrows denoting consistency constraints
between the triplet clusters and between the triplet clusters and the original edges (only
one shown).

These constraints are analogous to the pairwise consistency constraints introduced in
the previous chapter (c.f. Eq. 2.10), except that they enforce consistency between a cycle
and its constituent edges, rather than between an edge and its constituent nodes. Although
we defined the polytope by introducing new variables τC(xC), one for each assignment xC
(i.e., as the projection of a lifting), there are equivalent compact formulations.

For example, since cycles are of treewidth two, the cycle consistency constraints for C
could be also described by introducing cycle-specific triplet clusters along a triangulation of
the cycle, and then enforcing consistency between every pair of triplet clusters that share an
edge (see Figure 3-1). Let TRI(C) denote the triplet clusters in a triangulation of cycle C.
For example, TRI(C) =

{
{1, 2, 6}, {2, 6, 5}, {2, 3, 5}, {3, 4, 5}

}
for the cycle in Figure 3-1.

Then, an equivalent definition is:

CYCLE(C) =

{
µ

∣∣∣∣∣
∃
{
τ c ≥ 0 :

c ∈ TRI(C)
}
∑

xc\i,j
τc(xc) = µij(xi, xj) ∀c, i, j ∈ c, xi, xj∑

xc
τc(xc) = 1 ∀c ∈ TRI(C)

}
(3.1)

We use the notation c to denote clusters, and C to denote cycles. To show that these are
equivalent, we can apply the junction tree theorem. The junction tree theorem guarantees
that every joint distribution on the variables in the cycle can be equivalently factored into
triplet distributions along the triangulation that are consistent with one another, and vice-
versa. In Section 3.2 we will give another equivalent formulation of CYCLE(C), for models
with binary variables, using cycle inequalities.

We define the cycle relaxation to be the intersection of the cycle consistency constraints
for every cycle of the graph, in addition to the pairwise consistency constraints:

CYCLE(G) = LOCAL(G)
⋂

C⊆E : C is a cycle

CYCLE(C) . (3.2)

Rather than including all cycle consistency constraints, it can be shown that the cycle
consistency constraints for chordless cycles are sufficient to define the cycle relaxation.

31

Consider the formulation of CYCLE(C) given in Eq. 3.1. If, in addition, we enforce that
the triplet clusters are identical across cycles, rather than being cycle-specific, we would ob-
tain the relaxation TRI(G) (the first lifting of the Sherali-Adams hierarchy). Thus, we have
TRI(G) ⊆ CYCLE(G). In Section 3.3 we show that, for the special case of binary-valued
graphical models, TRI(G) = CYCLE(G). However, the precise relationship is unknown
for non-binary models, and an interesting open problem is to show that TRI(G) is strictly
tighter than CYCLE(G).

3.2 Cycle Inequalities

In this section we describe a polyhedral approach to tightening the relaxation, where we
use new constraints but no new variables. We begin by describing the cycle inequalities
(Barahona & Mahjoub, 1986; Barahona, 1993; Deza & Laurent, 1997) for graphical models
with binary variables. LetM{0,1} denote the marginal polytope of a binary pairwise MRF.

Given an assignment x ∈ {0, 1}n, edge ij ∈ E is cut if xi 6= xj . The cycle inequalities
arise from the observation that a cycle must have an even (possibly zero) number of cut
edges. Suppose we start at node i, where xi = 0. As we traverse the cycle, the assignment
changes each time we cross a cut edge. Since we must return to xi = 0, the assignment
can only change an even number of times. For a cycle C and any F ⊆ C such that |F |
is odd, this constraint can be written as

∑
ij∈C\F 1[xi 6= xj] +

∑
ij∈F 1[xi = xj] ≥ 1. Since

this constraint is valid for all assignments x ∈ {0, 1}n, it holds also in expectation. Thus,
the constraint

∑

ij∈C\F

(
µij(1, 0) + µij(0, 1)

)
+
∑

ij∈F

(
µij(0, 0) + µij(1, 1)

)
≥ 1, (3.3)

for |F | odd, is valid for any µ ∈ M{0,1}. All cycle inequalities based on chordless cycles
are known to be facets of M{0,1}, meaning that they are (d − 1) dimensional faces of the
polytope (Barahona & Mahjoub, 1986).

Example 2. Consider the fractional solution given in Example 1. Let F be all three
edges. Then, µij(0, 0) = µij(1, 1) = 0 for ij ∈ F , and C\F = ∅. The left side of Eq. 3.3 is
thus equal to 0, and we have found a violated cycle inequality.

We next show that only the chordless cycle inequalities are necessary to define the cycle
relaxation.

Theorem 3.2.1. Any violated cycle inequality on a cycle with a chord can be decomposed
into two shorter cycle inequalities, one of which must be violated.

Proof. Suppose that the cycle inequality defined on C, F ⊆ C with |F | odd is violated by
µ. We assume only that µ satisfies the edge marginalization constraints. Let the cycle be
(a, b, c, . . . , d, e, f, . . .), where a could equal f , and c could equal d, and suppose that the
edge be is the chord that splits the cycle in two.

Consider the cycles C1 = (e, f, . . . , a, b) and C2 = (e, d, . . . , c, b). Since |F | is odd, either
C1 has an odd number of edges in F or C2 does (but not both). Suppose that it is C1. Then,

for C1, let F1 = C1 ∩ F , and for C2, let F2 =
(
C2 ∩ F

)
∪ {eb}. Suppose for contradiction

32

that neither of the cycle inequalities C1, F1 nor C2, F2 are violated, i.e.

A =
∑

ij∈C1\F1

(
µij(1, 0) + µij(0, 1)

)
+
∑

ij∈F1

(
µij(0, 0) + µij(1, 1)

)
≥ 1, (3.4)

B =
∑

ij∈C2\F2

(
µij(1, 0) + µij(0, 1)

)
+
∑

ij∈F2

(
µij(0, 0) + µij(1, 1)

)
≥ 1. (3.5)

Summing these together, we get A + B ≥ 2. Moreover, since eb ∈ C1\F1 and eb ∈ F2, we
get that

A+B =
∑

ij∈C\F

(
µij(1, 0) + µij(0, 1)

)
+
∑

ij∈F

(
µij(0, 0) + µij(1, 1)

)
+ 1 ≥ 2, (3.6)

where we used that µeb(1, 0) + µeb(0, 1) + µeb(1, 1) + µeb(0, 0) = 1. This contradicts our
assumption that the cycle inequality on C,F was violated by µ. Thus, either C1, F1 or
C2, F2 must be a violated cycle inequality.

In Chapter 7, we consider the dual of the LP relaxation consisting of all cycle inequali-
ties, and also the dual of the cycle relaxation. Using these, we prove that in binary pairwise
MRFs, the cycle inequalities give exactly the same relaxation as the cycle relaxation (Corol-
lary 7.2.2). Clearly, however, the cycle relaxation is not going to be tight for all instances.
We next give an example of a MAP inference problem for a binary pairwise MRF for which
the cycle relaxation (given by all cycle inequalities) is loose.

Example 3. Consider the fully connected MRF on five binary nodes, K5, and let
µij(0, 1) = µij(1, 0) = 1

3 and µij(1, 1) = µij(0, 0) = 1
6 for all ij ∈ K5. One can verify, by

enumeration, that all of the cycle inequalities are satisfied by µ. To see that µ is not in the
marginal polytope, consider the following objective function: θij(0, 1) = θij(1, 0) = 1, and
θij(0, 0) = θij(1, 1) = 0. Then, µ achieves objective value |E| · 23 = 20

3 . On the other hand,
all integer solutions have objective value at most 6 · 23 = 18

3 (to maximize the number of
cut edges, let exactly two of the xi be 1). The maximum of any linear objective over the
marginal polytope must be achieved by one of its vertices, which are all integer (Vanderbei,
2007). Since µ is a fractional vertex that achieves a strictly better objective value than the
integral vertices, we conclude that µ is not in the marginal polytope.

3.3 Equivalent Formulations for Binary Models

We showed in Section 3.1 that, for general graphical models, TRI(G) ⊆ CYCLE(G). In the
special case of graphical models with binary variables, we obtain an equality.

Theorem 3.3.1. For pairwise MRFs with binary variables, TRI(G) = CYCLE(G), i.e. the
first lifting on the Sherali-Adams hierarchy is equivalent to the cycle relaxation.

Proof. Our proof will use the fact that, for binary variables, the cycle consistency constraints
can be shown to be equivalent to the cycle inequalities (Corollary 7.2.2). We already showed
that TRI(G) ⊆ CYCLE(G). Letting |V | = n, we denote the complete graph on n nodes
as Kn. We prove that CYCLE(G) ⊆ TRI(G) by induction on the number of edges |Kn\E|
that the graph G is missing, compared to the complete graph.

33

We first note that, by Theorem 3.2.1, the constraints in the definition of CYCLE(G)
only need to be given for chordless cycles, since the consistency of a cycle with a chord is
implied by the consistency of the two smaller cycles using the chord. Thus, if G = Kn, we
would trivially have TRI(G) = CYCLE(G). This proves the base case of |Kn\E| = 0.

Consider |Kn\E| > 0, and suppose that µ ∈ CYCLE(G). Let st be some edge
in Kn\E. Note that µ is only defined for the edges in E. Suppose that there exists
µst(xs, xt) ≥ 0 satisfying

∑
xs,xt

µst(xs, xt) = 1 such that µ (the extended µ, now including
st) ∈ CYCLE(G ∪ {st}). Then, by the inductive hypothesis, µ ∈ TRI(G ∪ {st}) (i.e., ∃τ
that satisfies the triplet consistency constraints). The same τ also shows that µ ∈ TRI(G).

We now consider the case where no such µst exists. Let c = µst(0, 1) + µst(1, 0), and
consider all cycles that include edge st. Every cycle inequality where st 6∈ F (edge st is not
cut) gives a lower bound on c,

c ≥ 1−
∑

ij∈C1\F1,ij 6=st

(
µij(1, 0) + µij(0, 1)

)
−
∑

ij∈F1

(
µij(0, 0) + µij(1, 1)

)
, (3.7)

while every cycle inequality where st ∈ F (edge st is cut) gives an upper bound on c,

c ≤
∑

ij∈C2\F2

(
µij(1, 0) + µij(0, 1)

)
+

∑

ij∈F2,ij 6=st

(
µij(0, 0) + µij(1, 1)

)
. (3.8)

If no such µst exists, then there must be two cycle inequalities C1, F1 (corresponding to the
upper bound in Eq. 3.7) and C2, F2 (corresponding to the lower bound in Eq. 3.8) such that
A > B, where A denotes the right-hand side of Eq. 3.7 and B denotes the right-hand side
of Eq. 3.8. Consider the cycle inequality C = C1 ∪ C2\{st} and F = F1 ∪ F2\{st}. Note
that |F | must be odd because |F1| and |F2| were odd and st ∈ F2, st 6∈ F1. Since we just
showed that A − B > 0, we have that the cycle inequality C,F is violated. However, this
contradicts our assumption that µ ∈ CYCLE(G).

We discussed in Section 2.1.1 a special case of binary pairwise Markov random fields
called Ising models in which the edge potential functions only depend on whether the vari-
ables’ states agree or differ. In this case, one can show the following result:

Theorem 3.3.2 (Barahona, 1993). The cycle relaxation is exact, i.e. M(G) = CYCLE(G),
for Ising models of planar graphs (G has no K5 or K3,3 minor).

This result applies regardless of the treewidth ofG, as long asG is planar. Since inference
in Ising models is equivalent to finding the maximum cut in a graph, this result also shows
that the maximum cut problem can be tractably solved in planar graphs.

A natural question is whether this theorem provides any non-trivial guarantees for other
binary graphical models. Any binary pairwise Markov random field G can be transformed
into an Ising model G′ by including an additional variable Xn+1 and adding edges from all
other variables to Xn+1. Outer-planar graphs are graphs G such that the transformed graph
G′ is planar. It can be shown that all outer-planar graphs are of treewidth two. However,
since we already know that TRI(G) exactly defines the marginal polytope for graphs of
treewidth two, the theorem does not provide additional insight.

34

Figure 3-2: Illustration of the projection for one edge ij ∈ E where χi = {0, 1, 2} and
χj = {0, 1, 2, 3}. The projection graph (shown on right), has 3 partitions for i and 7 for j.

3.4 k-ary Cycle Inequalities

In this section, we show how to derive valid inequalities for the marginal polytope of non-
binary pairwise MRFs from any inequality that is known for the binary marginal polytope.
As a consequence, we obtain a new class of k-ary cycle inequalities, constraints that are
valid for non-binary MRFs. We describe the k-ary cycle inequalities, relate them to the
cycle relaxation, and give empirical results showing that they allow us to exactly find the
MAP assignment in protein side-chain placement problems. This section is based in part
on material previously published in (Sontag, 2007; Sontag & Jaakkola, 2008).

The simplest way to understand the new constraints is to equivalently reformulate the
non-binary graphical model as a graphical model with only binary variables. For example,
we could introduce one binary variable Xi,xi for each variable Xi and state xi in the original
model. The new pairwise potentials would then be θnew(Xi,xi = 1, Xj,xj = 1) = θij(xi, xj),
and zero otherwise. We also have a higher-order factor, one for each i, on the variables Xi,xi

for all xi, that enforces that exactly one of these should be 1. We now have a binary-valued
graphical model, and its LP relaxation can take advantage of all the constraints that we
know to be valid for the binary marginal polytope.

However, there are many different ways of formulating an equivalent binary graphical
model, and each results in a different LP relaxation. A better way to understand the
new constraints is via projections of the marginal polytope onto different binary marginal
polytopes. Aggregation and projection are well-known techniques in polyhedral combina-
torics for obtaining valid inequalities (Deza & Laurent, 1997). Given a linear projection
Φ(x) = Ax, any valid inequality c′Φ(x) ≤ b for Φ(x) also gives the valid inequality c′Ax ≤ b
for x. We obtain new inequalities for the marginal polytope by aggregating the states of
each non-binary variable into just two states.

For each variable i, let πqi be a partition of its states into two non-empty sets, i.e., the
map πqi : χi → {0, 1} is surjective (χi denotes the states of node i). Let πi = {π1i , π2i , . . .}
be a collection of partitions of variable i. Define the projection graph Gπ = (Vπ, Eπ) so that
there’s a node for each partition in each collection πi and such nodes are fully connected
across adjacent variables:

Vπ =
⋃

i∈V
πi, Eπ ⊆ {(πqi , πrj) | (i, j) ∈ E, q ≤ |πi|, r ≤ |πj |}. (3.9)

We obtain a different projection graph depending on the quantity and type of partitions
that we choose for each node, π = {πi}. We call the graph consisting of all possible

35

variable partitions the full projection graph. In Figure 3-2 we show the part of the full
projection graph that corresponds to edge ij, where xi has three states and xj has four
states. Intuitively, a partition for a variable splits its states into two clusters, resulting in a
binary variable. For example, the (new) variable corresponding to the partition {0, 1}{2}
of xi is 1 if xi = 2, and 0 otherwise.

Given any pseudomarginal µ, its projection onto the binary marginal polytope of the
projection graph Gπ, which has binary variables xm ∈ {0, 1} for each partition, is

µπm(xm) =
∑

si∈χi :πqi (si)=xm

µi(si) ∀m =πqi ∈ Vπ (3.10)

µπmn(xm, xn) =
∑

si∈χi :πqi (si)=xm,
sj∈χj :πrj (sj)=xn

µij(si, sj) ∀mn =(πqi , π
r
j) ∈ Eπ. (3.11)

It is straightforward to show that, for any marginal vector µ ∈M(G), the corresponding µπ

is inM{0,1}(Gπ), the binary marginal polytope of the projection graph (Sontag & Jaakkola,
2008). Thus, valid inequalities for M{0,1}(Gπ) carry over to M(G).

These projections yield a new class of cycle inequalities for the marginal polytope.
Consider a projection graph Gπ, a cycle C in Gπ, and any F ⊆ C such that |F | is odd. We
obtain the following k-ary cycle inequality for µ ∈ M(G) after applying the projection to
a binary cycle inequality:

∑

mn∈C\F

(
µπmn(0, 1) + µπmn(1, 0)

)
+
∑

mn∈F

(
µπmn(0, 0) + µπmn(1, 1)

)
≥ 1. (3.12)

Notice that since we are now considering cycles in the projection graph, it is possible
to have a simple cycle that uses more than one partition of a variable (see Figure 3-6 for
an example). Because of how we derived the constraints, these inequalities are guaranteed
to be valid for the marginal polytope. Nonetheless, a natural question to ask is whether
these cycles provide any tighter of a relaxation than if we had just restricted ourselves to
inequalities involving just one partition per variable. We show that the answer is no:

Theorem 3.4.1. Given a violated cycle inequality C,F ∈ Gπ, if C contains two nodes
a = πqi and a′ = πri corresponding to different partitions of i, there exists a shorter violated
cycle inequality C ′ ⊂ C that excludes either a or a′.

Proof. By induction on the cycle length |C|. Suppose that the violated cycle inequality is
on the cycle C = (a, b, . . . , c, a′, d, . . .), where a and a′ refer to two different partitions of
the same variable. Since a and a′ have the same neighbors, there must also be an edge
between c and a. Having shown that C has a chord, we now apply Theorem 3.2.1 to
give a violated cycle inequality on either C1 = (a, b, . . . , c) (with associated F1) or C2 =
(c, a′, d, . . . , a) (with associated F2). If C1, F1 is violated, we are finished. Otherwise, we
repeat the argument on the shorter cycle inequality C2, F2. Our base case is the length-3
cycle inequality (a, b, a′): assuming µ satisfies the edge marginalization constraints, this
inequality cannot be violated.

In the projection graph from Figure 3-2, we used only three partitions for each variable
Xi. For example, we had the partition {0, 1}{2} but not the partition {2}{0, 1}. We next
show that this is without loss of generality: having a partition and its complement in the
projection graph can never result in a tighter relaxation.

36

1 20

1

2

0

1

2

0

X1 =

X3 = = X2

Figure 3-3: Illustration of the fractional point µ and the objective θ used to prove that
the k-ary cycle inequalities are strictly weaker than the cycle relaxation (Theorem 3.4.3).
Shown are the three states (one node per state) of the variables X1, X2, X3, where Xi ∈
{0, 1, 2}. An edge between Xi = xi and Xj = xj denotes µij(xi, xj) = 1/6; no edge denotes
µij(xi, xj) = 0. Thick lines between Xi = xi and Xj = xj indicate that θij(xi, xj) = 1,
whereas for the non-thick lines, θij(xi, xj) = 0, and when there is no line, θij(xi, xj) = −2.
The red, green, and blue colors are used to make clear that all assignments to X1, X2, X3

(corresponding to a length-3 cycle which uses one node from each of X1, X2, X3) use at
most one of the θij(xi, xj) = 1 edges.

Theorem 3.4.2. Given a violated cycle inequality C,F ∈ Gπ for any cycle C ′ having the
complement partition for some of the nodes in C, ∃F ′ such that the cycle inequality C ′, F ′

is violated.

Proof. By induction on the number of complement partitions. The base case, zero, is trivial.
Suppose that C = (. . . , πqi , . . .) and C ′ = (. . . , a, πqi , b, . . .). Let F ′′ be given by the inductive

hypothesis applied to C and C ′′, where C ′′ is the same as C ′ except with πqi instead of πqi .

Start with F ′ = F ′′\{aπqi , π
q
i b}. If aπqi 6∈ F ′′, add aπqi to F ′. Similarly, if πqi b 6∈ F ′′, add πqi b

to F ′. The left hand side of the cycle inequality on C ′, F ′ is equivalent in value to the cycle
inequality on C ′′, F ′′, and thus is also violated.

Thus, if one were to try to construct the full projection graph for a binary-valued
graphical model, it would simply be the same as the original graph.

Related work

Althaus et al. (2000) analyze the GMEC polyhedron, which is equivalent to the marginal
polytope. They use a similar state-aggregation technique to derive valid constraints from
the triangle inequalities. Koster et al. (1998) investigate the Partial Constraint Satisfaction
Problem polytope, which is also equivalent to the marginal polytope. They used state-
aggregation to show that a class of cycle inequalities (corresponding to Eq. 3.12 for |F | = 1)
are valid for this polytope, and give an algorithm to separate the inequalities for a single
cycle. Both papers showed that these constraints are facet-defining.

37

3.4.1 Relationship to Cycle Relaxation

Having introduced the k-ary cycle inequalities, a natural question is whether these are as
strong as the cycle relaxation. Although this is true for binary cycle inequalities, the answer
is no for k ≥ 3. We prove this by demonstrating a point that satisfies all of the k-ary cycle
inequalities yet is not in the marginal polytope.

Theorem 3.4.3. The k-ary cycle inequalities are strictly weaker than the cycle relaxation
when k ≥ 3.

Proof. (See Figure 3-3 for an illustration of the quantities used in the proof.) Let G be a
graphical model with three nodes, X1, X2, X3, where Xi ∈ {0, 1, 2}. Since G is a cycle, the
cycle relaxation is exactly equal to the marginal polytope. Consider the following fractional
point:

µ12(x1, x2) =

x2 = 0 x2 = 1 x2 = 2
x1 = 0 1/6 1/6 0
x1 = 1 0 1/6 1/6
x1 = 2 1/6 0 1/6

(3.13)

µ13(x1, x3) =

x3 = 0 x3 = 1 x3 = 2
x1 = 0 1/6 1/6 0
x1 = 1 1/6 0 1/6
x1 = 2 0 1/6 1/6

(3.14)

µ23(x2, x3) =

x3 = 0 x3 = 1 x3 = 2
x2 = 0 0 1/6 1/6
x2 = 1 1/6 1/6 0
x2 = 2 1/6 0 1/6

(3.15)

It is easy to verify that µ satisfies all of the pairwise consistency constraints and the k-ary
cycle inequalities. Now consider the following objective function:

θ12(x1, x2) =

x2 = 0 x2 = 1 x2 = 2
x1 = 0 1 0 −2
x1 = 1 −2 1 0
x1 = 2 0 −2 1

(3.16)

θ13(x1, x3) =

x3 = 0 x3 = 1 x3 = 2
x1 = 0 1 0 −2
x1 = 1 0 −2 1
x1 = 2 −2 1 0

(3.17)

θ23(x2, x3) =

x3 = 0 x3 = 1 x3 = 2
x2 = 0 −2 0 1
x2 = 1 0 1 −2
x2 = 2 1 −2 0

(3.18)

In the objective, θij(xi, xj) = −2 wherever µij(xi, xj) = 0, thereby ruling out any optimal
solutions µ∗(θ) with µ∗ij(xi, xj) non-zero. It can be shown by enumeration that for all integer
assignments x, θ(x) ≤ 1 (the maximum is achieved, e.g., by x = (0, 0, 1)). On the other
hand, µ · θ has value 1.5. The maximum of any linear objective over the marginal polytope
must be achieved by one of its vertices, which are all integer. Since µ is a fractional point

38

that achieves a strictly better objective value than the integral vertices, we conclude that
µ is not in the marginal polytope (yet satisfies all of the k-ary cycle inequalities).

Although the k-ary cycle inequalities do not suffice to obtain an integer solution for the
objective function used in the proof of Theorem 3.4.3 and illustrated in Figure 3-3, they do
provide a significantly tighter bound on the value of the MAP assignment: the pairwise LP
relaxation gives an upper bound of 3, the k-ary cycle inequalities2 give an upper bound of
1.5, and the MAP assignment has value 1.

We next looked to see how strong the k-ary cycle inequalities are relative to the pair-
wise relaxation, again on three node MRFs with three states. For comparison, the cy-
cle relaxation would give an exact solution on 100% of the examples, since this graphical
model is a single cycle. We constructed 10,000 random objective functions by sampling
θ
′
ij(xi, xj) ∼ U [−1, 1], and solved the LP relaxation for each using the (a) pairwise re-

laxation, and (b) pairwise relaxation plus all k-ary cycle inequalities. We found that the
pairwise relaxation gives an integral solution 88% of the time, while the k-ary cycle in-
equalities gave an integral solution 100% of the time. If we instead added on the objective
function used in the previous example, i.e. optimizing over θ + θ

′
, the pairwise relaxation

is exact less than 7% of the time, while the k-ary cycle inequalities give an exact solution
on over 99% of the examples.

3.4.2 Separation Algorithm

Although there are exponentially many cycles and cycle inequalities for a graph, Barahona
& Mahjoub (1986) give a simple algorithm to separate the whole class of cycle inequalities
for binary models. In this section, we describe our generalization of this algorithm to the
k-ary cycle inequalities.

The algorithm is given in Figure 3-4, and takes as input a projection graph Gπ and the
current pseudomarginals µπ. To see whether any cycle inequality is violated, we construct
an undirected graph G′ = (V ′, E′) that consists of two copies of Gπ, with edges between
each copy. For each i ∈ Vπ, V ′ contains nodes i1 and i2, corresponding to the two copies. For
each edge (i, j) ∈ Eπ, the edges in E′ are: (i1, j1) and (i2, j2) with weight µπij(0, 1)+µπij(1, 0),
and (i1, j2) and (i2, j1) with weight µπij(0, 0) + µπij(1, 1). See Figure 3-5 for an illustration.
Then, for each node i ∈ Vπ we find the shortest path in G′ from i1 to i2. We assume that
the shortest path algorithm returns the shortest length path with the minimal weight.3 The
shortest of all the paths found, Ps, will not use both copies of any node j (otherwise the
path j1 to j2 would be shorter, since all edge weights are non-negative).

Thus, we have a path Ps where the first node is s1 and the last node is s2. The cycle
C∗ ⊆ Eπ is obtained by merging s1 and s2 and dropping the subscripts from Ps. All
edges traversed by Ps of the form (i1, j2) or (i2, j1) (i.e., that cross between the two graph
copies) are added to the set F ∗. The resulting cycle inequality gives the minimum value of∑

mn∈C\F

(
µπmn(0, 1) + µπmn(1, 0)

)
+
∑

mn∈F

(
µπmn(0, 0) + µπmn(1, 1)

)
. If this is less than 1,

we have found a violated cycle inequality; otherwise, µπ satisfies all cycle inequalities.

2Using the cutting-plane approach and adding violated inequalities one at a time, we found that we
needed to add 12 k-ary cycle inequalities before the remaining inequalities were satisfied.

3This can be achieved by changing the comparison operator used by the shortest paths algorithm to
prefer shorter length paths of the same total weight. Alternatively, one can add a small weight ε > 0 to each
of the edges prior to running the shortest paths algorithm.

39

Algorithm SeparateCycles(Gπ, µπ)

1 // Initialize the auxilliary graph used in the shortest path computation.
2 let G′ = (V ′, E′), where
3 V ′ = ∪i∈Vπ

{
i1, i2

}

4 E′ = ∪(i,j)∈Eπ
{

(i1, i2), (i1, j2), (i2, j1), (j2, j2)
}

5

6 // Setup the edge weights.
7 for each edge ij ∈ Eπ
8 w(i1, j2) = µπij(0, 0) + µπij(1, 1) // Cut

9 w(i2, j1) = µπij(0, 0) + µπij(1, 1) // Cut

10 w(i1, j1) = µπij(0, 1) + µπij(1, 0) // Not cut

11 w(i2, j2) = µπij(0, 1) + µπij(1, 0) // Not cut

12

13 // Run the shortest path algorithm, once for each node.
14 for each node i ∈ Vπ
15 // Find shortest path Pi from i1 to i2 on graph G′ with weights w
16 Pi = ShortestPath(i1, i2, G

′, w)
17

18 // Make sure that this is a simple cycle in Gπ.
19 if ∃j 6= i such that j1, j2 ∈ Pi
20 Discard Pi.
21

22 return
{
Pi : w(Pi) < 1

}

Figure 3-4: Given the projection graph Gπ = (Vπ, Eπ) and edge pseudomarginals µπ, find
the most violated cycle inequality.

Using Dijkstra’s shortest paths algorithm with a Fibonacci heap to implement the prior-
ity queue (Cormen et al., 2001), each shortest paths computation takes timeO(n log n+|E′|),
where n = |V ′|. Thus, the overall running time of the separation algorithm from Figure 3-4
is O(n2 log n+ n|E′|).

Implementation Details

We use the separation algorithm together with the cutting-plane methodology described in
Section 2.6. The overall algorithm is as follows:

1. Solve the LP relaxation (in Iteration 1, use the pairwise relaxation).

2. Construct the projection graph Gπ and pseudomarginals µπ using Eqs. 3.9-3.11.

3. Run SeperateCycles(Gπ, µπ) to see if there are any violated cycle inequalities.

4. Add all cycle inequalities returned by Step 3 to the LP relaxation.

5. Return to Step 1, but now solve using the tighter relaxation.

From a practical perspective, it would be slow to repeatedly solve the new linear program
each time a constraint is added. However, there are a number of optimization methods that

40

i1

i2

j2

j1

k1

k2

Cut edgesNot cut

Figure 3-5: Illustration of graph used in shortest path algorithm for finding the most violated
cycle inequality. The dashed edges denote cut edges (i.e., if used in the shortest path, they
are assigned to F), while the solid edges denote edges that are not cut. The algorithm
is as follows: To find the most violated cycle inequality on a cycle involving node j, find
the shortest path from j1 to j2 in the graph (edge weights are discussed in Section 3.4.2).
To find the most violated cycle inequality overall, considering all cycles, repeat this for
every node (e.g., also look for the shortest path from k1 to k2). The red and blue paths
demonstrate two different cycle inequalities. The red path, from k1 to k2, denotes the cycle
inequality C = {ki, ij, jk}, F = {jk}. The blue path, from j1 to j2, denotes the cycle
inequality C = {ji, ik, kj}, F = C, i.e. all three edges are cut. Since the paths begin in the
top component and end in the bottom component, each path must have an odd number of
cut edges. Thus, |F | is always odd, as required to obtain a valid inequality.

allow you to “warm start” after tightening the LP with new constraints, using the optimal
solution from the previous LP. For example, when using the dual simplex algorithm, one can
set the basis (the initial vertex) using the previous solution’s basis. We found this method
to be extremely effective, and discuss it further in Section 3.4.3.

There has also been a significant amount of work on designing specialized LP solvers
to solve LP relaxations that arise from graphical models. We briefly mention how to use
the k-ary cycle inequalities within these. One such algorithm is the subgradient method
(e.g., Komodakis et al. (2010)), which solves the dual of the LP relaxation. Although it
is straightforward to include new inequalities in the dual subgradient algorithm, it can be
difficulty to obtain a primal solution, which is necessary to run the separation algorithm.
Nedic & Ozdaglar (2007) show that one way to obtain a primal solution is by averaging the
subgradient vectors. Another such algorithm is the proximal point method, which directly
solves the primal LP relaxation. Ravikumar et al. (2008) give a proximal point algorithm
where the inner loop uses Bregman projections onto the constraint set. It is straightforward
to derive the corresponding projections for the cycle inequalities.4

An alternative approach is to make use of algorithms specifically designed for constraint
sets defined by separation oracles. For example, the ellipsoid algorithm at every iteration
calls a separation oracle to either certify that a point is within the feasible space, or to pro-

4To give the closed-form update for the k-ary cycle inequalities using entropic regularization, one must
make use of Theorem 3.4.1 to first construct a violated inequality where only one partition per variable is
used. This then ensures that all of the variables’ coefficients are 1.

41

0 500 1000
0

5

10

15

20

Amino Acids (Variables)

C
ut

tin
g

P
la

ne
 It

er
at

io
ns

Figure 3-6: MAP for protein side-chain prediction with the Rosetta energy function. Left:
One of the violated k-ary cycle inequalities that we found using the full projection graph.
Right: Number of cutting-plane iterations it took us to find the MAP assignment of each
protein, as a function of the protein length. In each iteration we tighten the relaxation by
adding k-ary cycle inequalities.

vide a hyperplane that separates it from the feasible space. However, ellipsoid is generally
not practical for even medium-sized problems. Interior point algorithms for linear program-
ming, on the other hand, have better theoretical and practical running times. Recent work
has focused on interior point cutting plane algorithms that can make use of a separation
oracle (Mitchell, 2005).

Finally, another possibility is to directly look for violated cycle inequalities in the dual,
rather than attempting to recover a primal solution before running the separation algorithm.
We show how to do this in Chapter 7.

3.4.3 Experiments on Protein Side-Chain Placement

We next applied our algorithm to the problem of predicting protein side-chain configura-
tions. Given the 3-dimensional structure of a protein’s backbone, the task is to predict the
relative angle of each amino acid’s side-chain. The angles are discretized into at most 45
values. Yanover et al. (2006) showed that minimization of the Rosetta energy function cor-
responds to finding the MAP assignment of a non-binary pairwise MRF. They also showed
that the tree-reweighted max-product algorithm (Wainwright et al., 2005a) can be used to
solve the pairwise LP relaxation, and that this succeeds in finding the MAP assignment for
339 of the 369 proteins in their data set. However, the optimal solution to the LP relaxation
for the remaining 30 proteins, arguably the most difficult of the proteins, is fractional.

We use the following strategy to efficiently find violated k-ary cycle inequalities. First,
we begin by using the k-projection graph, which simply has a partition πxii = {xi} (versus
all other states) for every variable i and state xi. We only consider the full projection
graph after satisfying all of the k-ary cycle inequalities that can be obtained from the
k-projection graph. Second, we exclude partitions m = πqi from the projection graphs for
which the corresponding single-node marginals µπm(xm) are integral. This is without making
the relaxation looser, as it can be shown that there cannot be any violated cycle inequality
involving such a partition m.

Using the k-ary cycle inequalities found with just the k-projection graph, we succeeded
in finding the MAP assignment for all proteins except for the protein ‘1rl6’. We show in
Figure 3-6 the number of cutting-plane iterations needed for each of the 30 proteins. In

42

each iteration, we solve the LP relaxation, and, if the solution is not integral, run the
separation algorithm to find violated inequalities. For the protein ‘1rl6’, after 12 cutting-
plane iterations, the solution was not integral, and we could not find any violated cycle
inequalities using the k-projection graph. We then tried using the full projection graph,
and found the MAP after just one (additional) iteration.5 Figure 3-6 shows one of the
cycle inequalities Eq. 3.12 in the full projection graph that was found to be violated. By
Theorem 3.4.1, there must also be a shorter violated inequality. The cut edges indicate the
3 edges in F . The violating µ had µ36(s) = 1

6 for s ∈ {0, 1, 2, 3, 4, 5}, µ38(6) = 1
3 , µ38(4) = 2

3 ,
µ43(s) = 1

6 for s ∈ {1, 2, 4, 5}, µ43(3) = 1
3 , and zero for all other values of these variables.

This example shows that the relaxation given by the full projection graph is strictly tighter
than that of the k-projection graph.

The commercial linear programming solver CPLEX 11.2 solves the pairwise LP relax-
ation using the dual simplex algorithm in under 34 seconds per protein.6 After calling
the separation algorithm, we re-run dual simplex using the previous basis as the starting
point.7 Each subsequent LP took under 1.8 seconds to solve, showing that this “warm
start” technique was extremely effective for protein side-chain placement. Also, the separa-
tion algorithm never took more than 1.3 seconds. We found each protein’s MAP assignment
in under 45 seconds (average: 8 seconds, median: 4 seconds) and, on average, the running
time subsequent to solving the pairwise relaxation (i.e., for tightening the relaxation) was
only 26% of the total time to find the MAP assignment.

Kingsford et al. (2005) found, and we also observed, that CPLEX’s branch-and-cut algo-
rithm for solving integer linear programs also works well for these problems. In particular,
CPLEX succeeds in finding these proteins’ MAP assignments in under 59 seconds (average:
12 seconds, median: 7 seconds). Although we found the dual simplex algorithm to be very
fast for these protein side-chain placement problems (whose LPs are relatively small), we
will see in Section 5.4 that it is slow on larger MRFs, such as those arising from the pro-
tein design problem. Thus, in the subsequent chapters we will develop new algorithms for
solving the LP relaxations.

3.5 Related Work

Recently, several authors have suggested seemingly different approaches to tightening the
pairwise LP relaxation (Globerson & Jaakkola, 2007a; Werner, 2008; Komodakis & Paragios,
2008; Schraudolph & Kamenetsky, 2009; Batra et al., 2010; Schraudolph, 2010). We show
in this section that these approaches can all be viewed as enforcing either cluster or cycle
consistency, and thus correspond to optimizing over a relaxation that is equivalent to the
ones discussed in this chapter.

Werner (2008) proposes tightening the pairwise relaxation with cluster consistency con-
straints, described in Section 2.5.2, and which we show how to efficiently optimize over in
Chapter 5. In their experiments, they illustrate how to tighten the relaxation for a binary
graphical model by adding clusters over length-4 cycles and enforcing consistency between
these clusters and the corresponding edges. This is equivalent to enforcing cycle consistency

5Only three variables had non-integral values, and each of these three had fewer than 6 non-zero values,
so the projection graph remained small.

6All reported running times are using a single CPU of a machine with an Intel Xeon 3 GHz processor.
7In particular, we initialize the slacks (artificial variables) for the new constraints as basic, since they

were previously violated.

43

over the length-4 cycles. As we showed in Sections 3.1 and 3.2, this corresponds to the same
relaxation given by the cycle inequalities (restricted to length-4 cycles). Werner (2008) does
not address the search problem of finding which clusters to use in tightening the relaxation.

Komodakis & Paragios (2008) give an algorithm for tightening the relaxation by a
sequence of cycle-repairing operations. It is straightforward to show that this algorithm
optimizes over the cycle relaxation. In fact, we show in Chapter 7 that, for graphical
models with binary variables, a sequence of two cycle repair operations is equivalent to a
coordinate-descent step on one cycle inequality in the dual of the LP relaxation. For non-
binary graphical models, cycle repair operations are more similar to the method that we
propose in Chapter 5. Komodakis & Paragios (2008) do not address the search problem.

As we discussed in Section 3.1, finding the most likely assignment in a planar Ising model
is well-known to be tractable. Kasteleyn in 1961 showed how to transform this inference
problem into a maximum-weight perfect matching problem that can be solved in polynomial
time using Edmonds’ blossom-shrinking algorithm (Schraudolph & Kamenetsky, 2009). The
cycle relaxation is also exact for planar Ising models, and thus the cutting-plane algorithm
given in Section 3.4.2, which uses cycle inequalities, will give equivalent results.

Globerson & Jaakkola (2007a) consider the problem of approximating the log-partition
function of non-planar binary graphical models by using a decomposition of the graph into
planar graphs that cover the original graph, and then optimizing over the planar graphs’
weightings. In recent work, Schraudolph (2010) gives a similar reweighting approach for the
problem of finding the most likely assignment in non-planar binary graphical models. Both
approaches can be shown to be equivalent to optimizing over a relaxation with one cycle
consistency constraint for every cycle that appears in at least one of the planar graphs used
in the decomposition. Thus, as discussed in Schraudolph (2010), if the planar graphs in the
decomposition make up a cycle basis for the original graph, then this approach is equivalent
to optimizing over the cycle relaxation.

Batra et al. (2010) also consider a decomposition approach, but use only outer-planar
graphs in their decomposition. Thus, they may need many more graphs before obtaining
a cycle basis and being equivalent to the cycle relaxation. We also note that, since outer-
planar graphs have tree-width 2, the maximization over outer-planar graphs (which needs
to be repeatedly performed) is possible to do with dynamic programming, and the resulting
algorithm is very similar to optimizing with triplet clusters (see Chapter 5).

None of the planar graph decomposition approaches address the question of how to
choose a good decomposition. In addition, these approaches were applied only to graphical
models with binary variables. These methods could likely be extended to non-binary models
by using our projection graph technique (Section 3.4). However, this may result in many
more planar graphs being needed in the decomposition.

3.6 Discussion

Cycle consistency is powerful, shown by both our experimental results in Section 3.4.3,
and by the theoretical results of Barahona & Mahjoub (1986) which show that it exactly
gives the marginal polytope for planar Ising models. For graphical models with only binary
variables, the cycle inequalities provide a tractable alternative to explicitly optimizing over
TRI(G), which has O(n3) variables and constraints. Often the pairwise relaxation is close
to tight, with only a few cycles inconsistent in the solution to the pairwise LP relaxation.
In these cases, using the cutting-plane approach and introducing violated cycle inequalities

44

one-by-one may be significantly more efficient than either optimizing over TRI(G) or using
planar graph decompositions.

Although the k-ary cycle inequalities are not as tight as the cycle consistency constraints,
the results in this section motivate an approach whereby the k-ary cycle inequalities are used
to find inconsistent cycles, and then we add a constraint enforcing cycle consistency along
these cycles (e.g., by triangulating and adding triplet clusters. See Figure 3-1). It would
be interesting to show that whenever the pseudomarginals along a cycle are inconsistent
(prior to adding any cycle inequalities along this cycle), there exists some violated k-ary
cycle inequality.

An open problem arising from this work is whether it is possible to design a faster
separation algorithm for the k-ary cycle inequalities. Our algorithm constructs the full
projection graph which has, in the worst case, O(n2k) vertices, where k is the number of
states for each variable. Is it possible to find the most violated k-ary cycle inequality with
a running time that is polynomial in k and n? One direction worth exploring is whether
the separation algorithm from Section 3.4.2 could be modified so that it only implicitly uses
the projection graph.

45

Chapter 4

Solving LP Relaxations via Dual
Decomposition

In the previous chapters, we introduced various LP relaxations for the MAP problem.
Although linear programming can be solved in polynomial time using interior point methods
or the ellipsoid algorithm, it is often faster to use heuristic solvers that can take advantage
of the special structure in each LP instance. We observed in Chapter 3.4.3 that we could
quickly solve the pairwise LP relaxation using the dual simplex algorithm. The LPs arising
from the protein side-chain placement problem, however, are relatively small – we want
to efficiently solve inference problems on the scale of millions of variables. Yanover et al.
(2006) showed, and we also observed, that off-the-shelf LP solvers (such as dual simplex)
have difficulty solving LPs that arise from these larger graphical models, such as those used
for protein design or stereo vision.

However, inference problems in graphical models have significant structure, such as
sparsity of the graphs, that can be exploited by LP solvers. This chapter addresses an
alternative approach to solving LP relaxations which uses the technique of dual decomposi-
tion, or Lagrangian relaxation. With dual decomposition, the original problem is broken up
into smaller subproblems that can be solved exactly using combinatorial algorithms, thus
taking advantage of the structure of the LP. One simple decomposition into subproblems
is given by the individual nodes and edges, each of which can be independently maximized
efficiently. In models where the variables have large state spaces, this decomposition takes
advantage of the fact that the non-negativity and normalization constraints can be opti-
mized over in closed form.

In recent years, a number of dual LP relaxation algorithms have been proposed, and
these have been demonstrated to be useful tools for solving large MAP problems (Kol-
mogorov, 2006; Werner, 2007; Globerson & Jaakkola, 2008; Komodakis & Paragios, 2008).
These algorithms can all be understood as dual coordinate descent, but operate in differ-
ent duals of the same pairwise LP relaxation, arising from different approaches to dual
decomposition.

We place these dual algorithms under a common framework so that they can be under-
stood as optimizing the same objective, and demonstrate how to change from one represen-
tation to another in a monotone fashion relative to the common objective. This framework
permits us to analyze and extend all the methods together as a group. One of the key
goals in introducing the new framework is to facilitate the design of new algorithms and
modifications that can be used broadly across the different dual formulations.

46

(Dual) LP relaxation!

Optimal assignment!
(Primal) LP relaxation!

θ
µ∗

x*! Marginal polytope!

Figure 4-1: Sketch of the dual of the LP relaxation. By LP duality, the original maximiza-
tion problem (primal) turns into a minimization problem (dual). The dual LP always upper
bounds the primal LP optimum, and is equal to it at optimality. Since the pairwise LP
relaxation is itself an upper bound on the MAP assignment, we obtain the guarantee that
any dual feasible point provides an upper bound on the value of the MAP assignment.

Many graphical models have larger components that can be exactly solved using com-
binatorial algorithms. One example is a spanning tree of a Markov random field, which
can be solved via dynamic programming. Another example is of a subgraph containing just
attractive binary potentials, which can be solved via graph cuts. In these cases, rather than
using the local updates, we can do global coordinate descent steps using the combinatorial
algorithm as a black box. We demonstrate this for spanning trees, where we show that a
combinatorial algorithm can be used to perform a block coordinate descent step for all of
the dual variables involved in the spanning tree. The resulting block update takes linear
time in the size of the tree, and closely resembles max-product.

We exemplify the flexibility of the common framework by providing a monotone version
of the TRW algorithm that makes use of the new tree-block update. Moreover, we discuss
parallel yet monotone update schemes for the distributed coordinate descent steps.

Finally, the algorithms are only as good as their ability to reconstruct a MAP assignment
(primal solution) from the dual optimal solution. We provide conditions for when the MAP
assignment can and cannot be found from the dual solutions. The analysis applies to all of
the dual algorithms.

This chapter is based in part on material previously published in Sontag & Jaakkola
(2009).

4.1 Dual Decomposition for LP Relaxations

In this section we introduce a common framework for understanding several dual linear
programs corresponding to LP relaxations. All of the dual LPs that we will discuss in
Section 4.1.1 can be viewed as minimizing the following function,

J(f) =
∑

i

max
xi

fi(xi) +
∑

ij∈E
max
xi,xj

fij(xi, xj) (4.1)

over possible decompositions of the original potential function θ(x) to single node fi(xi)
and pairwise fij(xi, xj) potentials. The necessary constraint on these potentials is that
they define sup-reparameterizations,

F (θ) =

{
f : ∀x,

∑

i

fi(xi) +
∑

ij∈E
fij(xi, xj) ≥

∑

ij∈E
θij(xi, xj)

}
, (4.2)

47

as this guarantees that J(f) provides an upper bound on the value of the MAP assignment,
θ(x∗). In this chapter, we use the notation f(x) to denote fi(xi) +

∑
ij∈E fij(xi, xj), and

θ(x) to denote
∑

ij∈E θij(xi, xj).
Without any other constraints on F (θ), the optimum of this LP would give the MAP

value, i.e.

max
x

θ(x) = min
f∈F (θ)

J(f). (4.3)

To see this, first note that J(f) ≥ maxx f(x). The constraints given by F (θ) guarantee
that f(x) ≥ θ(x), which implies that J(f) ≥ maxx θ(x), for all f . We then show that
the inequality is tight by demonstrating a feasible solution f∗ ∈ F (θ) that attains the
MAP value. One example is given by f∗ij(xi, xj) = 1

|E| maxx\{xi,xj}
{∑

ij∈E θij(xi, xj)
}

and

f∗i (xi) = 0.
The optimization problem minf∈F (θ) J(f), used by Komodakis & Paragios (2008), has

one constraint for every assignment x ensuring that the reparameterization’s value on x is
at least as large as θ(x). Not surprisingly, finding the optimum of this LP is NP-hard.

The key to understanding the different LP formulations are the additional constraints
that are imposed on F (θ). It can be shown that simply changing the inequality constraint
in Eq. (4.2) to an equality constraint would result in this being the dual of the pairwise
relaxation. In the remainder of this section, we will specify three different but related
constrained classes, each of which is known to correspond to a (different) dual of the pairwise
LP relaxation. Thus, all of these have the same optimal value when maximizing J(f) over
them. In Section 4.1.1 we give a proof of these equivalences using a different approach, that
of monotonic transformations between the classes.

The first class, FL(θ), is a simple reparameterization in terms of single node potentials:

FL(θ) =

{
f : ∃{δji(xi)} s.t.

fi(xi) =
∑

j∈N(i) δji(xi),

fij(xi, xj) = θij(xi, xj)− δji(xi)− δij(xj),

}
(4.4)

The single node “messages” δji(xi) and δij(xj) are subtracted from the edge terms and added
to the node terms so as to maintain a valid reparameterization:

∑
i fi(xi)+

∑
ij∈E fij(xi, xj) =∑

ij∈E θij(xi, xj) for all x. Note that, although the graph is undirected, we assume that
the edges ij ∈ E have a canonical ordering of the variables so that, e.g., δij(xj) refers to a
different quantity than δji(xi).

We show in Appendix A.1 that minf∈FL(θ) J(f) is the dual of the pairwise LP relax-
ation given by Eq. 2.11 and Eq. 2.10. FL(θ) is the same dual linear program formulation
introduced by Schlesinger et al. in 1976 and optimized by the max-sum diffusion algorithm
(see Werner, 2007, and references within).

We also introduce a restricted version of FL(θ) where the single node potentials are
identically zero: fi(xi) =

∑
j∈N(i) δji(xi) = 0. This corresponds to an additional constraint

on how δji(xi) can be chosen, i.e., they must sum to zero around each node. We call this
set of single node (zero) and pairwise potentials FL,E(θ) as the objective only depends on
the edges. Clearly, FL,E(θ) ⊆ FL(θ). An algorithm similar to max-sum diffusion can be
given to optimize this representation.

Finally, we introduce a complementary class where the edge terms are zero and the

48

FL(θ)

FL,V (θ) FMPLP (θ)

FL,E(θ)

Figure 4-2: Monotone transformations between different representations.

fi(xi) are defined in terms of constrained “messages” δji(xi) as follows:

FL,V (θ)=

{
f :

fi(xi) =
∑

j∈N(i) δji(xi)

fij(xi, xj) = 0
δji(xi) + δij(xj) ≥ θij(xi, xj)

}
(4.5)

It is easy to see that FL,V (θ) ⊆ F (θ). However, in general, potentials in FL,V (θ) are not
members of FL(θ). Minimizing J(f) subject to f ∈ FL,V (θ) is the dual formulation given
by Komodakis & Paragios (2008). It is also closely related to the dual given by Globerson
& Jaakkola (2008).

4.1.1 Relating the Different Dual Formulations

We now relate each of the dual LPs in a monotone fashion, showing constructively that we
can move from one representation to another while not increasing the common objective
J(f). We will show another example of this in Section 4.3.2 for the TRW dual. One of our
goals is to clarify the relationship between the different dual formulations and algorithms.
In particular, in designing new algorithms one often comes up with a new dual formulation,
and it is important to be able to quantify how tight the upper bound provided by the new
dual is compared to other well-known relaxations. The monotone transformations presented
here can be viewed as a new proof technique for showing this.

Some algorithms, such as the tree block update that we present in Section 4.3, can be
conveniently formulated for one of the representations, but because of these results, are
applicable to the others as well. In addition, we could smoothly transition between the
different representations throughout the optimization of the dual.

These transformations are easiest to illustrate by referring to the messages δ = {δji(xi)}
used in the definitions of each of the classes FL(θ), FL,E(θ), and FL,V (θ). Recall that FL(θ)
puts no constraints on the messages δ, while FL,E requires that

∑
j∈N(i) δji(xi) = 0, and

FL,V requires that δji(xi) + δij(xj) ≥ θij(xi, xj).
The same messages, when used to construct potentials for two different classes (assuming

the messages satisfy the constraints for both of these classes), can be used to identify
members of both classes. However, the potentials will be different. For example, fδ ∈
FL,V (θ) has pairwise terms identically zero, while the pairwise terms of f ′δ ∈ FL(θ) are of
the form f ′ij(xi, xj) = θij(xi, xj)− δji(xi)− δij(xj).

The transformations are specified in the following propositions, and are illustrated in
Figure 4-2. The transformations resemble the sequential updates found in various message
passing algorithms, but are generally weaker in terms of the effect on the objective. We
begin with a simple transformation that removes the single node functions fi(xi). The

49

notation f δi (xi) refers to the single node potential for the reparameterization fδ.

Proposition 4.1.1. Consider any fδ ∈ FL(θ) with messages δji(xi). Then f ′δ′ ∈ FL,E(θ),
defined by messages

δ′ji(xi) = δji(xi)−
1

|N(i)|
∑

k∈N(i)

δki(xi) (4.6)

satisfies J(fδ) ≥ J(f ′δ′).

Proof. The constraint
∑

j∈N(i) δ
′
ji(xi) = 0 is satisfied. The transformation is monotone

because

J(fδ) =
∑

i

|N(i)|max
xi

f δi (xi)

|N(i)| +
∑

ij∈E
max
xi,xj

f δij(xi, xj)

≥
∑

ij∈E
max
xi,xj

{
f δi (xi)

|N(i)| +
f δj (xj)

|N(j)| + f δij(xi, xj)

}
= J(f ′δ′)

where we split up the node potentials, then combined maximizations (monotonic by con-
vexity of max).

We can also push all the information into the single node terms, effectively removing
the edge functions fij(xi, xj), as shown below.

Proposition 4.1.2. Consider any fδ ∈ FL(θ) or fδ ∈ FL,E(θ) with messages δji(xi). Then
f ′δ′ ∈ FL,V (θ), defined by

δ′ji(xi) =
1

2
δji(xi) +

1

2
max
xj

{
θij(xi, xj)− δij(xj)

}
(4.7)

satisfies J(fδ) ≥ J(f ′δ′).

Proof. We first show that δ′ satisfies the constraint for FL,V (θ). For any ij ∈ E, x̂i, x̂j ,

δ′ji(xi) ≥
1

2
δji(xi) +

1

2
θij(xi, x̂j)−

1

2
δij(x̂j) ,

δ′ij(xj) ≥
1

2
δij(xj) +

1

2
θij(x̂i, xj)−

1

2
δji(x̂i) .

Thus, by summing these and considering the setting xi = x̂i, xj = x̂j , we obtain δ′ji(x̂i) +
δ′ij(x̂j) ≥ θij(x̂i, x̂j), as desired. To show that J(fδ) ≥ J(f ′δ′), first define

gδi (xi) =
∑

j∈N(i)

(
1

2
max
xj
{θij(xi, xj)− δij(xj)} −

1

2
δji(xi)

)
.

50

We then split the edge potential in two, giving

J(fδ) =
∑

i

max
xi

f δi (xi) +
∑

i

∑

j∈N(i)

1

2
max
xi,xj

f δij(xi, xj)

=
∑

i

max
xi

f δi (xi) +
∑

i

∑

j∈N(i)

max
xi

(
1

2
max
xj
{θij(xi, xj)− δij(xj)} −

1

2
δji(xi)

)

≥
∑

i

max
xi

f δi (xi) +
∑

i

max
xi

gδi (xi)

≥
∑

i

max
xi

{
f δi (xi) + gδi (xi)

}

=
∑

i

max
xi




∑

j∈N(i)

δji(xi) +
∑

j∈N(i)

(
1

2
max
xj
{θij(xi, xj)− δij(xj)} −

1

2
δji(xi)

)


= J(fδ′).

Proposition 4.1.3. Consider any fδ ∈ FL,V (θ) with messages δji(xi). Then f ′δ ∈ FL(θ)
defined in terms of the same messages δ, now also modifying edges, satisfies J(fδ) ≥ J(f ′δ).

Proof. The old messages must satisfy the constraint for FL,V (θ), that θij(xi, xj)− δji(xi)−
δij(xj) ≤ 0. Thus, the new edge terms for f ′δ ∈ FL(θ) are all ≤ 0, so maximizing over them
only decreases the objective. The node terms stay the same.

While the transformation given in Proposition 4.1.3 may decrease the objective value,
one can show that adding a constant to each message, in particular δ′ij(xj) =

δij(xj) +
1

2
max
xi,xj
{θij(xi, xj)− δji(xi)− δij(xj)} , (4.8)

results in a f ′δ′ ∈ FL(θ) such that J(fδ) = J(f ′δ′). This now gives an exact mapping from
FL,V (θ), the dual given by Komodakis & Paragios (2008), to FL(θ).

4.1.2 MPLP

A pairwise LP relaxation can also be obtained from the point of view of enforcing consistency
in a directional manner, considering each edge in two different directions. The associated
dual LP corresponds to dividing each edge potential into the associated nodes (Globerson
& Jaakkola, 2008). More precisely, the objective is minf∈FMPLP (θ) J(f), where the class
FMPLP (θ) is given by

{
f :

fi(xi) =
∑

j∈N(i) maxxj βji(xj , xi)

fij(xi, xj) = 0
βji(xj , xi) + βij(xi, xj) = θij(xi, xj)

}
(4.9)

where each edge potential θij(xi, xj) is divided into βji(xj , xi) and βij(xi, xj) for nodes i
and j, respectively.

51

It is straightforward to show that fβ ∈ FMPLP (θ) gives a valid sup-reparameterization
similar to FL,V (θ). The two formulations are indeed closely related. We show below how
to move from one to the other.

Proposition 4.1.4. Consider any fβ ∈ FMPLP (θ) given by the dual variables βji(xj , xi).
Then f ′δ ∈ FL,V (θ), defined by

δji(xi) = max
xj

βji(xj , xi) (4.10)

satisfies J(fβ) = J(f ′δ).

Proof. The objectives are the same because fβi (xi) = f δi (xi). Also, the constraint is satisfied,
since δji(x̂i) + δij(x̂j) ≥ βji(x̂j , x̂i) + βij(x̂i, x̂j) = θij(x̂i, x̂j).

Proposition 4.1.5. Consider any fδ ∈ FL,V (θ) given by the dual variables δji(xi). Then
fβ ∈ FMPLP (θ), defined by

βji(xj , xi) = θij(xi, xj)− δij(xj) (4.11)

βij(xi, xj) = δij(xj) (4.12)

satisfies J(fδ) ≥ J(fβ).

Proof. For any fδ ∈ FL,V (θ), δji(xi)+δij(xj) ≥ θij(xi, xj). Re-arranging, we have θij(xi, xj)−
δij(xj) ≤ δji(xi). Since we defined βji(xj , xi) = θij(xi, xj)−δij(xj), we get that βji(xj , xi) ≤
δji(xi). Since this holds for all xj , we conclude that maxxj βji(xj , xi) ≤ δji(xi).

Also, δij(xj) ≥ maxxi βij(xi, xj) trivially. Therefore, for all i and xi,
∑

j∈N(i) δji(xi) ≥∑
j∈N(i) maxxj βji(xj , xi).

4.2 Coordinate Descent Algorithms

In this section, we describe two algorithms for performing block coordinate descent in
the dual of the pairwise LP relaxation, max-sum diffusion (Schlesinger et al., 1976) and
MPLP (Globerson & Jaakkola, 2008). Although MPLP was originally derived as a block
coordinate-descent algorithm in FMPLP (see Eq. 4.9), it is equivalently viewed as coordinate-
descent in FL. This alternative view allows us to contrast the choices made by these two
different algorithms.

The MPLP updates correspond to taking a block coordinate descent step on J(f) with
respect to all dual variables associated to an edge ij ∈ E, i.e. δij(xj) and δji(xi) for all
values xi, xj . Consider the terms in the dual objective where these variables appear,

J(δij , δji) = max
xi

∑

k∈N(i)

δki(xi) + max
xj

∑

k∈N(j)

δkj(xj) + max
xi,xj

[
θij(xi, xj)− δji(xi)− δij(xj)

]
.

For convenience we definem−ji (xi) =
∑

k∈N(i)\{j} δki(xi) andm−ij (xj) =
∑

k∈N(j)\{i} δkj(xj).
By Jensen’s inequality, we have that

J(δij , δji) ≥ max
xi,xj

[
m−ji (xi) + δji(xi)

]
+
[
m−ij (xj) + δij(xj)

]
+
[
θij(xi, xj)− δji(xi)− δij(xj)

]

= max
xi,xj

[
m−ji (xi) +m−ij (xj) + θij(xi, xj)

]
= Jmin.

52

If the three maximizations in J(δij , δji) are such that there exists some setting of xi, xj that
are in the argmax of all three, then it is easy to see that J(δij , δji) = Jmin, i.e. decrease in
the dual will be zero. Otherwise, we will show that there is a way to set the dual variables
such that J(δ̂ij , δ̂ji) = Jmin. In particular, we set

δ̂ji(xi) = −1

2
m−ji (xi) +

1

2
max
xj

[
m−ij (xj) + θij(xi, xj)

]
(4.13)

δ̂ij(xj) = −1

2
m−ij (xj) +

1

2
max
xi

[
m−ji (xi) + θij(xi, xj)

]
. (4.14)

These updates must be done for all values of xi, xj . The first term of J(δ̂ij , δ̂ji) is then
equal to

max
xi

∑

k∈N(i)

δ̂ki(xi) = max
xi

[
m−ji (xi) + δ̂ji(xi)

]

= max
xi

[
m−ji (xi)−

1

2
m−ji (xi) +

1

2
max
xj

[
m−ij (xj) + θij(xi, xj)

]]

= max
xi

[1

2
m−ji (xi) +

1

2
max
xj

[
m−ij (xj) + θij(xi, xj)

]]

=
1

2
max
xi,xj

[
m−ji (xi) +m−ij (xj) + θij(xi, xj)

]
=

1

2
Jmin

and the second term of J(δ̂ij , δ̂ji) can be shown analogously. We now show that the third

term maxxi,xj

[
θij(xi, xj)− δ̂ji(xi)− δ̂ij(xj)

]
= 0. First, note that it can be simplified to be:

1

2
max
xi,xj

[(
θij(xi, xj) +m−ji (xi)

)
−maxx̂i

(
m−ji (x̂i) + θij(x̂i, xj)

)
+

(
θij(xi, xj) +m−ij (xj)

)
−maxx̂j

(
m−ij (x̂j) + θij(xi, x̂j)

)]

Let g(xi, xj) = θij(xi, xj) +m−ji (xi) and h(xi, xj) = θij(xi, xj) +m−ij (xi). By convexity, we

have that maxxi,xj

[
g(xi, xj)−maxx̂i g(x̂i, xj) + h(xi, xj)−maxx̂j h(xi, x̂j)

]

≤ max
xi,xj

[
g(xi, xj)−max

x̂i
g(x̂i, xj)

]
+ max

xi,xj

[
h(xi, xj)−max

x̂j
h(xi, x̂j)

]

= max
xj

[
max
xi

g(xi, xj)−max
x̂i

g(x̂i, xj)
]

+ max
xi

[
max
xj

h(xi, xj)−max
x̂j

h(xi, x̂j)
]

= 0.

We have thus derived the MPLP updates as block coordinate descent on the dual objective.
The MPLP updates keep all of the dual objective in the single node terms fi(xi), and each
update to edge ij results in maxi fi(xi) = maxj fj(xj), so that, at convergence, the dual
objective is equally shared between all of the single node terms. In the subsequent chapters
of the thesis, we use the MPLP algorithm to solve the dual LP relaxations.

The max-sum diffusion (MSD) algorithm, in contrast, performs block coordinate descent
only for one direction of the dual variables defined on edge ij, e.g. δji(xi) for all xi. Consider

53

1. Obtain max-marginals µ by running max-product on fT = {fi(xi), fij(xi, xj) : ij ∈
T}.

2. Update the parameters for ij ∈ T as follows:

f
(t+1)
i (xi) =

1

n
logµi(xi) (4.16)

f
(t+1)
ij (xi, xj) = logµij(xi, xj)−

nj→i
n

logµi(xi)−
ni→j
n

logµj(xj) (4.17)

Figure 4-3: Max-product tree block update algorithm. n is the number of nodes in tree,
and nj→i is the number of nodes in the subtree of node i with parent j.

the dual objective

J(δji) = max
xi

∑

k∈N(i)

δki(xi) + max
xi,xj

[
θij(xi, xj)− δji(xi)− δij(xj)

]

= max
xi

[
m−ji (xi) + δji(xi)

]
+ max

xi,xj

[
θij(xi, xj)− δji(xi)− δij(xj)

]
.

As before, by convexity and Jensen’s inequality we have that

J(δji) ≥ max
xi

[
m−ji (xi) + max

xj

[
θij(xi, xj)− δij(xj)

]]
= Jmin.

The max-sum diffusion update performs the following, for all xi:

δ̂ji(xi) = −1

2
m−ji (xi) +

1

2
max
xj

[
θij(xi, xj)− δij(xj)

]
. (4.15)

As before, this update can be shown to result in J(δ̂ji) = Jmin, with both terms of J(δ̂ji)
having value 1

2Jmin. With max-sum diffusion, unlike MPLP, at convergence the dual objec-
tive is shared between the edge terms in addition to the single node terms. This difference
results in MSD requiring significantly more iterations to converge compared to MPLP.

Finally, we note that although the dual objective J(f) is convex, it is not strictly convex.
For this reason, although every update results in a monotonic improvement to the dual
objective, it is possible that the dual coordinate descent algorithms converge to a solution
that is not dual optimal. We note, however, that there are variants of these dual coordinate
descent algorithms that can guarantee convergence to the dual optimum. We refer the
reader to Globerson & Jaakkola (2008) and Jojic et al. (2010) for further discussion.

4.3 Block Coordinate Descent using Spanning Trees

Most coordinate-descent algorithms for solving the dual LPs perform local operations on
the messages, updating edge reparameterizations or messages around each node. This is
advantageous for simplicity. However, even when the model is a tree, a large number of

54

local operations may be needed to reach a dual optimal solution. In this section, we provide
block update algorithms for trees, analogous to exact collect-distribute computation on a
tree, but leading to a reparameterization rather than max-marginals.

In each step of the algorithm we isolate a tree out of the current reparameterization
objective and perform a block update for this tree. Such a tree block update can lead
to faster convergence for appropriately chosen trees, and may also help in decoding, as
discussed in Section 4.4.

We give two tree block update algorithms. The first algorithm is shown in Figure 4-3.
Consider any tree structured model specified by node parameters fi(xi), i ∈ T, and edge
parameters fij(xi, xj), ij ∈ T . This tree may have been extracted from the current LP dual
to perform a block update. The algorithm works by running a forward and backward pass
of max-product to compute the max-marginals µij(xi, xj) = maxx\{i,j} Pr(x) for the tree
distribution

Pr(x) =
1

Z(fT)
exp

{∑

i∈T
fi(xi) +

∑

ij∈T
fij(xi, xj)

}
,

and then uses the max-marginals to construct a reparameterization of the original tree

model. After each update, the constant c = log(Z(f
(t)
T)/Z(f

(t+1)
T)) should be added to the

dual objective. This can be found by evaluating f
(t)
T (x)− f (t+1)

T (x) for any assignment x.
This approach uses only the standard max-product algorithm to solve the LP relaxation.

If applied, for example, with stars around individual nodes rather than spanning trees, this
results in one of the simplest dual-coordinate descent algorithms given to date. However,
since the tree block updates are used as part of the overall dual LP algorithm, it is important
to ensure that the effect of the updates is distributed to subsequent operations as effectively
as possible. We found that by instead performing tree block updates directly within the
class of FL(θ) reparameterizations, we obtain significantly faster running times (see Section
4.3.1).

The second block update algorithm, shown in Figure 4-4, finds a set of δji(xi) messages

such that f
(t+1)
T ∈ FL(fT), defined by the δji(xi), minimizes J(fT). This algorithm makes

use of directed trees. We found that choosing a random root works well. The first step is to
send max-product messages from the leaves to the root. Then, on the downward pass, we
do a series of edge reparameterizations, constructing the δji(xi) to ensure that each term in
the objective is maximized by the MAP assignment. (c = 0 for this algorithm.)

Proposition 4.3.1. The tree block procedures given in Figures 4-3 and 4-4 attain the MAP
value for a tree,

max
x

∑

i∈T
f
(t)
i (xi) +

∑

ij∈T
f
(t)
ij (xi, xj) = J(f

(t+1)
T) + c,

Proof. Max-product algorithm. First we show this returns a reparameterization. Recall
that n is the number of nodes in the tree, and nj→i is the number of nodes in the subtree
of node i with parent j. Using the fact that (

∑
j∈N(i) nj→i− 1)/n = |N(i)| − 1, we get that

exp{
∑

i∈T
f
(t+1)
i (xi) +

∑

ij∈T
f
(t+1)
ij (xi, xj)} =

∏

ij∈T
µij(xi, xj)

∏

i∈T
µi(xi)

1−|N(i)| , (4.21)

which, by a special case of the junction-tree theorem, can be shown to be proportional to
Pr(x).

55

1. Select a root, and orient the edges away from it.

2. Evaluate max-marginal messages toward the root (collect operation). For each
j ∈ ch(i),

mj→i(xi) = max
xj

[
fij(xi, xj) + fj(xj) +

∑

k∈ch(j)

mk→j(xj)

]
. (4.18)

3. Reparameterize away from the root (distribute operation). Set ñi = ni. For each
j ∈ ch(i):

(a) Define m−j(xi) =
∑

k∈N(i)\jmk→i(xi).

(b) Set

δji(xi) = −nj
ñi

[
m−j(xi) + fi(xi)

]
+
ñi − nj
ñi

max
xj

[
fij(xi, xj) + fj(xj) +m−i(xj)

]
,

δij(xj) =
nj − ñi
ñi

[
m−i(xj) + fj(xi)

]
+
nj
ñi

max
xi

[
fij(xi, xj) + fi(xi) +m−j(xi)

]
.

(c) Re-define upward mj→i(xi) = δji(xi).
Define downward mi→j(xj) = δij(xj). Change size of subtree: ñi = ñi − nj .

4. Update the parameters for ij ∈ T as follows:

f
(t+1)
i (xi) = fi(xi) +

∑

j∈N(i)

δji(xi) (4.19)

f
(t+1)
ij (xi, xj) = fij(xi, xj)− δji(xi)− δij(xj) (4.20)

Figure 4-4: Sequential tree block update algorithm. ch(i) denotes the children of i in the
tree, and N(i) all neighbors of i in the tree. Also, ni is the number of nodes in the subtree
rooted at i.

Let x∗ be the maximizing assignment of f
(t)
T (x). Since f

(t+1)
i (xi) was defined as a max-

marginal, we have that x∗i is a maximizer of f
(t+1)
i (xi). We now show that x∗i , x

∗
j also

maximizes f
(t+1)
ij (xi, xj). Note that f

(t+1)
ij (x∗i , x

∗
j) = 0 since µij(x

∗
i , x
∗
j) = µi(x

∗
i) and nj→i+

ni→j = n. However, µij(xi, xj) ≤ µi(xi) for any xi, xj , which implies that f
(t+1)
ij (xi, xj) ≤ 0.

Sequential algorithm. For a tree, the pairwise LP relaxation is tight, so the dual
optimal reparameterization necessarily attains the MAP value. Let δi = {δji(xi)}j∈N(i)

denote the reparameterization around node i. We can write the objective as a function of the

messages as J(f
(t+1)
T) = J(δ1, . . . , δn). Set node 1 as the root. The collect operation in the

algorithm corresponds to evaluating minδ2,...,δn J(δ1, . . . , δn), which can be done recursively
and corresponds to evaluating max-marginal messages. Note that the LP relaxation is
also tight for each subtree. δ1 is then solved exactly at the root node via a series of edge
reparameterizations. In the distribute phase of the algorithm, we iteratively instantiate each
reparameterization by minimizing minδi+1,...,δn J(δ̂1, . . . , δ̂i−1, δi, δi+1, . . . , δn) with respect to

56

0 10 20 30 40 50 60 70
140

150

160

170

180

190

200

210

Iterations

O
bj

ec
tiv

e
va

lu
e

MPLP (edge updates)
Sequential tree updates

Figure 4-5: Number of iterations to find MAP assignment on a randomly generated 10 ×
10 Ising model with attractive potentials, comparing the sequential tree block algorithm
(Figure 4-4) to the edge based MPLP algorithm (Globerson & Jaakkola, 2008).

δi when δ̂1, . . . , δ̂i−1 are already fixed.

4.3.1 Empirical Evaluation

In this section we give an empirical evaluation of the sequential tree block update algorithm
on Ising models, a special case of Markov random fields with variables xi ∈ {−1,+1}, where
the joint distribution is given by

log Pr(x1, . . . , xN) ∝
∑

i

λixi +
∑

ij∈E
λijxixj . (4.22)

We considered grid structured Ising models with 100 variables (i.e., a 10 × 10 grid) and
attractive couplings, where we fix λij = 1 for all edges. It can be shown that the pairwise LP
relaxation is tight whenever λij ≥ 0. The single node field terms were randomly generated
according to λi ∼ U [−.8, .8].

We performed the tree block updates using spanning trees that are combs of the grid:
either all of the rows plus one column (left/right), or all of the columns plus one row
(top/down). We cycled through all possible combs, alternating between tree updates on
left/right and top/down combs. Each update used a random root. Each iteration corre-
sponds to one tree block update on a comb. For comparison, we solved the same problems
using MPLP. One iteration for MPLP corresponds to performing the edge updates once for
each edge in the comb.

Averaged over ten trials, we found that the tree block update algorithm solves the LP
relaxation (up to an integrality gap of 2e−4) in 16.5 iterations, compared to 58.3 iterations
for MPLP. If we look at the number of iterations for each of the algorithms to first find
the MAP assignment, we see that the tree block update algorithm takes only 10 iterations
compared to MPLP’s 55.5 iterations.

57

In Figure 4-5 we show the convergence of both algorithms on one of the randomly
generated examples. The top line shows the dual objective, and the bottom line shows the
value of the integer assignment that is decoded (using a heuristic single node decoding) at
each iteration. The tree block update significantly improved the convergence time.

4.3.2 A Monotone Version of TRW

The tree-reweighted max-product algorithm (TRW) (Wainwright et al., 2005a) for MAP
problems iteratively combines inference operations carried out on trees of the graph to
solve the pairwise LP relaxation. In this section, we show that by using the tree block
updates, the TRW algorithm becomes monotone in the dual LP.

Consider a collection of trees T of G, and a distribution over these trees given by ρ(T).
For example, we could give equal weight to a few trees that together cover all of the edges in
the graph. The dual variables are parameter vectors θT (x) =

∑
i∈T θ

T
i (xi)+

∑
ij∈T θ

T
ij(xi, xj)

for each tree T . The TRW dual problem is to minimize
∑

T ρ(T) maxx θ
T (x) subject to the

reparameterization constraint
∑

T ρ(T)θT (x) = θ(x).
The tree-based update algorithm for TRW given by Wainwright et al. (2005a) is shown

below. ρij denotes the probability that an edge ij ∈ E is part of a tree drawn from the
distribution ρ(T), and ρi denotes the probability that a node i ∈ V is part of a tree drawn
from the distribution ρ(T) (this is less than 1 if some trees are not spanning).

1. For each tree T , set θTi (xi) = θi(xi)/ρi and θTij(xi, xj) = θij(xi, xj)/ρij .

2. Reparameterize each tree distribution. TRW does this by computing max-marginals
µ for Pr(x; θT) using max-product, then setting

θ̂Ti (xi) = log µi(xi) (4.23)

θ̂Tij(xi, xj) = log
µij(xi, xj)

µi(xi)µj(xj)

3. Average the solutions, and return to Step 1:

θ̂i(xi) =
∑

T :i∈T
ρ(T)θ̂Ti (xi) (4.24)

θ̂ij(xi, xj) =
∑

T :ij∈T
ρ(T)θ̂Tij(xi, xj).

Kolmogorov (2006) showed that TRW does not monotonically solve the dual LP. However,
if in Step 2 we replace max-product with either of our tree block update algorithms (Figure
4-3 or 4-4) applied to θT , we obtain a monotone algorithm. With the max-product tree
block update, the new algorithm looks nearly identical to TRW. The following proposition
shows that these modified TRW steps are indeed valid and monotone with respect to the
common objective J(θ).

Proposition 4.3.2. Steps 1-3 described above, using block tree updates, satisfy

J(θ)
1
=

∑

T

ρ(T)J(θT) ≥
∑

T

ρ(T) max
x

θT (x)

2
=

∑

T

ρ(T)J(θ̂T)
3
≥ J(θ̂) (4.25)

58

where θ̂ =
∑

T ρ(T)θ̂T ∈ FL(θ). Equality in Step 3 would correspond to achieving weak tree
agreement (shared maximizing assignment).

Proof. The first equality J(θ) =
∑

T ρ(T)J(θT) follows directly by substitution. Each
J(θT) ≥ maxx θ

T (x) since J(θT), for θT ∈ FL(θT), is a dual LP relaxation and therefore
its value upper bounds the corresponding MAP value for the tree T with parameters θT .
The pairwise LP relaxation is exact for any tree and therefore the dual objective attains
the MAP value maxx θ

T (x) = minθ∈FL(θT) J(θ) = J(θ̂T). J(θ) is a convex function as a
point-wise maximum of potentials and therefore the last inequality corresponds to Jensen’s
inequality. Jensen’s inequality is tight only if all the tree models being averaged have at
least one common maximizing local assignment for each pairwise and single node potential
terms. This is weak tree agreement. The fact that θ̂ ∈ FL(θ) follows from Eq. (4.24) and
because the block tree updates return a θ̂T that is a reparameterization of θT .

A monotone version of the algorithm, known as TRW-S, was introduced by Kolmogorov
(2006). One key difference is that in Step 3, only one node or one edge is averaged, and
then max-product is run again on each tree. TRW-S is monotone in

∑
T ρ(T) maxx θ

T (x),
but may not be for J(θ), depending on the reparameterization used. By using a slightly
different weighting scheme, the algorithm in Figure 4-3 can be used to give an optimal
reparameterization where one edge st has θ̂Tst(xs, xt) = logµTst(xs, xt) (analogously for one
node). Both TRW-S and this algorithm give the same solution for θ̂st(xs, xt). However,
TRW-S would stop here, while our algorithm also averages over the other edges, obtaining
a possibly larger (and never smaller) decrease in the dual objective. When the trees are
monotonic chains, Kolmogorov (2006) shows how TRW-S can be implemented much more
efficiently.

We observed empirically that using the tree block update algorithms sequentially to
solve FL(θ) converges more quickly than using them in parallel and averaging. However,
the modified TRW algorithm is ideally suited for parallel processing, allowing us in Step
2 to independently find the optimal reparameterizations for each tree. By modifying the
particular choice of trees, reparameterizations, and averaging steps, this framework could
be used to derive various new parallel coordinate descent algorithms.

Our approach is also related to Komodakis et al. (2010), who use a subgradient method
to optimize the TRW dual problem. The subgradient approach also alternates between
solving the MAP problem for each tree and reparameterizing the distribution. However,
although the subgradient approach uses max-product to solve the MAP problem, it only
uses the most likely assignment within the update, instead of the full dual solution as we do
here. Our approach could be considered the coordinate-descent algorithm that corresponds
to their subgradient method.

4.4 Primal Recovery

If the pairwise LP relaxation has a unique optimal solution and it is the MAP assignment, we
could find it simply by solving the primal linear program. We use dual algorithms for reasons
of efficiency. However, the dual solution is only useful if it helps us find the MAP assignment.
In this section, we characterize when it is possible to decode the MAP assignment from the
dual solution, using the common framework given by the dual minf∈FL(θ) J(f). By using
the transformations of the previous section, these results can be shown to apply to all of
the algorithms discussed in this chapter.

59

Duality in linear programming specifies complementary slackness conditions that every
primal and dual optimal solution must satisfy. In particular, it can be shown that for any
optimal µ∗ for the pairwise LP relaxation given by Eq. 2.11 and any optimal f∗ for the dual
minf∈FL(θ) J(f),

µ∗i (x̂i) > 0 ⇒ f∗i (x̂i) = max
xi

f∗i (xi), (4.26)

µ∗ij(x̂i, x̂j) > 0 ⇒ f∗ij(x̂i, x̂j) = max
xi,xj

f∗ij(xi, xj).

We will use these complementary slackness conditions to give conditions under which we
can recover the MAP assignment from the dual optimal solution.

Definition 4.4.1. We say that f ∈ FL(θ) locally supports x∗ if fij(x
∗
i , x
∗
j) ≥ fij(xi, xj) for

all ij ∈ E, xi, xj, and fi(x
∗
i) ≥ fi(xi) for all i ∈ V, xi.

Our claims refer to the pairwise LP relaxation being tight for some θ. By this, we mean
that the dual value minf∈FL(θ) J(f) = J(f∗) equals the MAP value. As a result, each MAP
assignment (there can be more than one) represents a primal optimal solution. In addition,
there may be fractional solutions that are also primal optimal, i.e., attain the MAP value.

Lemma 4.4.2. When the pairwise LP relaxation is tight, every optimal f∗ ∈ FL(θ) locally
supports every MAP assignment x∗. Conversely, if any dual feasible f ∈ FL(θ) supports an
assignment x∗, then f is optimal, the LP is tight, and x∗ is a MAP assignment.

Proof. The lemma is a simple consequence of complementary slackness. To show the first
part, apply Eq. (4.26) to each MAP assignment x∗. Since µ∗ij(x

∗
i , x
∗
j) = 1 for the corre-

sponding primal solution, x∗i , x
∗
j must maximize f∗ij(xi, xj). The second part follows from

the fact any primal solution that f ∈ FL(θ) supports attains the same value.

Lemma 4.4.2 is closely related to decodability results for convex max-product BP (Weiss
et al., 2007). The beliefs at the fixed-points of convex max-product BP can be shown to
give a dual feasible (not necessarily optimal) f ∈ FL(θ) with the property that, if the beliefs
support an assignment, f does too. Thus, this must be a MAP assignment. Our result also
characterizes when it is possible to find the MAP assignment with convex max-product BP
by looking for supporting assignments: only when the LP relaxation is tight.

The search for a locally supporting assignment may be formulated as a satisfiability
problem, satisfiable only when the LP is tight. If the variables are binary, the corresponding
2SAT problem can be solved in linear time (Johnson, 2008). However, when some variables
are non-binary, finding a satisfying assignment may be intractable. We now look at a setting
where reading off the solution from f∗ is indeed straightforward.

Definition 4.4.3. We say that f ∈ FL(θ) is node locally decodable to x∗ if fi(x
∗
i) > fi(xi)

for all i, xi 6= x∗i .

The definition for edge local decodability is analogous. If solving the dual problem
results in a locally decodable solution, then we can easily construct the MAP assignment
from each node or edge (cf. Lemma 4.4.2). However, in many cases this cannot happen.

Lemma 4.4.4. A dual optimal f∗ ∈ FL(θ) can be node or edge locally decodable only if the
MAP assignment is unique and the pairwise LP is tight.

60

Proof. Either node or edge local decodability suffices to uniquely determine a supporting
assignment. If any dual feasible f ∈ FL(θ) supports an assignment, then the assignment
attains the dual value, thus the LP must be tight. When the LP is tight, the optimal f∗

has to support all the MAP assignments by Lemma 4.4.2. Thus f∗ can be locally decodable
only if the MAP assignment is unique.

But, how can we find a locally decodable solution when one exists? If the MAP assign-
ment x∗ is unique, then evaluating max-marginals is one way to get a locally decodable
solution f∗ ∈ F (θ). Under some conditions, this holds for a dual optimal f∗ ∈ FL(θ) as
well.

Theorem 4.4.5. Assume the MAP assignment x∗ is unique. Then,

1. if the pairwise LP is tight and has a unique solution, there exists f∗ ∈ FL(θ) that is
locally decodable to x∗.

2. for a tree structured model, the tree block updates given in Section 4.3 construct f∗ ∈
FL(θ) which is node locally decodable.

Proof. The first claim follows from strict complementary slackness (Vanderbei, 2007). We
can always find a primal-dual pair (µ∗, f∗) that satisfies the implication in Eq. (4.26) both
ways. Since µ∗ is unique, it corresponds to the unique MAP assignment x∗, and the strict
complementary slackness guarantees that f∗ ∈ FL(θ) is locally decodable.

The second claim trivially holds for the max-product tree block update since each

f
(t+1)
i (xi) is given by the single node max-marginals and MAP is unique.

We now show the second claim for the sequential algorithm. Assume without loss of
generality that the node potentials fi(xi) = 0. The block tree update contracts a tree into an
edge by propagating max-marginals towards edge ij. Let θ̂ij(xi, xj) be

∑
k∈N(i)\jmk→i(xi)+

fij(xi, xj)+
∑

k∈N(j)\imk→j(xj). Since the MAP assignment is unique, θ̂ij(xi, xj) must have
the unique maximizer x∗i , x

∗
j . The edge reparameterization sets δij(xj) and δji(xi) so that

the updated single node term θ̂i(xi) =
∑

k∈N(i)\jmk→i(xi) + δji(xi) ∝ maxxj θ̂ij(xi, xj).

Thus, θ̂i(xi) uniquely decodes to x∗i .
Next we show that the subtrees associated with i and j, after setting δji(xi) and δij(xj),

also uniquely decode to x∗. The subtree rooted at i has a max-marginal of θ̂i(xi) for node
i. Thus, the MAP assignment for this subtree must have xi = x∗i . The remaining variables’
maximizers are independent of how we set δji(xi) once the assignment to xi is fixed, and so
must also be maximized at x∗. We can now apply this argument recursively. After the last

edge incident on node i is updated, θ̂i(xi) equals f
(t+1)
i (xi), maximized at x∗i .

A slightly different tree block update constructs a solution that is edge locally decodable.
The above theorem shows that we can efficiently construct locally decodable dual solutions
for trees. This could also be useful for non-tree models if repeated applications of the
tree block updates move towards solutions that are locally decodable. An interesting open
problem is to design algorithms that are guaranteed to return a solution that is locally
decodable, for general graphs.

61

4.5 Discussion

We have placed several dual formulations of the pairwise LP relaxation for MAP under a
unified functional view. As a result, algorithms for these can be understood as optimizing
a common objective, and analyzed theoretically as a group.

There are a number of immediate generalizations of this work. For example, the general-
ization to non-pairwise models is straightforward. Also, if the pairwise LP relaxation is not
tight, we may wish to include higher-order cluster consistency constraints. The functional
characterization can be extended to this setting, with similar equivalence transformations
as presented here. The tree-block update scheme would then be given for hyper-trees.

Cycles are typically difficult to fully optimize using local block coordinate-descent algo-
rithms. We believe that efficient block updates, similar to those given in this chapter, can
be derived directly for cycles instead of trees. Finally, much of our work here contributes
to inference problems involving marginals as well.

This framework has recently been used by Yarkony et al. (2010) to give a new dual
coordinate-descent algorithm for solving the LP relaxation. The main insight for the new
algorithm is that one can duplicate some of the nodes in the graph (a “splitting” operation),
thereby obtaining a spanning tree involving all edges for which we can do a block coordinate-
descent step using dynamic programming. The algorithm can be viewed as moving back
and forth between J(f) and this spanning tree representation.

62

Chapter 5

Tightening LP Relaxations for
MAP using Message Passing

We showed in the previous chapter how the pairwise LP relaxation can be efficiently solved
using message-passing algorithms that operate in the dual of the LP relaxation. Using
these algorithms, we can now solve LP relaxations of large-scale problems where standard,
off-the-shelf LP solvers could not previously be used. However, despite the success of LP
relaxations, there are many real-world problems for which the pairwise LP relaxation is of
limited utility in solving the MAP problem. For example, in a database of 97 protein design
problems studied in Yanover et al. (2006), the pairwise LP relaxation allowed finding the
MAP in only 2 cases.

One way to obtain tighter relaxations is to use cluster-based LP relaxations, where local
consistency is enforced between cluster marginals (c.f. Section 2.5.2). As the size of the
clusters grow, this leads to tighter and tighter relaxations. Furthermore, message-passing
algorithms can still be used to solve these cluster-based relaxations, with messages now
being sent between clusters and not individual nodes. Unfortunately, the computational
cost increases exponentially with the size of the clusters, and for many real-world problems
this severely limits the number of large clusters that can be feasibly incorporated into the
approximation. For example, in the protein design database studied in Yanover et al. (2006),
each node has around 100 states, so even a cluster of only 3 variables would have 106 states.
Clearly we cannot use too many such clusters in our approximation.

In this chapter we propose a cluster-pursuit method where clusters are incrementally
added to the relaxation, and where we only add clusters that are guaranteed to improve
the approximation. Similar to the work of Welling (2004) who worked on region-pursuit for
sum-product generalized belief propagation (Yedidia et al., 2005), we show how to use the
messages from a given cluster-based approximation to decide which cluster to add next. In
addition, by working with a message-passing algorithm based on dual coordinate descent,
we monotonically decrease an upper bound on the MAP value. Unlike the cutting-plane
algorithm from Chapter 3, which incrementally added constraints to the relaxation, the new
dual algorithm is a column generation method, incrementally adding new variables as well
as constraints.

This chapter highlights a key advantage of the LP-relaxation based message-passing
algorithms over max-product belief propagation (BP). Although BP is known to give good
results in many cases when the pairwise LP relaxation is tight, such as for bipartite match-
ing (Bayati et al., 2008), it gives much worse results in models where there is frustration

63

(Murphy et al., 1999). These are precisely the cases when the pairwise LP relaxation is
not tight. By using a message-passing algorithm that directly solves the LP relaxation, we
have a clear way of improving the approximation, by tightening the relaxation. The strik-
ing result of this chapter is that, for many real-world problems, adding a few well-chosen
constraints allows us to exactly find the MAP assignment. Using these techniques, we are
able to solve nearly all of the protein design problems considered in Yanover et al. (2006).
Such a result would have been inconceivable with BP.

This chapter is based in part on material previously published in Sontag et al. (2008).

5.1 MAP and its LP Relaxation

As in the earlier chapters, we consider graph-structured functions over n discrete variables
{X1, . . . , Xn} of the form

θ(x) =
∑

ij∈E
θij(xi, xj) +

∑

i∈V
θi(xi) . (5.1)

Our goal is to find the MAP assignment, xM , that maximizes the function θ(x).
We showed in Section 2.2 that the MAP problem can be equivalently formulated as a

linear program,
max
x

θ(x) = max
µ∈M(G)

µ · θ , (5.2)

where µ · θ =
∑

ij∈E
∑

xi,xj
θij(xi, xj)µij(xi, xj) +

∑
i

∑
xi
µi(xi)θi(xi) and M(G) is the

marginal polytope, the set of µ that arise from some joint distribution:

M(G) =

{
µ | ∃Pr(x) s.t.

Pr(xi, xj) = µij(xi, xj)
Pr(xi) = µi(xi)

}
. (5.3)

The idea in LP relaxations is to relax the difficult global constraint that the marginals in
µ arise from some common joint distribution. Instead, we enforce this only over some subsets
of variables that we refer to as clusters. More precisely, we introduce auxiliary distributions
over clusters of variables and constrain the edge distributions µij(xi, xj) associated with
each cluster to arise as marginals from the cluster distribution.1 Let C be a set of clusters
such that each c ∈ C is a subset of {1, . . . , n}, and let τc(xc) be any distribution over the
variables in c. Define MC(G) as

MC(G) =




µ ≥ 0

∣∣∣∣∣∣∣∣∣
∃τ ≥ 0,

∑
xj
µij(xi, xj) = µi(xi) ∀ij ∈ E, xi∑

xi
µij(xi, xj) = µj(xj) ∀ij ∈ E, xj∑

xi
µi(xi) = 1 ∀i ∈ V∑

xc\i,j
τc(xc) = µij(xi, xj) ∀c, i, j ∈ c s.t. ij ∈ E, xi, xj





It is easy to see that MC(G) is an outer bound on M(G), namely MC(G) ⊇ M(G). As
we add more clusters to C the relaxation of the marginal polytope becomes tighter (c.f.
Section 2.5.2). Note that similar constraints should be imposed on the cluster marginals,
i.e., they themselves should arise as marginals from some joint distribution. To exactly
represent the marginal polytope, such a hierarchy of auxiliary clusters would require clusters

1Each edge may participate in multiple clusters.

64

of size equal to the treewidth of the graph. In this chapter, we will not generate such a
hierarchy but instead use the clusters to constrain only the associated edge marginals.

5.1.1 Choosing Clusters in the LP Relaxation

Adding a cluster to the relaxationMC(G) requires computations that scale with the number
of possible cluster states. The choice of clusters should therefore be guided by both how
much we are able to constrain the marginal polytope, as well as the computational cost of
handling larger clusters. We will consider a specific scenario where the clusters are selected
from a pre-defined set of possible clusters C0 such as triplet clusters. However, we will
ideally not want to use all of the clusters in C0, but instead add them gradually based on
some ranking criterion.

The best ranking of clusters is problem dependent. In other words, we would like
to choose the subset of clusters which will give us the best possible approximation to a
particular MAP problem. We seek to iteratively improve the approximation, using our
current beliefs to guide which clusters to add. The advantage of iteratively selecting the
clusters is that we add them only up to the point that the relaxed LP has an integral
solution.

In Chapter 3 we suggested an approach for incrementally adding valid inequalities for the
marginal polytope using a cutting-plane algorithm in the primal LP. However, the message-
passing algorithms that we described in Chapter 4 solve the dual of the LP relaxation, and
it is often difficult to obtain a primal solution to use within the (primal-based) separation
algorithms.

In the next section we present a method that incrementally adds cluster consistency
constraints, but which works exclusively within the dual LP. The key idea is that the dual
LP provides an upper bound on the MAP value, and we seek to choose clusters to most
effectively minimize this bound. This differs from the primal-based separation algorithms,
which attempted to find the most violated inequality. An analogous bound minimization
strategy for cluster consistency constraints is problematic in the primal where we would have
to assess how much less the maximum of the tighter relaxation is due to including additional
variables and constraints. In other words, obtaining a certificate for improvement is difficult
in the primal.

Finally, we can “warm start” our optimization scheme after each cluster addition in
order to avoid re-solving the dual LP. We do this by reusing the dual variables calculated
in the previous iterations which did not have the new clusters.

5.2 Dual LP Relaxation

The obstacles to working in the primal LP lead us to consider the dual of the LP relaxation.
Different formulations of the primal LP have lead to different dual LPs, each with efficient
message-passing algorithms for solving them (c.f. Chapter 4). In this chapter we focus on a
particular dual formulation by Globerson & Jaakkola (2008) which has the advantage that
the message-passing algorithm corresponds to performing coordinate-descent in the dual
LP. Our dual algorithm will address many of the problems that were inherent in the primal
approaches, giving us:

1. Monotonically decreasing upper bound on MAP.

2. Choosing clusters which give a guaranteed bound improvement.

65

3. Simple “warm start” of tighter relaxation.

4. An efficient algorithm that scales to very large problems.

Although we use the dual formulation given by Globerson & Jaakkola (2008), it is
straightforward to give the corresponding algorithm for any of the other duals discussed
in Chapter 4. In Appendix A.2 we describe a different dual formulation that results in a
slightly simpler algorithm than the one described here.

5.2.1 The Generalized MPLP Algorithm

The generalized Max-Product LP (MPLP) message-passing algorithm, introduced in Glober-
son & Jaakkola (2008), decreases the dual objective of the cluster-based LP relaxation at
every iteration. This monotone property makes it ideal for adding clusters since we can
initialize the new messages such that the dual value is monotonically decreased.

Another key advantage of working in the dual is that the dual objective gives us a
certificate of optimality. Namely, if we find an assignment x such that θ(x) is equal to the
dual objective, we are guaranteed that x is the MAP assignment (since the dual objective
upper bounds the MAP value). Indeed, using this property we show in our experiments
that MAP assignments can be found for nearly all of the problems we consider.

We next describe the generalized MPLP algorithm for the special case of clusters com-
prised of three nodes. Although the algorithm applies to general clusters, we focus on
triplets for simplicity, and because these are the clusters used in our experimental results.

MPLP passes the following types of messages:

• Edge to Node: For every edge e ∈ E (e denotes two indices in V) and every node
i ∈ e, we have a message λe→i(xi).

• Edge to Edge: For every edge e ∈ E, we have a message λe→e(xe) (where xe is
shorthand for xi, xj , and i and j are the nodes in the edge).

• Triplet to Edge: For every triplet cluster c ∈ C, and every edge e ∈ c, we have a
message λc→e(xe).

The updates for these messages are given in Figure 5-1. To guarantee that the dual
objective decreases, all messages from a given edge must be sent simultaneously, as well as
all messages from a triplet to its three edges.

The dual objective2 in the Globerson & Jaakkola (2008) formulation that is decreased
in every iteration is g(λ) =

∑

i∈V
max
xi


θi(xi) +

∑

k∈N(i)

λki→i(xi)


+

∑

e∈E
max
xe

[
θe(xe) + λe→e(xe) +

∑

c:e∈c
λc→e(xe)

]
, (5.4)

2We give a slightly simpler – but equivalent – dual than that originally presented in Globerson & Jaakkola
(2008). The first change was to explicitly put the edge potential θe(xe) in the objective. To see this, substitute
λ′ij→ij(xi, xj) = θij(xi, xj) + λij→ij(xi, xj) in Eq. 5.4. The constraint in Eq. 5.5 becomes λij→i(xi) +
λij→j(xj) + λ′ij→ij(xi, xj) ≥ θij(xi, xj). We then obtained inequalities by substituting λij→i(xi) – which
in Globerson & Jaakkola (2008) was defined as maxxj βji(xj , xi) – for βji(xj , xi), and similarly for the
other variables. These two duals can be seen to be equivalent using transformations similar to those of
Section 4.1.2. Also, the updates given in Figure 5-1 can be shown to correspond to coordinate descent in
the new dual using a derivation similar to that of Section 4.2.

66

• Edge to Node: For every edge ij ∈ E and node i (or j) in the edge:

λij→i(xi) ← −2

3

(
λ−ji (xi) + θi(xi)

)
+

1

3
max
xj

[∑

c:ij∈c
λc→ij(xi, xj) + λ−ij (xj) + θij(xi, xj) + θj(xj)

]

where λ−ji (xi) is the sum of edge-to-node messages into i that are not from edge

ij, namely: λ−ji (xi) =
∑

k∈N(i)\j λik→i(xi).

• Edge to Edge: For every edge ij ∈ E:

λij→ij(xi, xj) ← −2

3

∑

c:ij∈c
λc→ij(xi, xj) +

1

3

[
λ−ij (xj) + λ−ji (xi) + θij(xi, xj) + θi(xi) + θj(xj)

]

• Triplet to Edge: For every triplet c ∈ C and every edge e ∈ c:

λc→e(xe) ← −2

3

(
λe→e(xe) +

∑

c′ 6= c
e ∈ c′

λc′→e(xe)
)

+

1

3
max
xc\e

[∑

e′∈c\e

(
λe′→e′(xe′) +

∑

c′ 6= c
e′ ∈ c′

λc′→e′(xe′)
)]

Figure 5-1: The generalized MPLP updates for an LP relaxation with three node clusters.

subject to the constraints:

λij→i(xi) + λij→j(xj) + λij→ij(xi, xj) ≥ 0 ∀ij ∈ E, xi, xj , (5.5)∑

e∈c
λc→e(xe) ≥ 0 ∀ clusters c,xc . (5.6)

In our experiments, we initialize all of the dual variables (messages) to zero, which satisfies
the dual feasibility constraints.

By LP duality, there exists a value of λ such that g(λ) is equal to the optimum of
the corresponding primal LP. Although the MPLP updates decrease the objective at every
iteration, they may converge to a λ that is not dual optimal, as discussed in Globerson &
Jaakkola (2008). However, as we will show in the experiments, our procedure often finds
the exact MAP solution, and therefore also achieves the primal optimum in these cases.

5.2.2 Choosing Clusters in the Dual LP Relaxation

In this section we provide a very simple procedure that allows adding clusters to MPLP,
while satisfying the algorithmic properties in the beginning of Section 5.2.

Assume we have a set of triplet clusters C and now wish to add a new triplet. Denote the

67

messages before adding the new triplet by λt. Two questions naturally arise. The first is:
assuming we decide to add a given triplet, how do we set λt+1 such that the dual objective
retains its previous value g(λt). The second question is how to choose the new triplet to
add.

The initialization problem is straightforward. Simply set λt+1 to equal λt for all mes-
sages from triplets and edges in the previous run, and set λt+1 for the messages from the
new triplet to its edges to zero. The new dual variables immediately satisfy the feasibility
constraints given in Eq. 5.6. This also clearly results in g(λt+1) = g(λt).

In order to choose a good triplet, one strategy would be to add different triplets and run
MPLP until convergence to find the one that decreases the objective the most. However,
this may be computationally costly and, as we show in the experiments, is not necessary.
Instead, the criterion we use is to consider the decrease in value that results from just
sending messages from the triplet c to its edges (while keeping all other messages fixed).

The decrease in g(λ) resulting from such an update has a simple form, as we show next.
Assume we are considering adding a triplet c. For every edge e ∈ c, define be(xe) to be

be(xe) = λe→e(xe) +
∑

c′:e∈c′
λc′→e(xe) , (5.7)

where the summation over clusters c′ does not include c (those messages are initially zero).
The decrease in g(λ) corresponding to updating only messages from c to the edges e ∈ c
can be shown to be

d(c) =
∑

e∈c
max
xe

be(xe)−max
xc

[∑

e∈c
be(xe)

]
. (5.8)

The above corresponds to the difference between independently maximizing each edge and
jointly maximizing over the three edges. Thus d(c) is a lower bound on the improvement in
the dual objective if we were to add triplet c. Our algorithm will therefore add the triplet
c that maximizes d(c).

5.2.3 The Dual Algorithm

We now present the complete algorithm for adding clusters and optimizing over them. Let
C0 be the predefined set of triplet clusters that we will consider adding to our relaxation, and
let CL be the initial relaxation consisting of only edge clusters (pairwise local consistency).

1. Run MPLP until convergence using the CL clusters.
2. Find an integral solution x by locally maximizing the single node beliefs bi(xi), where

bi(xi) = θi(xi) +
∑

k∈N(i) λki→i(xi). Ties are broken arbitrarily.
3. If the dual objective g(λt) is sufficiently close to the primal objective θ(x), terminate

(since x is approximately the MAP).
4. Add the cluster c ∈ C0 with the largest guaranteed bound improvement, d(c), to the

relaxation.
5. Construct “warm start” messages λt+1 from λt.
6. Run MPLP for N iterations, and return to 2.
Note that we obtain (at least) the promised bound improvement d(c) within the first

iteration of step 6. By allowing MPLP to run for N iterations, the effect of adding the
cluster will be propagated throughout the model, obtaining an additional decrease in the
bound. Since the MPLP updates correspond to coordinate-descent in the dual LP, every

68

step of the algorithm decreases the upper bound on the MAP. The monotonicity property
holds even if MPLP does not converge in step 6, giving us the flexibility to choose the
number of iterations N . In Section 5.4 we show results corresponding to two different
choices of N .

In the case where we run MPLP to convergence before choosing the next cluster, we
can show that the greedy bound minimization corresponds to a cutting-plane algorithm, as
stated below.

Theorem 1. Given a dual optimal solution, if we find a cluster for which we can guarantee
a bound decrease, all primal optimal solutions were inconsistent with respect to this cluster.

Proof. By duality both the dual optimum and the primal optimum will decrease. Suppose
for contradiction that in the previous iteration there was a primal feasible point that was
cluster consistent and achieved the LP optimum. Since we are maximizing the LP, after
adding the cluster consistency constraint, this point is still feasible and the optimal value
of the primal LP will not change, giving our contradiction.

This theorem does not tell us how much the given cluster consistency constraint was
violated, and the distinction remains that a typical cutting-plane algorithm would attempt
to find the constraint which is most violated. In Chapter 7 we will precisely state the con-
nection between the dual criterion and the primal-based cutting-plane algorithms discussed
in Chapter 3. In particular, we will see that for binary graphical models, if for a dual
optimal solution there is a cluster c such that d(c) > 0, then there exists a cycle inequality
that is very violated by all primal optimal solutions.

5.3 Related Work

Since MPLP is closely related to the max-product generalized belief propagation (GBP)
algorithm, our work can be thought of as a region-pursuit method for GBP. This is closely
related to the work of Welling (2004) who suggested a region-pursuit method for sum-
product GBP. Similar to our work, he suggested greedily adding from a candidate set of
possible clusters. At each iteration, the cluster that results in the largest change in the
GBP free energy is added. He showed excellent results for 2D grids, but on fully connected
graphs the performance actually started deteriorating with additional clusters. In Welling
et al. (2005), a heuristic related to maxent normality (Yedidia et al., 2005) was used as a
stopping criterion for region-pursuit to avoid this behavior. In our work, in contrast, since
we are working with the dual function of the LP, we can guarantee monotonic improvement
throughout the running of the algorithm.

Our work is also similar to Welling’s in that we focus on criteria for determining the
utility of adding a cluster, not on finding these clusters efficiently. We found in our ex-
periments that a simple enumeration over small clusters proved extremely effective. For
problems where triplet clusters alone would not suffice to find the MAP, we could triangu-
late the graph and consider larger clusters. This approach is reminiscent of the bounded
join-graphs described in Dechter et al. (2002).

There is a large body of recent work describing the relationship between message-passing
algorithms such as belief propagation, and LP relaxations (Kolmogorov & Wainwright,
2005; Weiss et al., 2007; Yanover et al., 2006). Although we have focused here on using
one particular message-passing algorithm, MPLP, we emphasize that similar region-pursuit
algorithms can be derived for other message-passing algorithms as well. In particular, for all

69

the convex max-product BP algorithms described in Weiss et al. (2007), it is easy to design
region-pursuit methods. The main advantage of using MPLP is its guaranteed decrease
of the dual value at each iteration, a guarantee that does not exist for general convex BP
algorithms.

Region-pursuit algorithms are also conceptually related to the question of message
scheduling in BP, as in the work of Elidan et al. (2006). One way to think of region-pursuit
is to consider a graph where all the clusters are present all the time, but send and receive
non-informative messages. The question of which cluster to add to an approximation, is
thus analogous to the question of which message to update next.

Finally, related approaches were proposed by Johnson (2008) and Werner (2008), where
the authors also suggest tightening the pairwise LP relaxation using higher-order clusters.
However, one of the major distinctions of our approach is that we provide a criterion for
deciding which clusters to add to the relaxation.

5.4 Experiments

Due to the scalable nature of our message-passing algorithm, we can apply it to cases where
standard LP solvers cannot be applied to the primal LP (see also Yanover et al. (2006)).
Here we report applications to problems in computational biology and machine vision.3

We use the algorithm from Section 5.2.3 for all of our experiments. We first run MPLP
with edge clusters until convergence or for at most 1000 iterations, whichever comes first.
All of our experiments, except those intended to show the difference between schedules,
use N = 20 for the number of MPLP iterations run after adding a cluster. While running
MPLP we use the messages to decode an integral solution, and compare the dual objective
to the value of the integral solution. If these are equal, we have found the MAP solution.4

Otherwise, we keep adding triplets.
Our results will show that we often find the MAP solution to these hard problems by

using only a small number of triplet clusters. This indicates both that triplets are sufficient
for characterizingM(G) near the MAP solution of these problems, and that our algorithm
can efficiently find the informative triplets.

5.4.1 Side-Chain Prediction

The side-chain prediction problem involves finding the three-dimensional configuration of
rotamers given the backbone structure of a protein (Yanover et al., 2006). This problem
can be posed as finding the MAP configuration of a pairwise model, and in Yanover et al.
(2006) the tree-reweighted belief propagation (TRBP) algorithm (Wainwright et al., 2005a)
was used to find the MAP solution for most of the models studied. However, for 30 of the
models, TRBP could not find the MAP solution.

In Chapter 3.4.3 we used a cutting-plane algorithm to solve these side-chain problems
and found the MAP solution for all 30 models. Here, we applied our dual algorithm to
the same 30 models and found that it also results in the MAP solution for all of them
(up to a 10−4 integrality gap). This required adding between 1 and 27 triplets per model.
The running time was between 1 minute and 1 hour to solve each problem, with over half

3Graphical models for these are given in Yanover et al. (2006).
4In practice, we terminate when the dual objective is within 10−4 of the decoded assignment, so these

are approximate MAP solutions. Note that the objective values are significantly larger than this threshold.

70

1000 1500 2000 2500!1067.5

!1067

!1066.5

!1066

!1065.5

!1065

!1064.5

!1064

!1063.5

MPLP iterations

O
bj

ec
tiv

e

MPLP for 20 iterations
MPLP until convergence
MAP

Figure 5-2: Comparison of different schedules for adding clusters to tighten the LP relax-
ation on a side-chain prediction problem.

solved in under 9 minutes. On average we added only 7 triplets (median was 4.5), another
indication of the relative ease with which these techniques can solve the side-chain prediction
problem.

We also used these models to study different update schedules. One schedule (which gave
the results in the previous paragraph) was to first run a pairwise model for 1000 iterations,
and then alternate between adding triplets and running MPLP for 20 more iterations. In
the second schedule, we run MPLP to convergence after adding each triplet. Figure 5-2
shows the two schedules for the side-chain protein ‘1gsk’, one of the side-chain proteins
which took us the longest to solve (30 minutes). Running MPLP to convergence results
in a much larger number of overall MPLP iterations compared to using only 20 iterations.
This highlights one of the advantages of our method: adding a new cluster does not require
solving the earlier problem to convergence.

5.4.2 Protein Design

The protein design problem is the inverse of the protein folding problem. Given a particular
3D shape, we wish to find a sequence of amino-acids that will be as stable as possible in that
3D shape. Typically this is done by finding a set of amino-acids and rotamer configurations
that minimizes an approximate energy.

While the problem is quite different from side-chain prediction, it can be solved using
the same graph structure, as shown in Yanover et al. (2006). The only difference is that
now the nodes do not just denote rotamers, but also the identity of the amino-acid at that
location. Thus, the state-space here is significantly larger than in the side-chain prediction
problem (up to 180 states per variable for most variables).

In contrast to the side-chain prediction problems, which are often easily solved by general
purpose integer linear programming packages such as CPLEX’s branch-and-cut algorithm
(Kingsford et al., 2005), the sheer size of the protein design problems immediately limits
the techniques by which we can attempt to solve them. Algorithms such as our earlier
cutting-plane algorithm (c.f. Section 3.4) or CPLEX’s branch-and-cut algorithm require

71

solving the primal LP relaxation at least once, but solving the primal LP on all but the
smallest of the design problems is intractable (Yanover et al., 2006). Branch and bound
schemes have been recently used in conjunction with a message passing algorithm (Hong &
Lozano-Pérez, 2006) and applied to similar protein design problems, although not the ones
we solve here.

We applied our method to the 97 protein design problems described in Yanover et al.
(2006), adding 5 triplets at a time to the relaxation. The key striking result of these
experiments is that our method found the exact MAP configuration for all but one of the
proteins5 (up to a precision of 10−4 in the integrality gap). This is especially impressive
since, as reported in Yanover et al. (2006), only 2 of these problems were solvable using
TRBP, and the primal problem was too big for commercial LP solvers such as CPLEX. For
the problem where we did not find the MAP, we did not reach a point where all the triplets
in the graph were included, since we ran out of memory beforehand.

Among the problems that were solved exactly, the mean running time was 9.7 hours
with a maximum of 11 days and a minimum of a few minutes. We note again that most of
these problems could not be solved using LP solvers, and when LP solvers could be used,
they were typically at least 10 times slower than message-passing algorithms similar to ours
(see Yanover et al. (2006) for detailed timing comparisons).

Note that the main computational burden in the algorithm is processing triplet messages.
Since each variable has roughly 100 states, passing a triplet message requires 106 operations.
Thus the number of triplets added is the key algorithmic complexity issue. For the models
that were solved exactly, the median number of triplets added was 145 (min: 5, max: 735).
As mentioned earlier, for the unsolved model this number grew until the machine’s memory
was exhausted. We believe however, that by optimizing our code for speed and memory we
will be able to accommodate a larger number of triplets, and possibly solve the remaining
model as well. Our current code is written mostly in Matlab, so significant optimization
may be possible.

5.4.3 Stereo Vision

Given a stereo pair of images, the stereo problem is to find the disparity of each pixel
in a reference image (c.f. Figure 1-1). This disparity can be straightforwardly translated
into depth from the camera. The best algorithms currently known for the stereo problem
are those that minimize a global energy function (Scharstein & Szeliski, 2002), which is
equivalent to finding a MAP configuration in a pairwise model.

For our experiments we use the pairwise model described in Yanover et al. (2006),
and apply our procedure to the “Tsukuba” sequence from the standard Middlebury stereo
benchmark set (Scharstein & Szeliski, 2002), reduced in size to contain 116x154 pixels. The
images in this sequence were taken from the same height, each horizontally displaced from
one another. One image from the sequence is shown in Figure 5-3(a). We use the same
energy function that was used by Tappen & Freeman (2003).

Since there are no connected triplets in the grid graph, we use our method with square
clusters. We calculate the bound decrease using square clusters, but rather than add them
directly, we triangulate the cycle and add two triplet clusters. Although this results in an
equivalent relaxation, it has the consequence that we may have to wait until MPLP conver-
gence to achieve the guaranteed bound improvement. This is because we are only performing

5We could not solve ‘1fpo’, the largest protein.

72

(a) Original “Tsukuba” image (b) MAP assignment

Figure 5-3: (a) “Tsukuba” image used in stereopsis experiments. (b) Visualization of the
MAP assignment found by the dual algorithm and of the clusters used in tightening the
relaxation. Depth is shown in shades of red: darker pixels denote greater depth. The green
pixels show the square clusters that were used to tighten the relaxation.

coordinate-descent on triplet clusters, whereas the new bound criterion corresponds to the
dual decrease due to one coordinate-descent step on a square cluster.

In the first experiment, we varied the parameters of the energy function to create several
different instances. We tried to find the MAP using TRBP, resolving ties using the methods
proposed in (Meltzer et al., 2005). In 4 out of 10 cases those methods failed. Using our
algorithm, we managed to find the MAP for all 4 cases.6

Figure 5-4 shows the dual objective and the decoded integer solution after each MPLP
iteration, for one setting of the parameters.7 In Figure 5-3(b) we show the MAP assignment
found by our algorithm for the same setting of the parameters. Depth is shown in shades
of red: darker pixels denote greater depth. As can be seen by comparing Figure 5-3(b)
with Figure 5-3(a), the model correctly predicts the relative depth for a large fraction of
the image, but is far from perfect.

We then looked to see which clusters were added to the relaxation, across all iterations.
Since our schedule adds a fixed 20 clusters per iteration, some of these clusters could have
been superfluous. Thus, to visualize this, we consider only the set S of clusters c where the
guaranteed bound improvement d(c) > 0.01. In Figure 5-3(b) we display this set S in green,
overlaid on top of the MAP assignment. These green areas correspond to the frustrated
parts of the model. Interestingly, many of the sites of frustration are adjacent to close-by
object boundaries. These are the locations where occlusion happens between the pair of
images, i.e. where there is no 1-1 correspondence between pairs of pixels in the left and
right images.

In the results above, we added 20 squares at a time to the relaxation. We next con-
trasted it with two strategies: one where we pick 20 random squares (not using our bound

6For one of these models, a few single node beliefs at convergence were tied, and we used the junction
tree algorithm to decode the tied nodes (see Meltzer et al. (2005)).

7The parameters used were (T, s, P) = (4, 20, 2); c.f. Tappen & Freeman (2003).

73

1000 1050 1100 1150 1200 1250 1300
9.229

9.23

9.231

9.232

9.233

9.234

9.235

9.236

9.237 x 105

MPLP iterations

Objective
Integer solution

Figure 5-4: Dual objective and value of decoded integer solution for one of the reduced
“Tsukuba” stereo models, as a function of MPLP iterations. It can be seen that both
curves converge to the same value, indicating that the MAP solution was found.

improvement criterion) and one where we pick the single best square according to the bound
criterion. Figure 5-5 shows the resulting bound per iteration for one of the models. It can
be seen that the random method is much slower than the bound criterion based one, and
that adding 20 squares at a time is better than just one. We ended up adding 1060 squares
when adding 20 at a time, and 83 squares when adding just one. Overall, adding 20 squares
at a time turned out to be faster.

We also tried running MPLP with all of the square clusters. Although fewer MPLP
iterations were needed, the cost of using all squares resulted in an overall running time of
about four times longer.

5.5 Bound Criterion in Sparse Graphs

In our experiments we only considered clusters of size 3 or 4, of which there are only
polynomially many, and thus we were able to do this by enumeration. However, a sparse
graphical model may not have any short cycles. In this setting, it may seem natural to
first triangulate the graph before running our algorithm. In this section we show that the
bound criterion can be non-informative in these settings, and thus triangulation may not
be helpful.

Consider a binary-valued MRF on four variables X1, X2, X3, X4 which has edges in the
form of a square: E = {(1, 2), (2, 3), (3, 4), (1, 4)}. We now define the edge potentials. For
(i, j) ∈ {(1, 2), (2, 3), (3, 4)}, let θij(xi, xj) = 1 if xi 6= xj , and 0 if xi = xj . We do the
opposite for edge (1, 4), letting θ1,4(x1, x4) = 1 if x1 = x4, and 0 if x1 6= x4.

All of the MAP assignments have value 3. For example, one MAP assignment is
(X1, X2, X3, X4) = (1, 0, 1, 0). The pairwise LP relaxation, on the other hand, has value 4,
obtained by µi(xi) = 0.5 for i ∈ {1, 2, 3, 4} and xi ∈ {0, 1}, µij(0, 1) = µij(1, 0) = 0.5 for
(i, j) ∈ {(1, 2), (2, 3), (3, 4)}, and µ1,4(0, 0) = µ1,4(1, 1) = 0.5. One way to triangulate the
graph is to add the edge (1, 3). However, as can be seen by setting the edge marginal for

74

1000 1100 1200 1300 1400 1500 1600
9.2358

9.2359

9.236

9.236

9.2361

9.2361

9.2362

9.2362

9.2363

9.2363 x 105

MPLP iterations

O
bj

ec
tiv

e

MAP
add 20 random squares
add 20 best squares
add 1 best square

Figure 5-5: Comparison of different schedules for adding squares in one of the stereo prob-
lems.

(1, 3) to µ1,3(1, 1) = µ1,3(0, 0) = 0.5, the pairwise LP relaxation still has value 4.
Now consider adding a triplet consistency constraint for the cluster c = {1, 2, 3}. Solving

the new LP relaxation, we find that it again has value 4. The solution is the same as earlier,
with the new triplet marginal taking value µ1,2,3(1, 0, 1) = µ1,2,3(0, 1, 0) = 0.5 (note that
this is consistent with the edge marginals already given, as it should be). Let’s see what this
corresponds to in the dual. Suppose that we use MPLP to solve the dual of the pairwise LP
relaxation to optimality. By LP duality, the dual objective has value 4. Also by LP duality,
we know that the optimal dual objective after adding the triplet cluster must also be 4.
Recall that the bound criterion d(c) corresponds to the amount that the dual objective will
decrease after one block coordinate descent step involving the new cluster. Since the dual
objective is lower bounded by 4 (its value at optimality), we conclude that d(c) must be
zero for the triplet cluster c = {1, 2, 3}.

The same can be shown for the triplet cluster c = {1, 3, 4}. A generalization of the
argument shows that, for a MRF that consists of a single cycle of length larger than 3, and
for any dual optimal solution of the pairwise LP relaxation (after triangulation), d(c) = 0
for all of the triplets in the triangulation. In contrast, if we had evaluated d(c) for c
corresponding to the whole cycle – as we did in the stereo vision experiments – we would
see that it is non-zero. Note that it is possible to evaluate d(c) for a cycle cluster in O(nk3)
running time, where n is the length of the cycle and k is the number of states per node.
However, we will show in Chapter 7 that searching for arbitrary length cycle clusters where
d(c) > 0 is substantially more difficult.

An alternative approach, that we describe in Chapter 7, is to directly look for violated
k-ary cycle inequalities (see Chapter 3) in the dual of the LP relaxation. The resulting
algorithm is very similar to the one described here, and solves the search problem.

5.6 Discussion

In order to apply LP relaxations to real-world problems, one needs to find an efficient way
of adding clusters to the basic relaxation such that the problem remains tractable but yields

75

a better approximation of the MAP value.
In this chapter we presented a greedy bound-minimization algorithm on the dual LP

to solve this problem, and showed that it has all the necessary ingredients: an efficient
message-passing algorithm, “warm start” of the next iteration using current beliefs, and a
monotonically decreasing bound on the MAP.

We showed that the algorithm works well in practice, finding the MAP configurations
for many real-world problems that were previously thought to be too difficult for known
methods to solve. While in this chapter we focused primarily on adding triplet clusters,
our approach is general and can be used to add larger clusters as well, as long as as the
messages in the dual algorithm can be efficiently computed.

There are various algorithmic choices that could be explored in future work. For exam-
ple, rather than adding a fixed number of clusters per iteration, we could choose to include
only those clusters c where the bound criterion d(c) is sufficiently large. The difficulty with
such an approach is deciding an appropriate cut-off point. Also, rather than running a
fixed number of iterations of MPLP after adding each new set of clusters, we could have
an adaptive stopping criterion, e.g. stopping as soon as the dual objective decreases some
multiple of the guaranteed bound improvement (or earlier, if MPLP converges). In our
experiments, we chose N = 20 iterations by balancing the running time of MPLP with the
time required to find new clusters to use in tightening the relaxation. Finally, one could
consider different message-passing schedules. For example, after adding a new cluster, we
could first pass messages near the cluster, and then propagate the effect to parts of the
model further away.

One difficulty that we observed was that the computational cost of sending even one
triplet message could be prohibitive when the state spaces of the variables are large, as in
the protein design problem. We will show in Chapter 6 that it is possible to solve protein
design problems by using a much weaker class of cluster consistency constraints for which
the maximization over the clusters’ messages in the dual algorithm is fast. Also, recent
work by McAuley & Caetano (2010) has shown how to more efficiently compute the triplet
messages in pairwise MRFs.

Finally, while here we focused on the MAP problem, similar ideas may be applied to
approximating the marginals in graphical models.

76

Chapter 6

Clusters and Coarse Partitions in
LP Relaxations

We saw in Chapter 5 how relaxations can be made increasingly tight by introducing LP
variables that correspond to clusters of variables in the original model. In fact, by adding
a set of clusters, each over just three variables, complex problems such as protein-design
and stereo-vision could be solved exactly. The problem with adding clusters over variables
is that the computational cost scales exponentially with the cluster size. Consider, for
example, a problem where each variable has 100 states (cf. protein-design). Using clusters
of s variables means adding 100s LP variables, which is computationally demanding even
for clusters of size three.

In this chapter we give a new class of consistency constraints over clusters that have
reduced computational cost. We achieve this by representing clusters at a coarser level
of granularity. The key observation is that it may not be necessary to represent all the
possible joint states of a cluster of variables. Instead, we partition the cluster’s assignments
at a coarser level, and enforce consistency only across such partitions. This removes the
number of states per variable from consideration, and instead focuses on resolving currently
ambiguous settings of the variables.

Following the approach described in Chapter 4, we formulate a dual LP for the partition-
based LP relaxations and derive a message passing algorithm for optimizing the dual LP
based on block coordinate descent. Unlike standard message passing algorithms, the algo-
rithm we derive involves passing messages between coarse and fine representations of the
same set of variables. We show how to use the new constraints within the region-pursuit
algorithm given in the previous chapter.

This chapter is based in part on material previously published in Sontag et al. (2009).
Also, in this chapter we assume that the graphical model does not have potentials on single
nodes, θi(xi), as these can be folded into the edge potentials θij(xi, xj).

6.1 Coarsened Constraints in the Primal LP Relaxation

We begin with an illustrative example. Suppose we have a graphical model that is a triangle
with each variable taking k states. We can recover the exact marginal polytope in this
case by forcing the pairwise marginals µij(xi, xj) to be consistent with some distribution
µ123(x1, x2, x3). However, when k is large, introducing the corresponding k3 variables to
our LP may be too costly and perhaps unnecessary, if a weaker consistency constraint

77

xi

zj

zk

zi

zk
xk

zi

Figure 6-1: A graphical illustration of the consistency constraint between the original (fine
granularity) edge (xi, xk) and the coarsened triplet (zi, zj , zk). The two should agree on the
marginal of zi, zk. For example, the shaded area in all three figures represents the same
probability mass.

would already lead to an integral extreme point. To this end, we will use a coarse-grained
version of µ123(x1, x2, x3) where the joint states are partitioned into larger collections, and
consistency is enforced over the partitions.

The simplest partitioning scheme builds on coarse-grained versions of each variable Xi.
Let Zi denote a disjoint collection of sets covering the possible values of variable Xi. For
example, if variable Xi has five states, Zi might be defined as

{
{1, 2}, {3, 5}, {4}

}
. We

simultaneously interpret Zi as a random variable with three states, each state denoted by
zi. We will use zi to index the sets in Zi so that, for example, zi may take a value {1, 2}.
Then, for each of the three coarse-grained states zi, we have

Pr(Zi = zi) =
∑

xi∈zi

Pr(Xi = xi) . (6.1)

Given such a partitioning scheme, we can introduce a higher-order distribution over
coarsened variables, e.g. µ123(z1, z2, z3), and constrain it to agree with the fine-grained
edge distributions, µik(xi, xk), in the sense that they both yield the same marginals for
zi, zk. This is illustrated in Figure 6-1. The corresponding constraints are:

∑

xi∈zi, xk∈zk

µik(xi, xk) = µik(zi, zk) =
∑

zj

µijk(zi, zj , zk), ∀zi, zk . (6.2)

Note that the µik(zi, zk) variables are not actually needed to enforce consistency between
µik(xi, xk) and µijk(zi, zj , zk), and so we omit them from the remainder of the chapter. In
the case when Zi individuates each state, i.e.,

{
{1}, {2}, {3}, {4}

}
, we recover the usual

cluster consistency constraints used in Chapter 5.
We use the above idea to construct tighter outer bounds on the marginal polytope and

incorporate them into the MAP-LP relaxation. We assume that we are given a set of
clusters C. For each cluster c ∈ C and variable i ∈ c we also have a partition Zci as in
the above example (the choice of clusters and partitions will be discussed later). We use a
superscript of c to highlight the fact that different clusters may use different partitionings for
Xi. Also, there can be multiple clusters on the same set of variables, each using a different
partitioning. We introduce marginals over the coarsened clusters, µc(z

c
c), and constrain

78

them to agree with the edge variables µij(xi, xj) for all edges ij ∈ c:
∑

xi∈zci , xj∈zcj

µij(xi, xj) =
∑

zc
c\i,j

µc(z
c
c), ∀zci , zcj . (6.3)

The key idea is that the coarsened cluster represents higher-order marginals albeit at a
lower resolution, whereas the edge variables represent lower-order marginals but at a finer
resolution. The constraint in Eq. 6.3 implies that these two representations should agree.

We can now state the LP that we set out to solve. Our LP optimizes over the following
marginal variables: µij(xi, xj), µi(xi) for the edges and nodes of the original graph, and
µc(z

c
c) for the coarse-grained clusters. We would like to constrain these variables to belong

to the following outer bound on the marginal polytope:

MC(G) =




µ ≥ 0

∣∣∣∣∣∣∣∣∣∣

∑
xj
µij(xi, xj) = µi(xi) ∀ij ∈ E, xi∑

xi
µij(xi, xj) = µj(xj) ∀ij ∈ E, xj∑
xi
µi(xi) = 1 ∀i ∈ V∑

xi∈zci , xj∈zcj
µij(xi, xj) =

∑
zc
c\i,j

µc(z
c
c) ∀c, i, j ∈ c s.t. ij ∈ E, zci , zcj





Note that
∑

zcc
µc(z

c
c) = 1 is implied by the above constraints. The corresponding MAP-LP

relaxation is then:
max

µ∈MC(G)
µ · θ (6.4)

This LP could in principle be solved using generic LP optimization tools. However,
a more efficient and scalable approach is to solve it via message passing in the dual LP,
which we show how to do in the next section. In addition, for this method to be successful,
it is critical that we choose good coarsenings, meaning that it should have few partitions
per variable, yet still sufficiently tightens the relaxation. Our approach for choosing the
coarsenings is to iteratively solve the LP using an initial relaxation (beginning with the
pairwise consistency constraints), then to introduce additional cluster constraints, letting
the current solution guide how to coarsen the variables. As we showed in Chapter 5,
solving with the dual LP gives us a simple method for “warm starting” the new LP (the
tighter relaxation) using the previous solution, and also results in an algorithm for which
every step monotonically decreases an upper bound on the MAP assignment. We will give
further details of the coarsening scheme in Section 6.3.

6.2 Dual LP and Message Passing Algorithm

In this section we give the dual of the partition-based LP from Eq. 6.4, and use it to obtain
a message passing algorithm to efficiently optimize this relaxation. Our approach extends
earlier work by Globerson & Jaakkola (2008) who gave the generalized max-product linear
programming (MPLP) algorithm to solve the usual (non-coarsened) cluster LP relaxation
in the dual (c.f. Section 5.2.1).

The dual formulation in Globerson & Jaakkola (2008) was derived by adding auxiliary
variables to the primal. We followed a similar approach to obtain the LP dual of Eq. 6.4.
The dual variables are as follows: λij→i(xi), λij→j(xj), λij→ij(xi, xj) for every edge ij ∈ E,
and λc→ij(z

c
i , z

c
j) for every coarsened cluster c and edge ij ∈ c.

As we show below, the variables λ correspond to the messages sent in the message

79

• Edge to Node: For every edge ij ∈ E and node i (or j) in the edge:

λij→i(xi) ← −2

3
λ−ji (xi) +

1

3
max
xj

[∑

c:ij∈c
λc→ij(z

c
i [xi], z

c
j [xj]) + λij→ij(xi, xj) + λ−ij (xj) + θij(xi, xj)

]

where λ−ji (xi) =
∑

k∈N(i)\j λik→i(xi).

• Edge to Edge: For every edge ij ∈ E:

λij→ij(xi, xj)←−
2

3

∑

c:ij∈c
λc→ij(z

c
i [xi], z

c
j [xj]) +

1

3

[
λ−ij (xj) + λ−ji (xi) + θij(xi, xj)

]

• Cluster to Edge: First define

bij(z
c
i , z

c
j) = max

xi ∈ zci
xj ∈ zcj


λij→ij(xi, xj) +

∑

c′ 6=c:ij∈c′
λc′→ij(z

c′
i [xi], z

c′
j [xj])


 (6.5)

The update is then:

λc→ij(z
c
i , z

c
j)←− bij(zci , zcj) +

1

|S(c)| max
zc
c\i,j

∑

st∈c
bst(z

c
s, z

c
t) (6.6)

Figure 6-2: The message passing updates for solving the dual LP given in Eq. 6.7.

passing algorithm that we use for optimizing the dual. Thus λij→i(xi) should be read as
the message sent from edge ij to node i, and λc→ij(z

c
i , z

c
j) is the message from the coarsened

cluster to one of its intersection edges. Finally, λij→ij(xi, xj) is the message sent from an
edge to itself. The dual of Eq. 6.4 is the following minimization problem over λ,

∑

i

max
xi

∑

k∈N(i)

λik→i(xi) +
∑

ij∈E
max
xi,xj

[
θij(xi, xj) + λij→ij(xi, xj) +

∑

c:ij∈c
λc→ij(z

c
i [xi], z

c
j [xj])

]

subject to the constraints:

λij→i(xi) + λij→j(xj) + λij→ij(xi, xj) ≥ 0 ∀ij ∈ E, xi, xj∑

ij∈c
λc→ij(z

c
i , z

c
j) ≥ 0 ∀c, zcc (6.7)

The notation zci [xi] refers to the mapping from xi ∈ Xi to the coarse state zci ∈ Zci such
that xi ∈ zci . By convex duality, the dual objective evaluated at a dual feasible point
upper bounds the primal LP optimum, which in turn upper bounds the value of the MAP
assignment. It is illustrative to compare this dual LP with the dual given in Eq. 5.4 from
Chapter 5, where the cluster dual variables were λc→ij(xi, xj). Our dual corresponds to

80

introducing the additional constraint that λc→ij(xi, xj) = λc→ij(x
′
i, x
′
j) whenever zci [xi] =

zci [x
′
i] and zcj [xj] = zcj [x

′
j].

The advantage of the above dual is that it can be optimized via a simple message passing
algorithm that corresponds to block coordinate descent. The key idea is that it is possible
to fix the values of the λ variables corresponding to all clusters except one, and to find a
closed form solution for the non-fixed λs. Figure 6-2 provides the form of the updates for
all three message types. S(c) is the set of edges in cluster c (e.g. ij, jk, ik). Importantly,
all messages outgoing from a cluster or edge must be sent simultaneously.

Here we derive the cluster to edge updates, which differ from Globerson & Jaakkola
(2008). Assume that all values of λ are fixed except for λc→ij(z

c
i , z

c
j) for all ij ∈ c for

some cluster c. The term in the dual objective that depends on λc→ij(z
c
i , z

c
j) can be written

equivalently as

max
xi,xj

[
λij→ij(xi, xj) +

∑

c′:c′ 6=c,ij∈c′
λc′→ij(z

c′
i [xi], z

c′
j [xj]) + λc→ij(z

c
i [xi], z

c
j [xj])

]

= max
zci ,z

c
j

[
bij(z

c
i , z

c
j) + λc→ij(z

c
i [xi], z

c
j [xj])

]
, (6.8)

where bij(z
c
i , z

c
j) is defined in Eq. 6.5. Due to the constraint

∑
ij∈c λc→ij(z

c
i , z

c
j) ≥ 0, all

of the λc→ij(z
c
i , z

c
j) variables need to be updated simultaneously. It can be shown (using

an equalization argument as in Globerson & Jaakkola (2008)) that the λc→ij(z
c
i , z

c
j) that

minimize the objective subject to the constraint are given by Eq. 6.6 in Figure 6-2.
Note that none of the cluster messages involve the original cluster variables xc, but

rather only zcc. Thus, we have achieved the goal of both representing higher-order clusters
and doing so at a reduced computational cost.

The algorithm in Figure 6-2 solves the dual for a given choice of coarsened clusters.
As mentioned in Section 6.1, we would like to add such clusters gradually, as in Chapter
5. Our overall algorithm is thus similar in structure to the one from Section 5.2.2 and
proceeds as follows (we denote the message passing algorithm from Figure 6-2 by MPLP):
1. Run MPLP until convergence using the pairwise relaxation, 2. Find an integral solution
x by locally maximizing the single node beliefs bi(xi) =

∑
k∈N(i) λki→i(xi), 3. If the dual

objective given in Eq. 6.7 is sufficiently close to the primal objective θ(x), terminate, 4.
Add a new coarsened cluster c using the strategy given in Section 6.3, 5. Initialize messages
going out of the new cluster c to zero, and keep all the previous message values (this will
not change the bound value), 6. Run MPLP for N iterations, then return to 2.

6.3 Choosing the Partitionings

Until now we have not discussed how to choose the clusters to add and their partitionings.
Our strategy for doing so closely follows that used in Chapter 5. Given a set C of candidate
clusters to add (e.g., the set of all triplets in the graph), we would like to add a cluster that
would result in the maximum decrease of the dual bound on the MAP. In principle such
a cluster could be found by optimizing the dual for each candidate cluster, then choosing
the best one. However, this is computationally costly, so in Chapter 5 we instead used the
bound decrease resulting from just once sending messages from the candidate cluster to its
intersection edges.

81

If we were to add the full (un-coarsened) cluster, this bound decrease would be:

d(c) =
∑

ij∈c
max
xi,xj

bij(xi, xj)−max
xc

∑

ij∈c
bij(xi, xj), (6.9)

where bij(xi, xj) = λij→ij(xi, xj) +
∑

c:ij∈c λc→ij(z
c
i [xi], z

c
j [xj]).

Our strategy now is as follows: we add the cluster c that maximizes d(c), and then
choose a partitioning Zci for all i ∈ c that is guaranteed to achieve a decrease that is close
to d(c). This can clearly be achieved by using the trivial partition Zci = Xi (which achieves
d(c)). However, in many cases it is also possible to achieve it while using much coarser
partitionings. To be precise, we would like to find the coarse-grained variables Zci for i ∈ c
that minimizes

∏
i∈c |Zci | subject to the constraint

max
xc

∑

ij∈c
bij(xi, xj) = max

zcc

∑

ij∈c
bij(z

c
i , z

c
j) (6.10)

= max
zcc

∑

ij∈c
max

xi∈zci , xj∈zcj
bij(xi, xj). (6.11)

The set of all possible partitionings Zci is too large to explicitly enumerate. Instead, we
use the following heuristic. Consider just |Xi| candidate partitions that are generated based
on the beliefs bi(xi). Intuitively, the states with lower belief values bi(xi) are less likely to be
part of the MAP assignment, and can thus be bundled together. We will therefore consider
partitions where the states with lowest belief values are put into the same “catch-all” coarse
state sci , and all other states of xi get their own coarse state. Formally, a partition Zci is
characterized by a value κi such that sci is the set of all xi with bi(xi) < κi.

The next question is how big we can make the catch-all state without sacrificing the
bound decrease. We employ a greedy strategy whereby each i ∈ c (in arbitrary order) is
partitioned separately, while the other partitions are kept fixed. The process starts with
Zci = Xi for all i ∈ c. We would like to choose sci such that it is sufficiently separated from
the state that achieves d(c). Formally, given a margin parameter γ (we will discuss γ in a
moment; for now, assume that γ = 0) we choose κi to be as large as possible such that the
following constraint still holds1:

max
zcc s.t.
zci = sci

∑

st∈c
bst(z

c
s, z

c
t) ≤ max

xc

∑

st∈c
bst(xs, xt)− γ, (6.12)

where the first maximization is over the coarse variables Zc\i, and Zci is fixed to the catch-all
state sci (note that the partitioning for Zci is a function of κi). We can find the optimal
κi in time O(|Xi||c|) by starting with κi = −∞ and increasing it until the constraint is
violated. Since each subsequent value of sci differs by one additional state xi, we can re-use
the maximizations over zcc\i for the previous value of sci in evaluating the constraint for the
current sci .

It can be shown by induction that this results in a coarsening that has a guaranteed
bound decrease of at least d(c) + min(0, γ). Setting γ < 0 would give a partitioning with
fewer coarse states at the cost of a smaller guaranteed bound decrease. On the other hand,
setting γ > 0 results in an over-partitioning of the variables’ states. This results in a margin

1The constraint may be infeasible for γ > 0, in which case we simply choose Zci = Xi.

82

between the value of the dual objective (after sending the coarsened cluster message) and
its value if we were to fix xi to one of the states in sci for all of the edge maximization terms
(maxxi,xj) in the dual objective corresponding to ij ∈ c. Intuitively, this makes it less likely
that a state in sci will become important again in subsequent message passing iterations.
Thus, this partitioning will be good even after a few more iterations of coordinate-descent.
For the experiments in this chapter we use γ = 3d(c), scaling γ with the value of the
guaranteed bound decrease for the full cluster.

Note that this greedy algorithm does not necessarily find the partitioning with the fewest
number of coarse states that achieves the bound decrease. An interesting open problem is
to design an efficient partitioning algorithm with such a guarantee.

6.4 Experiments

We report results on the protein design problem, originally described in Yanover et al.
(2006). The protein design problem is the inverse of the protein folding problem. Given a
desired backbone structure for the protein, the goal is to construct the sequence of amino-
acids that results in a low energy, and thus stable, configuration. We can use an approximate
energy function to guide us towards finding a set of amino-acids and rotamer configurations
with minimal energy. In Yanover et al. (2006) the design problem was posed as finding a
MAP configuration in a pairwise MRF. The models used there (which are also available
online) have a number of states per variable that is between 2 and 158, and contain up to
180 variables per model. The models are also quite dense so that exact calculation is not
feasible.

In Chapter 5 we showed that all but one of the problems described in Yanover et al.
(2006) can be solved exactly by using a LP relaxation with clusters on three variables.
However, since each individual state has roughly 100 possible values, processing triplets
required 106 operations, making the optimization costly. In what follows we describe two
sets of experiments that show that, by coarsening, we can both significantly reduce the
computation time and achieve similar performance as if we had used un-coarsened triplets
(see Section 5.4). The experiments differ in the strategy for adding triplets, and illustrate
two performance regimes. In both experimental setups we first run the standard edge-based
message passing algorithm for 1000 iterations.

We call the single node belief bi(xi) tied if there are at least two states xi and x′i such that
bi(xi) = bi(x

′
i) = maxx̂i bi(x̂i). In the first experiment, we add all triplets that correspond

to variables whose single node beliefs are tied (within 10−5) at the maximum after running
the edge-based algorithm. Since tied beliefs correspond to fractional LP solutions (c.f.
Section 4.4), it is natural to consider these in tighter relaxations. The triplets correspond
to partitioned variables, as explained in Section 6.1. The partitioning is guided by the ties
in the single node beliefs. Specifically, for each variable Xi we find states whose single node
beliefs are tied at the maximum. Denote the number of states maximizing the belief by r.
Then, we partition the states into r subsets, each containing a different maximizing state.
The other (non-maximizing) states are split randomly among the r subsets. The triplets
are then constructed over the coarsened variables Zci and the message passing algorithm
of Section 6.2 is applied to the resulting structure. After convergence of the algorithm,
we recalculate the single node beliefs. These may result in a different partition scheme,
and hence new variables Zci . We add new triplets corresponding to the new variables and
re-run. We repeat until the dual-LP bound is sufficiently close to the value of the integral

83

0 1 2 3 4 5
160

180

200

220

240

260

Hours

O
bj

ec
tiv

e

Coarsened clusters
Chapter 5 algorithm

Primal (best decoding)

Dual

1000 1200 1400 1600 1800
0

5

10

15

20

25

30

35

Iteration Number

T
im

e
(S

ec
on

ds
)

Coarsened clusters
Chapter 5 algorithm

Figure 6-3: Comparison with algorithm from Chapter 5 for the protein “1aac”, after the
first 1000 iterations. Left: Dual objective as a function of time. Right: The running time
per iteration of message-passing (one pass through the entire graph).

assignment obtained from the messages (note that these values would not coincide if the
relaxation were not tight; in these experiments they do, so the final relaxation is tight).

We applied the above scheme to the ten smallest proteins in the dataset (for the larger
proteins we used a different strategy described next). We were able to solve all ten exactly,
as in Chapter 5. The mean running time was six minutes. The gain in computational
efficiency as a result of using coarsened-triplets was considerable: The average state space
size for coarsened triplets was on average 3000 times smaller than that of the original triplet
state space, resulting in a factor 3000 speed gain over a scheme that uses the complete (un-
coarsened) triplets.2 This big factor comes about because a very small number of states
are tied per variable, thus increasing the efficiency of our method where the number of
partitions is equal to the number of tied states. While running on full triplets was completely
impractical, the coarsened message passing algorithm is very practical and achieves the exact
MAP assignments.

Our second set of experiments follows the setup of Chapter 5 (see Section 6.2), alternat-
ing between adding 5 triplets to the relaxation and running MPLP for 20 more iterations.
The only difference is that, after deciding to add a cluster, we use the algorithm from Sec-
tion 6.3 to partition the variables. We tried various settings of γ, including γ = 0 and .01,
and found that γ = 3d(c) gave the best overall runtimes.

We applied this second scheme to the 15 largest proteins in the dataset.3 Of these, we
found the exact MAP in 7 of the cases (according to the criterion used in Chapter 5), and
in the rest of the cases were within 10−2 of the known optimal value. For the cases that
were solved exactly, the mean running time was 1.5 hours, and on average the proteins were
solved 8.1 times faster than with the uncoarsened constraints.4 To compare the running
times on all 15 proteins, we checked how long it took for the difference between the dual
and primal objectives to be less than .01θ(xM), where xM is the MAP assignment. This
revealed that our method is faster by an average factor of 4.3. The reason why these factors

2These timing comparisons do not apply to Chapter 5 since that algorithm did not use all the triplets.
3We do not run on the protein 1fpo, which was not solved in Chapter 5.
4We made sure that differences were not due to different processing powers or CPU loads.

84

are less than the 3000 in the previous setup is that, for the larger proteins, the number of
tied states is typically much higher than that for the small ones.

Results for one of the proteins that we solved exactly are shown in Figure 6-3. The
running time per iteration increases very little after adding each triplet, showing that our
algorithm significantly coarsened the clusters. The total number of iterations and number of
triplets added were roughly the same. Two triplet clusters were added twice using different
coarsenings, but otherwise each triplet only needed to be added once, demonstrating that
our algorithm chose the right coarsenings.

6.5 Discussion

We presented an algorithm that enforces higher-order consistency constraints on LP relax-
ations, but at a reduced computational cost. Our technique further explores the trade-offs
of representing complex constraints on the marginal polytope while keeping the optimiza-
tion tractable. In applying the method, we chose to cluster variables’ states based a bound
minimization criterion after solving using a looser constraint on the polytope.

A class of approaches related to ours are the “coarse-to-fine” applications of belief prop-
agation (Felzenszwalb & Huttenlocher, 2006; Raphael, 2001). In those, one solves low-
resolution versions of a MRF, and uses the resulting beliefs to initialize finer resolution
versions. Although they share the element of coarsening with our approach, the goal of
coarse-to-fine approaches is very different from our objective. Specifically, the low-resolution
MRFs only serve to speed-up convergence of the full resolution MRF via better initializa-
tion. Thus, one typically should not expect it to perform better than the finest granularity
MRF. In contrast, our approach is designed to strictly improve the performance of the orig-
inal MRF by introducing additional (coarse) clusters. One of the key technical differences
is that in our formulation the setting of coarse and fine variables are refined iteratively
whereas in Felzenszwalb & Huttenlocher (2006), once a coarse MRF has been solved, it is
not revisited.

This coarsening strategy approach is also closely related to the method that we in-
troduced in Section 3.4 for deriving valid constraints on the marginal polytope through
projections onto the cut polytope. The partitioned-based consistency constraints can also
be derived by a projection of the marginal polytope, although here we chose a different
presentation for simplicity. Earlier we used projected cycle inequalities, not consistency
constraints, to tighten LP relaxations for MAP. Focusing on consistency constraints allows
us to derive a particularly simple message passing algorithm for solving the dual LP, while
our use of partitionings helps to maintain sparsity in the constraints.

The first time that we add a cluster and perform coordinate-descent with respect to
it, we in effect create a higher-order potential function involving the cluster variables –
even though the original graphical model was edge-structured. The cluster partitioning
ensures that this higher-order potential has extra structure (e.g., low rank) that allows us
to efficiently compute outgoing messages from the cluster. Viewed in this way, our approach
is related to other works that show how message-passing algorithms can efficiently compute
messages for higher-order factors that are sparse (Duchi et al., 2007; Gupta et al., 2007;
Tarlow et al., 2010). This view also illustrates how our techniques may be helpful for the
problem of finding the MAP assignment in graphical models with structured potentials,
such as context-specific Bayesian networks.

As we mentioned at the end of Section 6.4, our algorithm sometimes add more than one

85

cluster involving the same variables, but with different partitionings. Rather than add a
new cluster, we could instead revise an existing cluster’s partitioning. For example, we could
apply the heuristic from Section 6.3 to an existing cluster c, further partitioning the catch-
all state sci of each variable i ∈ c. This would result in a new partitioning that is strictly
more fine-grained than the earlier one. In contrast, it seems to be much more difficult to
coarsen a cluster’s partitioning while improving the dual objective monotonically.

There are a number of interesting directions to explore. Using the same ideas as in this
chapter, one can introduce coarsened pairwise consistency constraints in addition the full
pairwise consistency constraints. Although this would not tighten the relaxation, by passing
messages more frequently in the coarsened space, and only occasionally revisiting the full
edges, this could give significant computational benefits when the nodes have large numbers
of states. This would be much more similar to the coarse-to-fine approach described above.
A related approach would be to use a Dantzig–Wolfe decomposition for the edge variables
(Bertsimas & Tsitsiklis, 1997).

With the coarsening strategy used here, the number of variables still grows exponentially
with the cluster size, albeit at a lower rate. One way to avoid the exponential growth is to
build a hierarchy of coarsened variables. After adding a fine-grained cluster, we partition
its states (corresponding to the cross-product of the states of its constituent variables) into
a fixed number of coarsened states (e.g., two). Then, we introduce a new cluster that
enforces the consistency of two or more coarsened clusters. Such a process can be repeated
recursively. The key advantage of this approach is that it represents progressively larger
clusters, but with no exponential growth. An interesting open question is to understand
how these hierarchies should be constructed such that they are both efficient and succeed
in tightening the relaxation.

86

Chapter 7

Solving the Cycle Relaxation in
the Dual

In this chapter we address the most significant shortcoming of the message-passing algorithm
given in Chapter 5: the difficulty of finding where to tighten the relaxation in sparse graphs.
Our earlier approach was to explicitly enumerate the short cycles (e.g., of size 3 or 4) in
the graph, using the bound criterion to select the most promising cycle to use in tightening
the relaxation. However, when there are few short cycles, this explicit enumeration is not
feasible. We show in Section 7.2 that, for non-binary graphical models (e.g., protein design
or stereo vision), it is NP-hard to find the best cycle according to the bound criterion. Thus
we need an alternative approach to address the search problem of finding where to tighten
the relaxation.

We describe a new approach where, as before, we solve the dual of the pairwise LP
relaxation, but where we now add k-ary cycle inequalities to tighten the relaxation rather
than cluster consistency constraints. We consider the same greedy bound minimization
criterion used earlier for cluster consistency constraints, corresponding to the amount that
the dual objective would decrease with just one coordinate descent step on the new dual
variable(s). We show that one can, in near-linear time (in the size of the projection graph),
find the best k-ary cycle inequality according to this criterion. The resulting algorithm is
similar to the separation algorithm given in Chapter 3 for finding the most violated cycle
inequality in the primal, but is not based on shortest paths.

Somewhat surprisingly, in Section 7.2 we show that, for binary graphial models and
when the dual has been solved to optimality, the two bound criterions (the one given in
Chapter 5 and this one) coincide. Thus, at least for binary graphical models, the algorithm
that we present completely solves the open problem from Chapter 5 of how to efficiently
search over cycle clusters. Although we use the cycle inequalities as a means of obtaining
an efficient search algorithm, we could instead add to the relaxation the cycle consistency
constraint corresponding to the cycle, rather than the violated cycle inequality.

The cycle inequalities for the marginal polytope are similar in form to the cycle in-
equalities that we used to enforce acyclicity in LP relaxations for learning the structure
of Bayesian networks (Jaakkola et al., 2010). The dual coordinate descent and separation
algorithms presented here closely mirror the techniques that we used in this other work.

87

7.1 Cycle Inequalities in the Dual

Recall the primal k-ary cycle inequalities from Eq. 3.3, where we denote C as a cycle in G,
π specifies a (binary) partitioning of the states of the variables in C, and F ⊆ C, |F | odd:

∑

ij∈C\F

∑

xi,xj :
πi(xi)6=πj(xj)

µij(xi, xj) +
∑

ij∈F

∑

xi,xj :
πi(xi)=πj(xj)

µij(xi, xj) ≥ 1 (7.1)

We show in Appendix A.3 how to derive the dual of the LP relaxation which includes all
of the k-ary cycle inequalities. The dual LP is minλ≥0,δ J(δ, λ), where

J(δ, λ) =
∑

i

max
xi

(
θi(xi) +

∑

j∈N(i)

δji(xi)
)

(7.2)

+
∑

ij

max
xi,xj

(
θij(xi, xj)− δji(xi)− δij(xj)

+
∑

C,F,π : ij∈C\F

λC,F,π1[πi(xi) 6= πj(xj)]

+
∑

C,F,π : ij∈F
λC,F,π1[πi(xi) = πj(xj)]

)

−
∑

C,F,π

λC,F,π .

The node and edge beliefs (as a function of the dual variables) are:

bi(xi) = θi(xi) +
∑

j∈N(i)

δji(xi), (7.3)

bij(xi, xj) = θij(xi, xj)− δji(xi)− δij(xj) +
∑

C,F,π : ij∈F
λC,F,π1[πqi (xi) = πrj (xj)]

+
∑

C,F,π : ij∈C\F

λC,F,π1[πqi (xi) 6= πrj (xj)].

When the dual variables λ, δ are optimal, we can use the complementary slackness conditions
(c.f. Section 4.4, with bij(xi, xj) replacing fij(xi, xj)) to find a primal optimal solution.

7.1.1 Using Cycle Inequalities within Message Passing

We next show how to take a coordinate descent step with respect to one λC,F,π variable. The
corresponding update can be used together with the message passing algorithms that we
described in the earlier chapters (which, recall, correspond to performing block coordinate
descent in the dual of the pairwise LP relaxation).

The dual objective J(δ, λ) is a piecewise linear function of λC,F,π (see Figure 7-1). As
long as λC,F,π does not play a role in the edge terms (we will make this precise in a moment),
we can increase the value of λC,F,π, thereby decreasing J(δ, λ). On the other hand, if λC,F,π
is active in two or more edge terms (which outweighs the single −λC,F,π term), decreasing
its value will decrease J(δ, λ).

For ij ∈ C, consider the inside of the edge maximization terms, ignoring the terms that

88

−p2

−p1 = −min
ij

wij

λC,F,π

∆J(δ,λ)

Figure 7-1: Illustration of decrease in dual objective (see Eq. 7.2) as a function of λC,F,π.
p1 refers to the minimal value in {wij}, while p2 is the next smallest value. Clearly we must
have wij > 0 for all edges, as otherwise the decrease would be zero.

involve λC,F,π. Defining

b−C,F,πij (xi, xj) = θij(xi, xj)− δji(xi)− δij(xj) +
∑

(C′,F ′,π′)6=(C,F,π)
: ij∈F ′

λC′,F ′,π′1[π′i(xi) = π′j(xj)]

+
∑

(C′,F ′,π′) 6=(C,F,π)
: ij∈C′\F ′

λC′,F ′,π′1[π′i(xi) 6= π′j(xj)] ,

we can rewrite the relevant terms of the dual objective in Eq. 7.2 as

J(λC,F,π) =
∑

ij∈F
max
xi,xj

(
b−C,F,πij (xi, xj) + λC,F,π1[πi(xi) = πj(xj)]

)

+
∑

ij∈C\F

max
xi,xj

(
b−C,F,πij (xi, xj) + λC,F,π1[πi(xi) 6= πj(xj)]

)

− λC,F,π .

If ij ∈ F , we call λC,F,π active for edge ij when maxxi,xj :πi(xi)=πj(xj)
(
b−C,F,πij (xi, xj) +

λC,F,π
)
≥ maxxi,xj b

−C,F,π
ij (xi, xj), in which case further increasing λC,F,π results in a linear

increase in the corresponding edge term of J(λC,F,π). Similarly, if ij 6∈ F , we call λC,F,π ac-

tive for edge ij when maxxi,xj :πi(xi)6=πj(xj)
(
b−C,F,πij (xi, xj)+λC,F,π

)
≥ maxxi,xj b

−C,F,π
ij (xi, xj).

We define wij to be the largest that λC,F,π can be before becoming active for edge ij:

wij = max
xi,xj :πi(xi)6=πj(xj)

b−C,F,πij (xi, xj)− max
xi,xj :πi(xi)=πj(xj)

b−C,F,πij (xi, xj) if ij ∈ F, (7.4)

max
xi,xj :πi(xi)=πj(xj)

b−C,F,πij (xi, xj)− max
xi,xj :πi(xi)6=πj(xj)

b−C,F,πij (xi, xj) if ij 6∈ F.

When minij∈C wij > 0, the dual objective J(δ, λ) decreases as λC,F,π increases, until
λC,F,π = minij∈C wij = p1 (let ij∗ denote the argmin). At this point, the function has
zero slope, and remains constant until λC,F,π = minij 6=ij∗ wij = p2. Thus, by setting

89

λC,F,π = p1+p2
2 we obtain the maximal decrease. When p2 6= p1, there are a range of values

for λC,F,π that achieve the maximal decrease in the dual objective. We choose the midpoint
because it leads to dual optimal solutions for which “decoding”, or finding the corresponding
primal optimal solution, is easier (we illustrate this in Example 4).

The amount that the dual objective decreases with one coordinate descent step on λC,F,π,
assuming that λC,F,π was previously zero, is

d(C,F, π) = max(0,min
ij∈C

wij). (7.5)

When the cycle inequality on C,F, π is already in the relaxation (i.e., λC,F,π > 0), the
overall change in J(δ, λ) can be zero (although λC,F,π might have a different value due to
the midpoint moving).

Example 4. Consider a triangle on three edges (C = {12, 23, 31}), with xi ∈ {0, 1},
where θi(xi) = 0 ∀i, xi and θij(xi, xj) = 1 if xi 6= xj , and 0 otherwise.1 Let all of the
dual variables δji(xi) be 0, and assume that initially there are no cycle inequalities. The
best integer solution has value 2, while the pairwise LP relaxation gives only a loose upper
bound of 3 (note: δ as defined can be shown to be optimal for the dual of the pairwise LP
relaxation, i.e. Eq. 7.2 with λ = 0).

Consider the problem of finding the best cycle inequality according to arg maxC,F d(C,F).
First, note that bij(xi, xj) = θij(xi, xj), so wij = 1 for ij ∈ F and wij = −1 for ij 6∈ F .
If F = ∅, then wij = −1 for all edges, and so d(C,F) = 0. On the other hand, if F = C,
then wij = 1 for all edges, which gives a bound decrease of d(C,F) = 1, corresponding to
λC,F = 1.

After this one coordinate descent step involving the new cycle inequality, the dual objec-
tive has value 2, which is optimal. Note, however, that finding the optimal primal solution
is non-trivial because no assignments can be ruled out by the complementary slackness
conditions on the edges. Any primal feasible point that satisfies Eq. 7.1 for F = C with
equality is optimal.

If, instead, we had θ12(x1 6= x2) = .95, then (still for F = C) we would have w12(C,F) =
.95 so d(C,F) = .95 and λC,F = .95+1

2 . Consider edge (1, 2). We have that b12(1, 0) =
b12(0, 1) = 0.95 and b12(1, 1) = b12(0, 0) = 0.975, so the complementary slackness conditions
tell us that the MAP assignment has xM1 , x

M
2 either equal to 1, 1 or 0, 0 (i.e., the edge is

not cut). Thus, finding the primal optimal solution (decoding) is much easier.

7.1.2 Separation Algorithm

In this section we will show how to efficiently find k-ary cycle inequalities to use in tightening
the relaxation. We use a similar greedy bound minimization criteria to the one suggested
in Chapter 5 for cluster consistency,

max
C,F⊆C s.t. |F | odd,π

d(C,F, π). (7.6)

We show that this can be computed efficiently using a variation on the shortest-path based
separation algorithm for cycle inequalities presented in Section 3.4.2.

1Since this example is binary, we let the projection be the identity, i.e. πi(xi) = xi. We omit the π
notation from the rest of the example.

90

Let Gπ denote the projection graph, where the variables and edges are as defined in
Eq. 3.9. All subsequent quantities will use the partitions for the variables specified by the
edges (πqi , π

r
j) ∈ Eπ in the projection graph. For now, assume that the cycle inequality that

we are going to add is not already in the relaxation.
The separation algorithm takes as input the projection graph Gπ = (Vπ, Eπ) and the

current beliefs bij(xi, xj). For each edge mn = (πqi , π
r
j) ∈ Eπ, define the weight

smn = max
xi,xj :π

q
i (xi)=π

r
j (xj)

bij(xi, xj)− max
xi,xj :π

q
i (xi) 6=πrj (xj)

bij(xi, xj).

Remove all edges with smn = 0. We then have that

max
C,F⊆C s.t. |F | odd,π

d(C,F, π) = max
(

0, max
C,F⊆C s.t. |F | odd,π

min
mn∈C

wmn

)
(7.7)

= max
(

0, max
C⊆Eπ s.t.∏

mn∈C sign(smn)=−1

min
mn∈C

|smn|
)
, (7.8)

where the change from Eq. 7.7 to Eq. 7.8 is because for d(C,F, π) to be positive, we need
mn ∈ F when smn < 0, and mn 6∈ F when smn > 0.

Thus, the maximum bound decrease is achieved by the cycle in Gπ with an odd number
of edges in F that maximizes the minimum weight along the cycle. Suppose that smn ∈
{+1,−1}. Then, minmn∈C |smn| = 1 and the optimization problem simplifies to finding a
cycle with an odd number of −1 edges. This can be solved in linear time by the following
algorithm (if the graph is not connected, do this for each component): First, construct
a rooted spanning tree. Assign the root node r the value vr = +1. Then, propagate
labels towards the leaves, assigning each node the value vp(m)sm,p(m), where p(m) denotes
the parent of node m. Finally, for each edge mn that is not in the tree, check to see if
vm = vnsmn. If the answer is ever “no”, then we have found a cycle with an odd number of
negative edges.2

Now consider the case of general smn. We can solve the optimization in Eq. 7.8 by doing
a binary search on |smn|. There are only |Eπ| possible edge weights, so to do this search
we first sort the values {|smn| : mn ∈ Eπ}. At each step, we consider the subgraph G′

consisting of all mn ∈ Eπ such that |smn| > R, where R is the threshold used in the binary
search. We then let sm′n′ = sign(smn) for m′n′ ∈ G′, and search for a cycle with an odd
number of negative edges using the algorithm described in the previous paragraph. The
binary search will find the largest R such that there is a negative-signed cycle C ∈ G′, if
one exists. We then add the cycle inequality C,F, π to the relaxation, where F corresponds
to the negative edges in C and π is given by the partitions used by the cycle C. The total
running time is only O(|Eπ| log |Eπ|).

If the existing dual variables λC,F,π are not optimal for {δij(xj)} then it is possible that
this separation algorithm would return a cycle inequality which is already included in the
relaxation. In this case, we can simply increment the value of the existing λC,F,π. Note
that the separation algorithm cannot decrease the value of an existing λC,F , so to obtain
the dual optimum we must make sure to repeatedly re-optimize the new dual variables, e.g.
using the coordinate descent scheme described in the previous section.

2In the case when there is more than one cycle with an odd number of −1 edges, the particular cycle
that we find depends on the choice of spanning tree. However, the algorithm is always guaranteed to find
some cycle with an odd number of −1 edges, when one exists, regardless of the choice of spanning tree.

91

7.2 Separating the Cycle Relaxation

Consider the restricted set of clusters Ccycles(G) corresponding to cycles of arbitrary length,

Ccycles(G) =

{
C ⊆ E | C forms a cycle in G

}
. (7.9)

If we enforce that the pseudomarginals along each cycle in Ccycles(G) arise from some joint
distribution, and enforce consistency between this distribution and the edge marginals, we
recover the cycle relaxation CYCLE(G) introduced in Section 3.1.

A natural question is whether it is possible to find the best cycle cluster to add to the
relaxation, according to the greedy bound minimization criteria

d(C) =
∑

e∈C
max
xe

be(xe)−max
xC

[∑

e∈C
be(xe)

]
, (7.10)

where be(xe) is defined in Eq. A.6. The bound criterion d(C) is the amount that the dual
objective would decrease following one block coordinate descent step on all of the dual edge
variables in the cycle. Its form is very intuitive: it is the difference between independently
maximizing each of the edge beliefs in the cycle (one can think of this as a heuristic to find
the MAP assignment) and jointly maximizing over the edge beliefs of the cycle.

We show the following, where k refers to the number of states per node.

1. For k = 2, when the beliefs be(xe) are dual optimal, maximizing Eq. 7.10 is equivalent
to finding the best cycle inequality in the dual.3

2. For k = 2, maximizing Eq. 7.10 is NP-hard when the beliefs be(xe) are not dual
optimal.

3. For k > 2, maximizing Eq. 7.10 is always NP-hard.

By dual optimal, we mean that the beliefs correspond to a dual optimal solution of the
current LP relaxation. Note that, before solving the dual LP to optimality, be(xe) can be
almost anything. For example, we can set θe(xe) arbitrarily and consider the separation
problem at the first iteration.

Theorem 7.2.1. When k = 2 and the beliefs bij(xi, xj) correspond to a dual optimal
solution, maxC∈Ccycles(G) d(C) = maxC,F :|F | odd d(C,F).

Proof. First, defining we(xe) = maxx̂e be(x̂e)− be(xe), note that

d(C) =
∑

e∈C
max
xe

be(xe)−max
xC

[∑

e∈C
be(xe)

]
(7.11)

=
∑

e∈C
max
xe

be(xe) + min
xC

[
−
∑

e∈C
be(xe)

]
(7.12)

= min
xC

∑

e∈C

[(
max
x̂e

be(x̂e)

)
− be(xe)

]
= min

xC

∑

e∈C
we(xe) . (7.13)

3This result is for binary variables only, so we let the projection be πi(xi) = xi and omit the π notation.

92

Our proof proceeds as follows. In part (a) we show that for any cycle C where d(C) > 0,
for all edges ij ∈ C, either arg maxxi,xj bij(xi, xj) = {(0, 0), (1, 1)} or arg maxxi,xj bij(xi, xj) =
{(1, 0), (0, 1)}.4 Then, calling the edges with maximizing assignments equal to {(1, 0), (0, 1)}
“cut” and the edges with maximizing assignments equal to {(0, 0), (1, 1)} “not cut”, we show
in part (b) that a cycle C has d(C) > 0 if and only if it has an odd number of cut edges. In
part (c) we show that, when d(C) > 0, d(C) = mine∈C,xe s.t. we(xe)>0we(xe).

Recall that, by part (a), bij(0, 0) = bij(1, 1) for an edge that is not cut and bij(0, 1) =
bij(1, 0) for an edge that is cut. Let the cost of “cutting” an edge ij refer to the smallest
value t such that either of bij(0, 1)+ t or bij(1, 0)+ t is equal in value to bij(0, 0) and bij(1, 1)
Similarly, let the cost of “un-cutting” an edge ij refer to the smallest value t such that
either of bij(0, 0) + t or bij(1, 1) + t is equal in value to bij(0, 1) and bij(1, 0). It follows from
part (c) that, when d(C) > 0, d(C) is the minimal cost, over all edges in C, of cutting an
edge that is not cut, or un-cutting an edge that is cut. Thus, letting F ′ be the set of cut
edges in C, when d(C) > 0 we have

min
e∈C,xe s.t. we(xe)>0

we(xe) = max
F⊆C:|F | odd

min
ij∈C

wij , (7.14)

where wij was defined in Eq. 7.4. The equality is because mine∈C,xe s.t. we(xe)>0we(xe) =
minij∈C wij for F = F ′ (and, by part (b), |F ′| is odd), and minij∈C wij < 0 for F 6= F ′

(whereas the left hand side of Eq. 7.14 is positive). By part (b), when d(C) = 0 we have
that minij∈C wij < 0 for all |F | odd, so maxF⊆C:|F | odd d(C,F) = 0. We conclude that
d(C) = maxF⊆C:|F | odd d(C,F), which shows the claim.

(a) We first show that either {(0, 0), (1, 1)} ⊆ arg maxxi,xj bij(xi, xj) or {(1, 0), (0, 1)} ⊆
arg maxxi,xj bij(xi, xj), or both (these are not mutually exclusive). By the definition of
we(xe), every edge ij has at least one assignment xi, xj such that wij(xi, xj) = 0. Suppose
for contradiction that there is an edge ij such that {(0, 0), (1, 1)} 6⊆ arg maxxi,xj bij(xi, xj)
and {(1, 0), (0, 1)} 6⊆ arg maxxi,xj bij(xi, xj). We will show just the following case, with the
others following by similar arguments:

(1, 1) 6∈ arg max
xi,xj

bij(xi, xj) , (7.15)

(1, 0) 6∈ arg max
xi,xj

bij(xi, xj) , and (7.16)

(0, 0) ∈ arg max
xi,xj

bij(xi, xj) . (7.17)

Let µ be any primal optimal solution corresponding to b. By complementary slackness,
we have that µij(0, 0) > 0, which implies that µi(0) > 0. Let j and k denote the two
neighbors of node i in the cycle. By complimentary slackness and the pairwise consistency
constraints, for any xi, if there exists xk such that wki(xk, xi) = 0, then there exists xj
such that wij(xi, xj) = 0. Using this property, we can construct an assignment xC for the
variables of the cycle such that

∑
e∈C we(xe) = 0 by starting with xi = 0 and consecutively

setting each neighbor’s assignment (starting with k, and continuing in the same direction
along the cycle). Importantly, we must return to xi = 0 because we have assumed that
wij(1, 0) > 0 and wij(1, 1) > 0. We have thus contradicted our assumption that d(C) > 0.

To show the equality, suppose for contradiction that there is an edge ij such that

4We use the notation arg maxxi,xj bij(xi, xj) to refer to the set of assignments x̂i, x̂j such that bij(x̂i, x̂j) =
maxxi,xj bij(xi, xj).

93

{(0, 0), (1, 1), (0, 1)} ⊆ arg maxxi,xj bij(xi, xj). Then, we can construct an assignment using
the same technique, starting at xi = 0 and going in the direction of k, which shows that
d(C) = 0, again contradicting our assumption.

(b) Since we(xe) ≥ 0,
∑

e∈C we(xe) = 0 if and only if every edge assignment xe is
consistent with our definition of “cut” and “not cut”. However, any assignment to the
variables in a cycle must correspond to an even number of cut edges (c.f. Section 3.2).
Thus, d(C) = 0 if and only if the cycle has an even number of cut edges.

(c) If d(C) > 0, then there are an odd number of cut edges. Cutting an uncut edge or
un-cutting a cut edge would make the cycle have an even number of cut edges, and so there
would be an assignment xC such that we(xe) = 0 for all edges other than the modified edge,
using the construction from part (a). Thus, for all edges e′ and edge assignments xe′ such
that we′(xe′) > 0, minxC\e′

∑
e∈cwe(xe) = we′(xe′). Since we(xe) ≥ 0 always, if d(C) > 0

then for all assignments xc, there must be some e′ and xe′ such that we′(xe′) > 0. However,
we just showed that there exists a completion xC′\e′ such that we(xe) = 0 for all edges e 6= e′.
Thus, when d(C) > 0, the value of d(C) is equal to mine∈C,xe s.t. we(xe)>0we(xe).

The proof of Theorem 7.2.1 uses the assumption that bij(xi, xj) corresponds to a dual
optimal solution only when applying the complementary slackness conditions for the edge
variables. Thus, Theorem 7.2.1 holds for any LP relaxation of the MAP problem which is
at least as tight as the pairwise relaxation. In particular, adding cycle inequalities does not
change the premise of the theorem.

One conclusion that is immediate given Theorem 7.2.1 is that the cycle inequalities give
at least as tight of a relaxation as the cycle relaxation. In fact, for a single cycle, just
one cycle inequality suffices to make the LP relaxation tight for a given instance. This is
precisely what we observed in Example 4.

Corollary 7.2.2. For any binary pairwise MRF consisting of a single cycle, it is always
possible to make the pairwise LP relaxation tight with just one additional cycle inequality.

7.2.1 NP-Hardness Results

Recall from Chapter 5 that we obtained much better results by tightening the relaxation
even before the dual was solved to optimality (see Figure 5-2). Unfortunately, although we
showed in Section 7.1 that for cycle inequalities maxC,F d(C,F) can be computed efficiently,
the corresponding problem for cycle consistency constraints is significantly more difficult:

Theorem 7.2.3. The optimization problem maxC∈Ccycles(G) d(C) is NP-hard for k = 2 and
beliefs bij(xi, xj) arising from a non-optimal dual feasible point.

Proof. Our reduction is from the Hamiltonian cycle problem, which is known to be NP-
hard. The Hamiltonian cycle problem is: Given a graph G = (V,E), decide whether there
exists a cycle in G that visits all vertices exactly once.

We show how to efficiently construct a Markov random field G′ = (V ′, E′) with xi ∈
{0, 1} and beliefs bij(xi, xj) for ij ∈ E′ such that there is a 1-1 mapping between cycles
C ∈ G and C ′ ∈ G′, and evaluating d(C ′) for C ′ ∈ G′ gives the length of the corresponding
cycle in G. As a result, we have that maxC′∈Ccycles(G′) d(C ′) gives the length of the longest
cycle in G. Thus, if we could solve this optimization problem, then, simply by checking
whether the solution is |V |, we answer the Hamiltonian cycle problem.

94

Let V ′ = V ∪ {xij ,∀ij ∈ E}, where we introduce a new variable xij for every edge in
E. The edges are E′ = {(i, xij), (xij , j), ∀ij ∈ E}, where we replace every edge in G with a
length-2 path in G′. For each ij ∈ E, denoting k = xij , we let the beliefs be:

bik(xi, xij) =
xij = 0 xij = 1

xi = 0 |V | 0
xi = 1 0 0

bkj(xij , xj) =
xj = 0 xj = 1

xij = 0 0 0
xij = 1 0 1

Then, we have that:

wik(xi, xij) =
xij = 0 xij = 1

xi = 0 0 |V |
xi = 1 |V | |V |

wkj(xij , xj) =
xj = 0 xj = 1

xij = 0 1 1
xij = 1 1 0

As a result of our construction, every cycle C ∈ G on nodes i, j, k, . . . ,m corresponds
1-1 with the cycle C ′ ∈ G′ on nodes i, xij , j, xjk, . . . ,m, xmi. It can be verified that for
all cycles C ′ ∈ G′, d(C ′) = minxC′

∑
e∈C′ we(xe) = |C ′|/2 = |C|, where C is the cycle

corresponding to C ′ (the minimum is attained by the all zeros assignment). We thus have
that maxC′∈Ccycles(G′) d(C ′) = maxC∈G |C|.

We next show that, for k > 2, not even dual optimality helps:

Theorem 7.2.4. The optimization problem maxC∈Ccycles(G) d(C) is NP-hard for k ≥ 3 even
for beliefs bij(xi, xj) corresponding to a dual optimal solution of the pairwise relaxation.

Proof. As in the proof of Theorem 7.2.3, we reduce from the Hamiltonian cycle problem,
for an input graph G. First, we show that the Hamiltonian cycle problem is NP-hard even
when restricted to graphs with an odd number of nodes, by reducing from the general case.
Suppose we are given a graph with an even number of nodes and we want to decide whether
it has a Hamiltonian cycle. We repeat the following, once for each edge ij: construct a new
graph which is identical to the original except that we introduce a new node n and replace
the edge ij with the edges in and nj. We then check whether any of the new graphs (all
of which now have an odd number of vertices) have a Hamiltonian cycle. If the answer is
“yes”, we have found a Hamiltonian cycle for the original graph. Otherwise, the original
graph does not have a Hamiltonian cycle.

Assume for the rest of the proof that G has an odd number of vertices. We show how
to efficiently construct a Markov random field G′ = (V ′, E′) with xi ∈ {0, 1, 2} and beliefs
bij(xi, xj) for ij ∈ E′ such that there is a 1-1 mapping between cycles C ∈ G and C ′ ∈ G′,
and evaluating d(C ′) for C ′ ∈ G′ gives the length of the corresponding cycle in G. As a
result, we have that maxC′∈Ccycles(G′) d(C ′) gives the length of the longest cycle in G. Thus,
if we could solve this optimization problem, then, simply by checking whether the solution
is |V |, we answer the Hamiltonian cycle problem.

Let V ′ = V ∪{xij ,∀ij ∈ E}, where we introduce a new variable xij for every edge in E,
also with 3 states. The edges are E′ = {(i, xij), (xij , j),∀ij ∈ E}, where we replace every
edge in G with a length-2 path in G′. For each ij ∈ E, denoting k = xij , we let the beliefs

95

be:

bik(xi, xij) =

xij = 0 xij = 1 xij = 2
xi = 0 |V | 0 0
xi = 1 0 |V | 0
xi = 2 0 0 |V | − .5

(7.18)

bkj(xij , xj) =

xj = 0 xj = 1 xj = 2
xij = 0 0 |V | 0
xij = 1 |V | 0 0
xij = 2 0 0 |V | − .5

As a result of our construction, every cycle C ∈ G on nodes i, j, k, . . . ,m corresponds
1-1 with the cycle C ′ ∈ G′ on nodes i, xij , j, xjk, . . . ,m, xmi. Every cycle C ∈ G where |C|
is even corresponds to a cycle C ′ ∈ G′ such that minxC′

∑
e∈C′ we(xe) = 0 (the minimum is

attained by the assignment 0011 . . . 0011). On the other hand, every cycle C ∈ G where |C|
is odd corresponds to a cycle C ′ ∈ G′ such that minxC′

∑
e∈C′ we(xe) = .5|C ′| = |C| (the

minimum is attained by the assignment of 2 to every node). Thus, G (which has an odd
number of nodes) has a Hamiltonian cycle if and only if maxC′∈Ccycles(G′) d(C ′) = |V |.

What remains is to show that the beliefs bij(xi, xj) that we constructed are dual optimal
for some potentials θ(x). We do this by illustrating a primal and dual feasible point for
which the primal objective is equal to the dual objective. Let θij(xi, xj) = bij(xi, xj) and
δij(xj) = 0 for all edges ij ∈ E and assignments xj . Clearly δij(xj) is dual feasible, and it
gives an objective value of |E||V |. Consider the following primal point µ:

µik(xi, xij) =

xij = 0 xij = 1 xij = 2
xi = 0 .5 0 0
xi = 1 0 .5 0
xi = 2 0 0 0

(7.19)

µkj(xij , xj) =

xj = 0 xj = 1 xj = 2
xij = 0 0 .5 0
xij = 1 .5 0 0
xij = 2 0 0 0

The point µ satisfies the pairwise consistency constraints (the single node marginals are
µi(xi) = .5 for xi ∈ {0, 1}, and 0 otherwise), and has objective value |E||V |. Note that µ
and δ also satisfy the complementary slackness conditions (as they must, since they are a
primal-dual optimal pair).

Remark 7.2.5. The previous construction also shows that the pairwise relaxation does
not guarantee persistency in the non-binary setting, since some of the 0’s in the optimal
fractional solution are non-zero in the optimal integral solution.

7.3 Discussion

Both of the constructions used in the hardness results of Theorems 7.2.3 and 7.2.4 were
such that there were many cycles that were inconsistent. Thus, although we showed that
finding the best of these according to the greedy bound minimization criteria is NP-hard
for k > 2, for these examples we could have easily found some cycle which would make

96

the relaxation tighter. This motivates the following open problem: Is it possible to give an
efficient algorithm to find any cycle C such that d(C) > 0, when one exists? The k-ary
cycle inequalities can be understood as one such algorithm for doing this, in some cases.
An interesting open question is to characterize precisely how much guidance is given by the
k-ary cycle inequalities, particularly since they are known to be strictly weaker than the
cycle relaxation (c.f. Section 3.4.1).

Komodakis & Paragios (2008) proposed to tighten the pairwise LP relaxation by a
sequence of cycle repairing operations. For binary graphical models, when the dual is at
optimality, two cycle repairs – corresponding to the two anchors of any variable (using their
terminology) – can be seen to be equivalent to one coordinate descent step on a new cycle
inequality for this cycle. One distinction is that the cycle repairs directly modify the edge
potentials, having no memory, whereas we use the λC,F,π dual variables to keep track of
the modifications. Thus, we could later decide to do a coordinate descent step on some
λC,F,π > 0 where we decrease its value, potentially to zero. The analogy for cycle repairs
is that the corresponding λC,F,π (if they had kept track of it) can only be increased, not
decreased. We also solve the open problem of how to find the cycles where cycle repairs are
necessary. In their experiments, Komodakis & Paragios (2008) explicitly enumerated over
short cycles.

Johnson (2008) proposed an algorithm to find inconsistent cycles in the dual. His
approach applies only to binary-valued graphical models, and only when the dual is close
to optimality. In these cases, his algorithm can be shown to find a cycle C such that
d(C,F) > 0 for some F ⊆ C, |F | odd. His algorithm, which inspired our approach,
constructs sij ∈ {+1,−1} and looks for inconsistent cycles using the linear time method
described in Section 7.1.2. Because of numerical difficulties, (Johnson, 2008, p.134) needed
to use an edge-wise correlation measure, computed using the primal solution obtained from
the smoothed dual. By drawing the connection to cycle inequalities, we obtain a weighted
approach whereas his was unweighted. As a result, there are no numerical difficulties, and
our algorithm can be applied long before solving the dual to optimality.

It may seem surprising that the dual separation algorithm is so much faster than the
primal separation algorithm. However, this is because the dual searches over a smaller class
of cycle inequalities. Consider the case where we have solved the dual to optimality for the
current relaxation. Then, using the complementary slackness conditions one can show that,
for any cycle inequality C,F, π such that d(C,F, π) > 0, and for any primal solution µ,

∑

mn∈C\F

(
µπmn(0, 1) + µπmn(1, 0)

)
+
∑

mn∈F

(
µπmn(0, 0) + µπmn(1, 1)

)
= 0. (7.20)

The right hand side could be anything less than 1 for us to obtain a violated cycle inequality,
and it is always non-negative because µij(xi, xj) ≥ 0. But, since the right hand side of
Eq. 7.20 is 0, we conclude that the dual separation algorithm is only able to find cycle
inequalities to add to the relaxation that are very violated. By Theorem 7.2.1, the same
conclusion holds for binary graphical models for the cluster-pursuit algorithm given in
Chapter 5, when applied to a dual optimal solution – if a triplet cluster C is found such
that d(C) > 0, then there exists a cycle inequality C,F that is very violated by any primal
solution. It is also possible to give a O(|Eπ|) time separation algorithm in the primal that
would separate this smaller class of cycle inequalities.

Our approach could be valuable even in graphs that are not sparse. We showed in
Chapter 3 that – once the pairwise consistency constraints are satisfied – if a cycle with

97

a chord is inconsistent, one of its shorter cycles will also be inconsistent. Thus, a greedy
strategy that tightens the relaxation one triplet cluster at a time can eventually succeed
at making the cycle consistent, and we indeed observed this in our experiments. However,
there are three potential wrinkles, all avoided with our new approach: First, the dual
bound criterion may be zero for the triplet clusters, but non-zero for the larger cycle (c.f.
Section 5.5).5 Second, the inconsistency may not propagate to the triplet clusters until
we are at the optimum of the dual LP, so it may not be possible to tighten the relaxation
before solving the dual to optimality. Third, if a cycle is of length k and we only add triplet
clusters one at a time, it would take k− 2 iterations before we add all of the triplet clusters
that triangulate the cycle and thus make it consistent.

The problem of finding a good cycle cluster to add to the relaxation can be equivalently
viewed as that of finding a good treewidth 2 subgraph to use in tightening the relaxation. A
natural generalization would be to search for larger treewidth subgraphs to use in tightening.
One way to extend our approach to this setting would be to first introduce new higher-order
variables into the relaxation that represent the cross-product of the states of the original
variables, and to enforce consistency between these higher-order variables. For example,
the triplet clusters that we used in Chapter 5 would enable us to search over treewidth 3
subgraphs. These higher-order variables are non-binary even if the original graphical model
had only binary-valued variables. Thus, given our hardness results for the non-binary
setting, the search problem formulated in this way is likely to be intractable. However, we
could still use the k-ary cycle inequalities, as discussed in this chapter.

5This is a failure of the dual bound criterion; the primal cutting-plane algorithm would not have this
difficulty.

98

Chapter 8

Discussion

There are many exciting directions to pursue using the techniques developed in this thesis.
As we mentioned in Section 2.2.2, many of these techniques can be applied to the prob-
lem of estimating marginal probabilities and the partition function. Our empirical results
demonstrate that the cycle relaxation of the marginal polytope is powerful, allowing us to
find the MAP solution for nearly all of the MRFs we considered, and suggest that using
them will also lead to significantly more accurate marginals for non-binary MRFs. Our
outer bounds are well suited for marginals compared to other approaches. For example,
it is difficult to apply Gomory cuts to these problems because the solution to the relaxed
problem of the (now non-linear) variational objective will be in the interior of the polytope,
and testing whether a point is in the marginal polytope is NP-hard (Sontag, 2007). There
are also straightforward ways to generalize the message-passing algorithms from Chapter 4
to inference problems involving marginals (Meltzer et al., 2009).

In many applications, such as protein design, it is important to be able to find the M
most likely assignments, not just the MAP assignment (M = 1). Fromer & Globerson
(2009) show how the LP relaxations described in this thesis can also be applied to the
M -best problem. Their key insight is that a vertex v of the marginal polytope can be cut
off from the rest of the marginal polytope by a set of spanning tree inequalities. For a tree-
structured pairwise MRF, exactly one such inequality, together with pairwise consistency
constraints, defines the v-excluded marginal polytope. This then gives an exact polyhedral
formulation for the M = 2 problem. The authors then show how to extend the polyhedral
approach to M > 2, and successfully applied it to the protein side-chain placement problem,
using it together with the algorithm that we gave in Chapter 5. Interestingly, Fromer &
Globerson (2009) found that the same triplet clusters that were added by our algorithm in
finding the MAP assignment (c.f. Section 5.4) sufficed to make the M -best LP relaxations
(obtained by adding the spanning tree inequalities) tight as well.

Many of the prediction problems arising from machine learning applications are struc-
tured prediction tasks. For example, in protein folding we are given a new protein sequence
and the goal is to predict the most likely configuration of the protein’s side-chains (Yanover
et al., 2008). In parsing for natural language processing (NLP), we are given a new sen-
tence and the goal is to predict the most likely parse tree (Collins, 2002; Rush et al., 2010).
These prediction problems are typically solved by formulating an objective function (which
is dependent on the input) and solving a combinatorial optimization problem, returning
the optimal solution as the prediction. The methods that we developed in this thesis are
broadly applicable to many structured prediction problems.

99

For example, we have recently had success applying a dual decomposition approach sim-
ilar to that given in Chapter 4 to the NLP problem of non-projective dependency parsing
with higher-order constraints (Koo et al., 2010). Our algorithm uses a combinatorial algo-
rithm to solve a first-order parsing subproblem as part of the overall optimization, analogous
to how we used dynamic programming to solve spanning tree subproblems in Section 4.3.
We found that the LP relaxations were nearly always tight.

These methods are also useful for the problem of learning how to do structured pre-
diction. Most algorithms for learning structured prediction models, such as structured
perceptron (Collins, 2002), require making a prediction at every iteration. One approach
would be to use our algorithms to repeatedly solve LP relaxations of the prediction prob-
lems during learning. In Meshi et al. (2010), we propose an alternative approach to learning
with LP relaxations. The main idea is to instead solve the dual of the structured prediction
loss. We formulate the learning task as a convex minimization over both the weights and
the dual variables corresponding to each data point. As a result, we can begin to optimize
the weights even before completely solving any of the individual prediction problems. We
showed that the dual variables can be efficiently optimized using the coordinate descent
algorithms described in Chapter 4.

More generally, the polyhedral approach pursued here is widely applicable in machine
learning. For example, Kawahara et al. (2009) consider a cutting-plane algorithm for
the problem of maximizing submodular functions, which is important for feature selection
among other applications. Nowozin & Jegelka (2009) consider LP relaxations of clustering
and partitioning problems, using constraints related to the ones presented in this thesis and
Sontag (2007). In Jaakkola et al. (2010), we show how Bayesian network structure learning
can be formulated as an integer linear program and solved using LP relaxations. Just as in
this thesis, finding the right set of constraints was critical to obtaining tight relaxations.

Our work raises several open questions, many of which are discussed at the end of the
relevant chapters. Two of the most interesting questions raised by this thesis are:

• Why are the LP relaxations so often tight for the graphical models that we considered?

• Why are the block-coordinate descent algorithms so effective at solving the LPs?

Although we do not have complete answers to these questions, in what follows we suggest
a couple of directions that would be worth exploring.

To address the first question, of why the LP relaxations were tight, we suggest an
alternative view of the MAP inference problem as structured prediction with a mixture of
experts. Consider the potential function for one edge, θij(xi, xj). We can view this potential
as a weighted vote for the assignment of variablesX1 andX2. Each potential function gives a
weighted vote over some subset of the variables. The MAP inference problem corresponds to
finding the assignment which has the maximum vote according to the mixture of experts.
Clearly, if each expert voted in the same direction, then the MAP assignment would be
trivial to find. It is easy to see that the LP relaxation is also tight in this scenario. The
mixture of experts formulation is most interesting and useful in the setting when some of
the experts can be wrong, in which case taking the vote should provide a better prediction
than looking at any one expert individually. Suppose that the experts are “mostly right”
and are not adversarial. For example, they might vote with high confidence when they have
the correct assignment, otherwise giving low-weight votes. It may be possible to show that
the pairwise LP relaxation is tight in these scenarios.

100

However, noise can prevent the pairwise LP relaxation from being tight, even in this
non-adversarial setting. Consider a binary-valued Markov random field on a length-3 cycle.
In the noiseless setting, if all three edge potentials voted for the assignments along the edge
to agree, then the pairwise LP relaxation would be tight – the MAP assignment would be
0, 0, 0 or 1, 1, 1. However, if noise causes one of the three edges to flip its vote, i.e. to ask
that the assignment along that edge disagree, then a fractional vertex is optimal. In this
case, enforcing cycle consistency resolves the problem. There must be multiple instances of
noise for the cycle consistency relaxation or TRI(G) to be fractional. It may be possible
to show that, under an appropriate noise model, the cycle relaxation is tight with high
probability, whereas the pairwise relaxation is not.

A similar question was raised by Goldstein (1994), who observed that a heuristic that
he developed, called dead-end elimination, was surprisingly effective at reducing the size of
protein design problems. He applied the heuristic to random instances to better understand
how the success depended on the structure of the instance. To match the distributions, he
constructed the test cases by taking each protein design problem and randomly permuting
the values within each edge potential function. The heuristic was significantly less effective
on these examples. We expect similar results for the MAP inference problems considered
in this thesis. To put this in context, consider an inference problem on a pairwise binary
MRF. If the original potential functions had θij(xi = xj) ≥ 0 and θij(xi 6= xj) = 0, then
inference is equivalent to solving minimum cut and the pairwise LP relaxation is tight.
However, after permuting the values of θij we may have θij(xi 6= xj) > 0, making inference
significantly more difficult.

As we discussed in Chapter 4, one possible reason for the dual block-coordinate descent
algorithms being so fast compared to CPLEX, on graphical models where the variables have
large state spaces, is because we treat the non-negativity and normalization constraints
explicitly. Rather than take the Lagrangian of these constraints to obtain an unconstrained
dual, we leave them as constraints and do all block coordinate descent steps with respect
to them. This is discussed further in (Yanover et al., 2006, p.17), where they show that the
speedup of a similar message-passing algorithm over CPLEX grows larger and larger as the
number of states per variable increases.

Finally, another explanation may have to do with the fact that the LP relaxations are
typically tight, and that we use a node-factored dual decomposition. To give an extreme
example, suppose that our decomposition involved two components and both components
were such that, even before optimizing the dual, they both had the same assignment in
their argmax. Then, we would obtain the MAP assignment in the first iteration of DD.
Zhang et al. (2008) showed that protein side-chain placement with a fixed backbone (we
also used a fixed backbone in our experiments) can be reasonably predicted at each location,
independently, using just local backbone information. Although the prediction accuracy is
improved by using graphical models, this shows that there is a strong local signal, which
may help explain why the LP relaxations are solved quickly and exactly. One could make
similar arguments about the stereo vision problem. For example, if there is only one orange
pixel in the left image and one in the right image, this is strong local evidence that these
two pixels correspond to one another. Thus, the dual decomposition algorithm is likely to
reach agreement quickly.

101

Appendix A

Appendix

A.1 Derivation of Dual of Pairwise LP Relaxation

In this section we show how to derive the dual of the pairwise LP relaxation using the
technique of Lagrangian relaxation, or dual decomposition. Consider the primal LP,

max
µ≥0

∑

i

∑

xi

µi(xi)θi(xi) +
∑

ij

∑

xi,xj

µij(xi, xj)θij(xi, xj) (A.1)

subject to:

∑

xj

µij(xi, xj) = µi(xi), ∀ij ∈ E, xi
∑

xi

µij(xi, xj) = µj(xj), ∀ij ∈ E, xj
∑

xi,xj

µij(xi, xj) = 1, ∀ij ∈ E (A.2)

∑

xi

µi(xi) = 1, ∀i ∈ V . (A.3)

We introduce the Lagrange multipliers δji(xi) and δij(xj) for the first two constraints.
Leaving the last two equality constraints and the non-negativity constraints explicit, we
obtain the following equivalent optimization problem:

min
δ

max
µ≥0

∑

i

∑

xi

µi(xi)θi(xi) +
∑

ij∈E

∑

xi,xj

µij(xi, xj)θij(xi, xj)

+
∑

ij∈E

∑

xi

δji(xi)
(
µi(xi)−

∑

xj

µij(xi, xj)
)

+
∑

ij∈E

∑

xj

δij(xj)
(
µj(xj)−

∑

xi

µij(xi, xj)
)

102

subject to Eq. A.2 and Eq. A.3. Re-arranging the objective, we get

min
δ

max
µ≥0

∑

i

∑

xi

µi(xi)
(
θi(xi) +

∑

j∈N(i)

δji(xi)
)

+
∑

ij∈E

∑

xi,xj

µij(xi, xj)
(
θij(xi, xj)− δji(xi)− δij(xj)

)
(A.4)

Finally, we analytically solve the maximization with respect to µ ≥ 0 and the normalization
constraints from Eq. A.2 and Eq. A.3 to obtain the dual objective:

J(δ) =
∑

i

max
xi

(
θi(xi) +

∑

j∈N(i)

δji(xi)
)

+
∑

ij

max
xi,xj

(
θij(xi, xj)− δji(xi)− δij(xj)

)

The dual linear program is then: minδ J(δ).

A.2 Dual Coordinate Descent with Triplet Clusters

We can analogously derive the dual of the LP relaxation which has both the pairwise consis-
tency constraints and triplet consistency constraints. Our treatment differs from Chapter 5
in that we use the dual formulation of Section A.1 rather than the MPLP formulation. This
will result in a simpler message-passing algorithm and bound criterion, replacing the one
used originally in Chapter 5. Theorem 7.2.1 refers to the formulation described here.

After adding in triplet clusters c, the dual objective can be shown to be (we use δ in
place of λ to be consistent with the new notation):

J(δ) =
∑

i∈V
max
xi

[
θi(xi) +

∑

k∈N(i)

δki(xi)
]

(A.5)

+
∑

ij∈E
max
xi,xj

[
θij(xi, xj)− δji(xi)− δij(xj) +

∑

c:ij∈c
δc→ij(xi, xj)

]

+
∑

c

max
xi,xj ,xk

[
− δc→ij(xi, xj)− δc→jk(xj , xk)− δc→ki(xk, xi)

]
.

Unlike the MPLP dual g(λ) described in Chapter 5, this formulation is unconstrained. In
addition, we no longer have the λe→e(xe) dual variables. We give the new message passing
algorithm in Figure A-1. The edge to node messages are identical to the MPLP updates
that we derived in Section 4.2. There are no longer any edge to edge messages. The new
triplet to edge messages correspond to block coordinate descent on the triplet cluster dual
variables δc→ij , δc→jk, δc→ki for the objective J(δ).

Suppose that initially a triplet cluster c is not included in the relaxation. For every
ij ∈ E, define:

bij(xi, xj) = θij(xi, xj)− δji(xi)− δij(xj) +
∑

c′:ij∈c′
δc′→ij(xi, xj). (A.6)

Then, the amount that the dual objective would decrease following one block coordinate

103

• Edge to Node: For every edge ij ∈ E and node i (or j) in the edge:

δij→i(xi) ← −1

2

(
δ−ji (xi) + θi(xi)

)
+

1

2
max
xj

[∑

c:ij∈c
δc→ij(xi, xj) + δ−ij (xj) + θij(xi, xj) + θj(xj)

]

where δ−ji (xi) is the sum of edge-to-node messages into i that are not from edge

ij, namely: δ−ji (xi) =
∑

k∈N(i)\j δik→i(xi).

• Triplet to Edge: For every triplet c ∈ C and every edge ij ∈ c:

δc→ij(xi, xj) ← −2

3

(
θij(xi, xj)− δji(xi)− δij(xj) +

∑

c′ 6= c
ij ∈ c′

δc′→ij(xi, xj)
)

+

1

3
max
xc\{ij}

[∑

st∈c\{ij}

(
θst(xs, xt)− δts(xs)− δst(xt) +

∑

c′ 6= c
st ∈ c′

δc′→st(xs, xt)
)]

Figure A-1: The new coordinate descent updates for an LP relaxation with three node
clusters. We could use these instead of the GMPLP updates originally given in Figure 5-1.

descent step on cluster c is

d(c) =
∑

e∈c
max
xe

be(xe)−max
xc

[∑

e∈c
be(xe)

]
. (A.7)

Thus, we can use the same greedy bound criterion described in Chapter 5, but with the
beliefs be(xe) re-defined to take into consideration the new dual formulation.

A.3 Derivation of Dual with Cycle Inequalities

In this section we show how to derive the dual of the LP relaxation which includes all of
the k-ary cycle inequalities. Consider the primal LP,

max
µ≥0

∑

i

∑

xi

µi(xi)θi(xi) +
∑

ij

∑

xi,xj

µij(xi, xj)θij(xi, xj) (A.8)

104

subject to:

∑

xj

µij(xi, xj) = µi(xi), ∀ij ∈ E, xi
∑

xi

µij(xi, xj) = µj(xj), ∀ij ∈ E, xj
∑

ij∈C\F

∑

xi,xj :
πi(xi) 6=πj(xj)

µij(xi, xj) +
∑

ij∈F

∑

xi,xj :
πi(xi)=πj(xj)

µij(xi, xj) ≥ 1, ∀cycles C,F ⊆ C, |F | odd, π

∑

xi,xj

µij(xi, xj) = 1, ∀ij ∈ E
∑

xi

µi(xi) = 1, ∀i ∈ V

As in Chapter 4 we introduce the Lagrange multipliers δji(xi) an δij(xj) for the first two
constraints. We also introduce Lagrange multipliers λC,F,π for each k-ary cycle inequality.
Leaving the last two equality constraints and the non-negativity constraints explicit, we
obtain the following equivalent optimization problem:

min
λ≥0,δ

max
µ≥0

∑

i

∑

xi

µi(xi)θi(xi) +
∑

ij∈E

∑

xi,xj

µij(xi, xj)θij(xi, xj)

+
∑

ij∈E

∑

xi

δji(xi)
(
µi(xi)−

∑

xj

µij(xi, xj)
)

+
∑

ij∈E

∑

xj

δij(xj)
(
µj(xj)−

∑

xi

µij(xi, xj)
)

+
∑

C,F,π

λC,F,π

(∑

ij∈C\F

∑

xi,xj :
πi(xi)6=πj(xj)

µij(xi, xj) +
∑

ij∈F

∑

xi,xj :
πi(xi)=πj(xj)

µij(xi, xj)− 1
)

subject to:

∑

xi,xj

µij(xi, xj) = 1, ∀ij ∈ E (A.9)

∑

xi

µi(xi) = 1, ∀i ∈ V. (A.10)

105

Re-arranging the objective, we get

min
λ≥0,δ

max
µ≥0

∑

i

∑

xi

µi(xi)
(
θi(xi) +

∑

j∈N(i)

δji(xi)
)

+
∑

ij

∑

xi,xj

µij(xi, xj)
(
θij(xi, xj)− δji(xi)− δij(xj)

+
∑

C,F,π : ij∈C\F

λC,F,π1[πi(xi) 6= πj(xj)]

+
∑

C,F,π : ij∈F
λC,F,π1[πi(xi) = πj(xj)]

)

−
∑

C,F,π

λC,F,π .

Finally, we analytically solve the maximization with respect to µ ≥ 0 and the normalization
constraints from Eq. A.9 and Eq. A.10 to obtain the dual objective given in Eq. 7.2.

106

Bibliography

Alizadeh, Farid. 1993. Interior Point Methods in Semidefinite Programming with Applica-
tions to Combinatorial Optimization. SIAM Journal on Optimization, 5, 13–51.

Alon, Noga, & Naor, Assaf. 2004. Approximating the cut-norm via Grothendieck’s inequal-
ity. Pages 72–80 of: STOC ’04: Proceedings of the thirty-sixth annual ACM symposium
on Theory of computing. New York, NY, USA: ACM.

Alon, Noga, Makarychev, Konstantin, Makarychev, Yury, & Naor, Assaf. 2005. Quadratic
forms on graphs. Invent. Math, 163, 486–493.

Althaus, E., Kohlbacher, O., Lenhof, H.-P., & Müller, P. 2000. A combinatorial approach
to protein docking with flexible side-chains. Pages 15–24 of: RECOMB ’00.

Arora, Sanjeev, & Kale, Satyen. 2007. A combinatorial, primal-dual approach to semidef-
inite programs. Pages 227–236 of: STOC ’07: Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing. New York, NY, USA: ACM.

Arora, Sanjeev, Hazan, Elad, & Kale, Satyen. 2005. Fast Algorithms for Approximate
Semidefinite Programming using the Multiplicative Weights Update Method. Pages 339–
348 of: FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science. Washington, DC, USA: IEEE Computer Society.

Arora, Sanjeev, Daskalakis, Constantinos, & Steurer, David. 2009. Message passing algo-
rithms and improved LP decoding. Pages 3–12 of: STOC ’09: Proceedings of the 41st
annual ACM symposium on Theory of computing. New York, NY, USA: ACM.

Awerbuch, Baruch, & Khandekar, Rohit. 2008. Stateless distributed gradient descent for
positive linear programs. Pages 691–700 of: STOC ’08: Proceedings of the 40th annual
ACM symposium on Theory of computing. New York, NY, USA: ACM.

Bansal, Nikhil, Blum, Avrim, & Chawla, Shuchi. 2002. Correlation Clustering. Page 238
of: FOCS ’02: Proceedings of the 43rd Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society.

Barahona, F. 1993. On cuts and matchings in planar graphs. Mathematical Programming,
60, 53–68.

Barahona, F., & Mahjoub, A. R. 1986. On the cut polytope. Mathematical Programming,
36, 157–173.

Barahona, Francisco, & Anbil, Ranga. 2000. The volume algorithm: producing primal
solutions with a subgradient method. Mathematical Programming, 87, 385–399.

107

Batra, D., Gallagher, A., Parikh, D., & Chen, T. 2010. MRF Inference via Outer-Planar
Decomposition. In: IEEE Computer Vision and Pattern Recognition.

Bayati, M., Shah, D., & Sharma, M. 2008. Max-Product for Maximum Weight Matching:
Convergence, Correctness, and LP Duality. IEEE Transactions on Information Theory,
54(3), 1241–1251.

Bertsimas, D., & Tsitsiklis, J. N. 1997. Introduction to Linear Optimization. Athena
Scientific.

Boros, Endre, & Hammer, Peter L. 2002. Pseudo-boolean optimization. Discrete Appl.
Math., 123(1-3), 155–225.

Boykov, Yuri, & Kolmogorov, Vladimir. 2004. An Experimental Comparison of Min-
Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Trans. Pattern
Anal. Mach. Intell., 26(9), 1124–1137.

Boykov, Yuri, Veksler, Olga, & Zabih, Ramin. 2001. Fast Approximate Energy Minimization
via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11), 1222–1239.

Charikar, Moses, & Wirth, Anthony. 2004. Maximizing Quadratic Programs: Extending
Grothendieck’s Inequality. Foundations of Computer Science, Annual IEEE Symposium
on, 0, 54–60.

Charikar, Moses, Makarychev, Konstantin, & Makarychev, Yury. 2009. Integrality gaps for
Sherali-Adams relaxations. Pages 283–292 of: STOC ’09: Proceedings of the 41st annual
ACM symposium on Theory of computing. New York, NY, USA: ACM.

Chekuri, C., Khanna, S., Naor, J., & Zosin, L. 2005. A Linear Programming Formulation
and Approximation Algorithms for the Metric Labeling Problem. SIAM J. Discret. Math.,
18(3), 608–625.

Collins, M. 2002. Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms. In: EMNLP.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. 2001. Introduction to Algorithms.
2nd edn. MIT Press.

Dahlhaus, E., Johnson, D. S., Papadimitriou, C. H., Seymour, P. D., & Yannakakis, M.
1994. The Complexity of Multiterminal Cuts. SIAM J. Computing, 23(4), 864–894.

de la Vega, Wenceslas Fernandez, & Kenyon-Mathieu, Claire. 2007. Linear programming
relaxations of maxcut. Pages 53–61 of: SODA ’07: Proceedings of the eighteenth an-
nual ACM-SIAM symposium on Discrete algorithms. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics.

Dechter, R., Kask, K., & Mateescu, R. 2002. Iterative Join-Graph Propagation. In: UAI.

Deza, M. M., & Laurent, M. 1997. Geometry of Cuts and Metrics. Algorithms and Com-
binatorics, vol. 15. Springer.

Dimakis, Alexandros G., Gohari, Amin A., & Wainwright, Martin J. 2009. Guessing facets:
polytope structure and improved LP decoder. IEEE Trans. Inf. Theor., 55(8), 3479–3487.

108

Duchi, J., Tarlow, D., Elidan, G., & Koller, D. 2007. Using Combinatorial Optimization
within Max-Product Belief Propagation. In: Schölkopf, B., Platt, J., & Hoffman, T.
(eds), Advances in Neural Information Processing Systems 19. MIT Press.

Elidan, G., Mcgraw, I., & Koller, D. 2006. Residual belief propagation: informed scheduling
for asynchronous message passing. In: UAI.

Feldman, J., Wainwright, M.J., & Karger, D.R. 2005. Using linear programming to Decode
Binary linear codes. IEEE Transactions on Information Theory, 51(3), 954 – 972.

Felzenszwalb, P. F., & Huttenlocher, D. P. 2006. Efficient Belief Propagation for Early
Vision. Int. J. Comput. Vision, 70(1), 41–54.

Felzenszwalb, Pedro F., Pap, Gyula, va Tardos, & Zabih, Ramin. 2010. Globally Optimal
Pixel Labeling Algorithms for Tree Metrics. In: Computer Vision and Pattern Recogni-
tion.

Frangioni, A., Lodi, A., & Rinaldi, G. 2005. New approaches for optimizing over the
semimetric polytope. Math. Program., 104(2), 375–388.

Fromer, Menachem, & Globerson, Amir. 2009. An LP View of the M-best MAP problem.
Pages 567–575 of: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C. K. I., & Culotta,
A. (eds), Advances in Neural Information Processing Systems 22.

Globerson, A., & Jaakkola, T. 2007a. Approximate Inference Using Planar Graph Decom-
position. In: Advances in Neural Information Processing Systems 20.

Globerson, A., & Jaakkola, T. 2007b. Fixing max-product: Convergent message passing
algorithms for MAP LP-relaxations. In: Platt, J.C., Koller, D., Singer, Y., & Roweis,
S. (eds), Advances in Neural Information Processing Systems 21. Cambridge, MA: MIT
Press.

Globerson, A., & Jaakkola, T. 2008. Fixing Max-Product: Convergent Message Passing
Algorithms for MAP LP-Relaxations. In: NIPS 21.

Goemans, Michel X., & Williamson, David P. 1995. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6), 1115–1145.

Goldstein, R.F. 1994. Efficient rotamer elimination applied to protein side-chains and re-
lated spin glasses. Biophysical Journal, 66(5), 1335 – 1340.

Gomory, R.E. 1958. Outline of an algorithm for integer solutions to linear programs. vol.
64.

Greig, D.M., Porteous, B.T., & Seheult, A.H. 1989. Exact Maximum a Posteriori Estimation
for Binary Images. J. Royal Statistical Soc. B, 51(2), 271–279.

Gupta, Rahul, Diwan, Ajit A., & Sarawagi, Sunita. 2007. Efficient inference with cardinality-
based clique potentials. Pages 329–336 of: ICML ’07: Proceedings of the 24th interna-
tional conference on Machine learning. New York, NY, USA: ACM.

Hong, E.J., & Lozano-Pérez, T. 2006. Protein Side-Chain Placement Through MAP Esti-
mation and Problem-Size Reduction. In: WABI.

109

Ishikawa, Hiroshi. 2003. Exact Optimization for Markov Random Fields with Convex Priors.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 1333–1336.

Jaakkola, Tommi, Sontag, David, Globerson, Amir, & Meila, Marina. 2010. Learning
Bayesian Network Structure using LP Relaxations. Pages 358–365 of: Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics (AI-STATS),
vol. 9. JMLR: W&CP.

Jerrum, Mark, & Sinclair, Alistair. 1993. Polynomial-time approximation algorithms for
the Ising model. SIAM J. Comput., 22(5), 1087–1116.

Johnson, J. 2008. Convex Relaxation Methods for Graphical Models: Lagrangian and Max-
imum Entropy Approaches. Ph.D. thesis, EECS, MIT.

Jojic, V., Gould, S., & Koller, D. 2010. Fast and smooth: Accelerated dual decomposition
for MAP inference. In: Proceedings of International Conference on Machine Learning
(ICML).

Karger, David R. 2000. Minimum cuts in near-linear time. J. ACM, 47(1), 46–76.

Kawahara, Yoshinobu, Nagano, Kiyohito, Tsuda, Koji, & Bilmes, Jeff. 2009. Submodularity
Cuts and Applications. Pages 916–924 of: Bengio, Y., Schuurmans, D., Lafferty, J.,
Williams, C. K. I., & Culotta, A. (eds), Advances in Neural Information Processing
Systems 22.

Khot, Subhash, & Saket, Rishi. 2009. SDP Integrality Gaps with Local ell1-Embeddability.
Foundations of Computer Science, Annual IEEE Symposium on, 0, 565–574.

Khot, Subhash, Kindler, Guy, Mossel, Elchanan, & O’Donnell, Ryan. 2004. Optimal In-
approximability Results for Max-Cut and Other 2-Variable CSPs? Pages 146–154 of:
FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science. Washington, DC, USA: IEEE Computer Society.

Kingsford, C. L., Chazelle, B., & Singh, M. 2005. Solving and analyzing side-chain position-
ing problems using linear and integer programming. Bioinformatics, 21(7), 1028–1039.

Kleinberg, Jon, & Tardos, Eva. 1999. Approximation Algorithms for Classification Problems
with Pairwise Relationships: Metric Labeling and Markov Random Fields. Foundations
of Computer Science, Annual IEEE Symposium on, 0, 14.

Kohli, Pushmeet, Shekhovtsov, Alexander, Rother, Carsten, Kolmogorov, Vladimir, & Torr,
Philip. 2008. On partial optimality in multi-label MRFs. Pages 480–487 of: ICML ’08:
Proceedings of the 25th international conference on Machine learning. New York, NY,
USA: ACM.

Kolmogorov, V. 2006. Convergent Tree-Reweighted Message Passing for Energy Minimiza-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 28(10), 1568–1583.

Kolmogorov, V., & Wainwright, M. 2005. On the optimality of tree-reweighted max-product
message-passing. In: UAI.

Komodakis, N., & Paragios, N. 2008. Beyond Loose LP-Relaxations: Optimizing MRFs by
Repairing Cycles. Pages 806–820 of: ECCV.

110

Komodakis, Nikos, Paragios, Nikos, & Tziritas, Georgios. 2010. MRF Energy Minimiza-
tion and Beyond via Dual Decomposition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 99(PrePrints).

Koo, Terry, Rush, Alexander M., Collins, Michael, Jaakkola, Tommi, & Sontag, David. 2010.
Dual Decomposition for Parsing with Non-Projective Head Automata. In: EMNLP.

Koster, A., van Hoesel, S.P.M., & Kolen, A.W.J. 1998. The partial constraint satisfaction
problem: Facets and lifting theorems. Operations Research Letters, 23, 89–97.

Lacoste-Julien, S., Taskar, B., Klein, D., & Jordan, M. I. 2006. Word alignment via
quadratic assignment. Pages 112–119 of: Proceedings of NAACL HLT.

Laurent, Monique. 2003. A Comparison of the Sherali-Adams, Lovász-Schrijver, and
Lasserre Relaxations for 0–1 Programming. Math. Oper. Res., 28(3), 470–496.

Lazic, Nevena, Frey, Brendan, & Aarabi, Parham. 2010. Solving the Uncapacitated Facility
Location Problem Using Message Passing Algorithms. Pages 429–436 of: Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics (AI-
STATS), vol. 9. JMLR: W&CP.

Liers, Frauke, Jünger, Michael, Reinelt, Gerhard, & Rinaldi, Giovanni. 2004. Computing
Exact Ground States of Hard Ising Spin Glass Problems by Branch-and-Cut. Wiley. Pages
47–68.

McAuley, J. J., & Caetano, T. S. 2010. Exploiting data-independence for fast belief-
propagation. In: ICML.

Mceliece, Robert J., Mackay, David J. C., & fu Cheng, Jung. 1998. Turbo decoding as an
instance of Pearls ”Belief Propagation” algorithm. IEEE Journal on Selected Areas in
Communications, 16, 140–152.

Meltzer, T., Yanover, C., & Weiss, Y. 2005. Globally optimal solutions for energy mini-
mization in stereo vision using reweighted belief propagation. In: ICCV.

Meltzer, Talya, Globerson, Amir, & Weiss, Yair. 2009. Convergent message passing al-
gorithms - a unifying view. In: In Proc. Twenty-eighth Conference on Uncertainty in
Artificial Intelligence (UAI 09.

Meshi, Ofer, Sontag, David, Jaakkola, Tommi, & Globerson, Amir. 2010. Learning Effi-
ciently with Approximate Inference via Dual Losses. In: Proceedings of the International
Conference on Machine Learning (ICML).

Mitchell, John E. 2005. Cutting Plane Methods and Subgradient Methods. In: Tutorials
in Operations Research. INFORMS.

Murphy, Kevin, Weiss, Yair, & Jordan, Michael. 1999. Loopy Belief Propagation for Approx-
imate Inference: An Empirical Study. Pages 467–47 of: Proceedings of the Proceedings
of the Fifteenth Conference Annual Conference on Uncertainty in Artificial Intelligence
(UAI-99). San Francisco, CA: Morgan Kaufmann.

Nedic, A., & Ozdaglar, A. 2007. Approximate primal solutions and rate analysis for dual
subgradient methods. Page 61853 of: Urbana, vol. 51.

111

Nemhauser, G. L., & Trotter, L. E. 1975. Vertex packings: Structural properties and
algorithms. Mathematical Programming, 8, 232–248.

Nowozin, Sebastian, & Jegelka, Stefanie. 2009. Solution stability in linear programming
relaxations: graph partitioning and unsupervised learning. Pages 769–776 of: ICML ’09:
Proceedings of the 26th Annual International Conference on Machine Learning. New
York, NY, USA: ACM.

Pierce, Niles A., Spriet, Jan A., Desmet, J., & Mayo, Stephen L. 2000. Conformational
splitting: A more powerful criterion for dead-end elimination. Journal of Computational
Chemistry, 21(11), 999–1009.

Plotkin, Serge A., Shmoys, David B., & Tardos, Éva. 1995. Fast approximation algorithms
for fractional packing and covering problems. Math. Oper. Res., 20(2), 257–301.

Raphael, C. 2001. Coarse-to-Fine Dynamic Programming. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(12), 1379–1390.

Ravikumar, Pradeep, Agarwal, Alekh, & Wainwright, Martin J. 2008. Message-passing
for graph-structured linear programs: proximal projections, convergence and rounding
schemes. Pages 800–807 of: ICML ’08: Proceedings of the 25th international conference
on Machine learning. New York, NY, USA: ACM.

Rendl, Franz, Rinaldi, Giovanni, & Wiegele, Angelika. 2009. Solving Max-Cut to optimality
by intersecting semidefinite and polyhedral relaxations. Math. Program., 121(2), 307–335.

Rush, Alexander M., Sontag, David, Collins, Michael, & Jaakkola, Tommi. 2010. On Dual
Decomposition and Linear Programming Relaxations for Natural Language Processing.
In: EMNLP.

Scharstein, D., & Szeliski, R. 2002. A Taxonomy and Evaluation of Dense Two-Frame
Stereo Correspondence Algorithms. IJCV.

Schraudolph, Nicol N. 2010. Polynomial-Time Exact Inference in NP-Hard Binary MRFs
via Reweighted Perfect Matching. Pages 717–724 of: Teh, Yee Whye, & Titterington,
Mike (eds), 13th Intl. Conf. Artificial Intelligence and Statistics (AIstats), vol. 9. Chia
Laguna, Italy: JMLR: W&CP.

Schraudolph, Nicol N., & Kamenetsky, Dmitry. 2009. Efficient Exact Inference in Planar
Ising Models. In: Advances in Neural Information Processing Systems, vol. 21. Cam-
bridge, MA: MIT Press.

Sherali, H. D., & Adams, W. P. 1990. A Hierarchy of Relaxations between the Continuous
and Convex Hull Representations for Zero-One Programming Problems. SIAM Journal
on Discrete Mathematics, 3(3), 411–430.

Shimony, Y. 1994. Finding the MAPs for belief networks is NP-hard. Aritifical Intelligence,
68(2), 399–410.

Sontag, David. 2007. Cutting Plane Algorithms for Variational Inference in Graphical Mod-
els. M.Phil. thesis, Massachusetts Institute of Technology, Department of Electrical En-
gineering and Computer Science.

112

Sontag, David, & Jaakkola, Tommi. 2008. New Outer Bounds on the Marginal Polytope.
Pages 1393–1400 of: Platt, J.C., Koller, D., Singer, Y., & Roweis, S. (eds), Advances in
Neural Information Processing Systems 20. Cambridge, MA: MIT Press.

Sontag, David, & Jaakkola, Tommi. 2009. Tree Block Coordinate Descent for MAP in
Graphical Models. Pages 544–551 of: Proceedings of the Twelfth International Conference
on Artificial Intelligence and Statistics (AI-STATS), vol. 8. JMLR: W&CP.

Sontag, David, Meltzer, Talya, Globerson, Amir, Weiss, Yair, & Jaakkola, Tommi. 2008.
Tightening LP Relaxations for MAP using Message-Passing. Pages 503–510 of: 24th
Conference in Uncertainty in Artificial Intelligence. AUAI Press.

Sontag, David, Globerson, Amir, & Jaakkola, Tommi. 2009. Clusters and Coarse Partitions
in LP Relaxations. Pages 1537–1544 of: Koller, D., Schuurmans, D., Bengio, Y., &
Bottou, L. (eds), Advances in Neural Information Processing Systems 21. MIT Press.

Tappen, Marshall F., & Freeman, William T. 2003. Comparison of Graph Cuts with Belief
Propagation for Stereo, using Identical MRF Parameters. Page 900 of: ICCV ’03: Pro-
ceedings of the Ninth IEEE International Conference on Computer Vision. Washington,
DC, USA: IEEE Computer Society.

Tarlow, Daniel, Givoni, Inmar, & Zemel, Richard. 2010. HOP-MAP: Efficient Message
Passing with High Order Potentials. In: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics.

Trevisan, Luca. 2009. Max cut and the smallest eigenvalue. Pages 263–272 of: STOC ’09:
Proceedings of the 41st annual ACM symposium on Theory of computing. New York, NY,
USA: ACM.

Trevisan, Luca, Sorkin, Gregory B., Sudan, Madhu, & Williamson, David P. 2000. Gadgets,
Approximation, and Linear Programming. SIAM J. Comput., 29(6), 2074–2097.

Vanderbei, R.J. 2007. Linear Programming: Foundations and Extensions. 3rd edn. Springer.

Vontobel, Pascal O., & Koetter, Ralf. 2006. Towards Low-Complexity Linear-Programming
Decoding. In: Proc. 4th Intern. Conf. on Turbo Codes and Related Topics.

Wainwright, M., & Jordan, M. I. 2006. Log-determinant relaxation for approximate infer-
ence in discrete Markov random fields. IEEE Transactions on Signal Processing, 54(6),
2099–2109.

Wainwright, M., & Jordan, M. I. 2008. Graphical Models, Exponential Families, and Vari-
ational Inference. Hanover, MA, USA: Now Publishers Inc.

Wainwright, M., Jaakkola, T., & Willsky, A. 2005a. MAP estimation via agreement on
trees: message-passing and linear programming. IEEE Trans. on Information Theory,
51(11), 3697–3717.

Wainwright, M., Jaakkola, T., & Willsky, A. 2005b. A new class of upper bounds on the
log partition function. IEEE Transactions on Information Theory, 51, 2313–2335.

Wainwright, Martin J., & Jordan, Michael I. 2004. Treewidth-based conditions for exactness
of the Sherali-Adams and Lasserre relaxations. Technical Report 671. UC Berkeley, Dept.
of Statistics.

113

Weiss, Y., Yanover, C., & Meltzer, T. 2007. MAP Estimation, Linear Programming and
Belief Propagation with Convex Free Energies. In: UAI.

Weiss, Yair. 1997. Belief Propagation and Revision in Networks with Loops. Tech. rept.
Cambridge, MA, USA.

Welling, M. 2004. On the Choice of Regions for Generalized Belief Propagation. In: UAI.

Welling, M., Minka, T., & Teh, Y. W. 2005. Structured Region Graphs: Morphing EP into
GBP. In: UAI.

Werner, T. 2007. A Linear Programming Approach to Max-Sum Problem: A Review. IEEE
Trans. Pattern Anal. Mach. Intell., 29(7), 1165–1179.

Werner, T. 2008. High-arity interactions, polyhedral relaxations, and cutting plane algo-
rithm for soft constraint optimisation (MAP-MRF). In: CVPR.

Yanover, C., Meltzer, T., & Weiss, Y. 2006. Linear Programming Relaxations and Belief
Propagation – An Empirical Study. JMLR, 7, 1887–1907.

Yanover, C., Schueler-Furman, O., & Weiss, Y. 2008. Minimizing and Learning Energy
Functions for Side-Chain Prediction. Journal of Computational Biology, 15(7), 899–911.

Yarkony, Julian, Fowlkes, Charless, & Ihler, Alexander. 2010. Covering Trees and Lower-
bounds on Quadratic Assignment. In: Computer Vision and Pattern Recognition.

Yedidia, J., Freeman, W., & Weiss, Y. 2001. Bethe Free Energy, Kikuchi Approximations,
and Belief Propagation Algorithms. Technical Report 16. Mitsubishi Electric Research
Lab.

Yedidia, J.S., Freeman, W.T., & Weiss, Y. 2005. Constructing free-energy approximations
and generalized belief propagation algorithms. IEEE Trans. on Information Theory,
51(7), 2282– 2312.

Zhang, Jing, Gao, Xin, Xu, Jinbo, & Li, Ming. 2008. Rapid and Accurate Protein Side
Chain Packing using Local Backbone Information. In: RECOMB 2008.

114

