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Abstract

We consider the computational complexity of finding the MAP assignment
of topics to words in Latent Dirichlet Allocation. We show that, when
the effective number of topics per document is small, exact inference takes
polynomial time. In contrast, we show that, when a document has a large
number of topics, finding the MAP assignment in LDA is NP-hard. Our re-
sults motivate further study of the structure in real-world topic models, and
raise a number of questions about the requirements for accurate inference
during both learning and test-time use of topic models.

1 Introduction

Probabilistic models of text and topics, known as topic models, are powerful tools for ex-
ploring large data sets and for making inferences about the content of documents. Topic
models are frequently used for deriving low-dimensional representations of documents that
are then used for information retrieval, document summarization, and classification [Blei &
McAuliffe, 2008; Lacoste-Julien et al., 2009]. Almost all uses of topic models require infer-
ence. For example, unsupervised learning of topic models using Expectation Maximization
requires the repeated computation of marginal probabilities of what topics are present in the
documents. For applications in information retrieval and classification, each new document
necessitates inference to determine what topics are present.

Although there is a wealth of literature on approximate inference algorithms for topic mod-
els, such Gibbs sampling and variational inference [Blei et al., 2003; Griffiths & Steyvers,
2004; Mukherjee & Blei, 2009; Porteous et al., 2008; Teh et al., 2007], little is known about
the complexity of exact inference. In this paper, we consider the computational complexity
of inference in topic models, beginning with one of the simplest and most popular models,
Latent Dirichlet Allocation (LDA) [Blei et al., 2003]. We chose to study LDA because we
believe that it captures the essence of what makes inference easy or hard in topic models.
Our hope is that our results will motivate discussion of the following questions, guiding
research of both new topic models and approximate inference for topic models:

1. What is the structure of real-world LDA inference problems?
Might there be structure in “natural” problem instances that makes them different
from hard instances (e.g., those used in our reductions)?

2. How much does having accurate inference affect the results of learning?
With a large training set or sufficiently long documents, might there be enough
“averaging” for learning to succeed even with somewhat inaccurate inference?

3. What are the requirements of applications that use test-time inference?
How accurate does test-time inference need to be? What quantities are needed (e.g.,
marginals, likelihood, most likely assignment)?
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2 MAP inference

We will consider the inference problem for a single document. The LDA model states that the
document, represented as a collection of words w = (w1, w2, . . . , wN ), is generated as follows:
a distribution over the T topics is sampled from a Dirichlet distribution, θ ∼ Dir(α); then, for
i = 1, . . . , N , we sample a topic zi ∼ Multinomial(θ) and word wi ∼ Pr(w|zi). Assume that
these word distributions have been previously estimated, and denote lit = log Pr(wi|zi = t)
as the log probability of the ith word being generated from topic t. After integrating out
the topic distribution vector, the joint distribution of the topic assignments is given by

Pr(z1, . . . , zN ) =
Γ(
∑
t αt)∏

t Γ(αt)

∏
t Γ(nt + αt)

Γ(
∑
t αt +N)

N∏
i=1

Pr(wi|zi), (1)

where nt is the total number of words assigned to topic t.

In this paper, we will focus on the inference problem of finding the most likely assignment
of topics to words, i.e. the maximum a posteriori (MAP) assignment. Taking the logarithm
of Eq. 1 and ignoring constants, finding the MAP assignment is seen to be equivalent to the
following combinatorial optimization problem:

Φ = max
xit∈{0,1},nt

∑
t

lg Γ(nt + αt) +
∑
i,t

xitlit (2)

subject to
∑
t

xit = 1,
∑
i

xit = nt,

where the indicator variable xit = I[zi = t] denotes the assignment of word i to topic t.

2.1 Exact maximization for small number of topics

Suppose a document only uses τ � T topics. That is, T could be large, but we are
guaranteed that the MAP assignment for a document uses at most τ different topics. In this
section, we show how we can use this knowledge to efficiently find a maximizing assignment
of words to topics.

We first observe that, if we knew the number of words assigned to each topic, finding the
MAP assignment is easy. For i ∈ {1, . . . , T}, let n∗i be the number of words assigned to topic
i in the MAP assignment. Then, the MAP assignment ~x is found by solving the following
optimization problem:

max
xit∈{0,1}

∑
i,t

xitlit (3)

subject to
∑
t

xit = 1,
∑
i

xit = n∗t ,

which is equivalent to weighted b-matching in a bipartite graph (the words are on one side,
the topics on the other) and can be optimally solved in time O(bm3), where b = maxt n∗t =
O(N) and m = N + T [Schrijver, 2003].

We call (n1, . . . , nT ) a valid partition when ni ≥ 0 and
∑
t nt = N . Using weighted b-

matching, we can find a MAP assignment of words to topics by trying all
(
T
τ

)
= Θ(T τ )

choices of τ topics and all possible valid partitions with at most τ non-zeros.

for all subsets A ⊆ {1, 2, . . . , T} such that |A| = τ do
for all valid partitions ~n = (n1, n2, . . . , nT ) such that nt = 0 for t 6∈ A do

ΦA,~n ←Weighted-B-Matching(A,~n, l) +
∑
t lg Γ(nt + αt)

end for
end for
return arg maxA,~n ΦA,~n
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Figure 1: (Left) A LDA instance derived from a k-set packing instance. (Center) Plot of
F (nt) = lg Γ(nt +α) for various values of α. The x-axis varies nt, the number of words assigned to
topic t, and the y-axis shows F (nt). (Right) Behavior of lg Γ(nt + α) as α → 0. The function is
stable everywhere but at zero, where the reward for sparsity increases without bound.

There are at most Nτ valid partitions with τ non-zero counts. For each of these, we solve
the b-matching problem to find the most likely assignment of words to topics that satisfies
the cardinality constraints. Thus, the total running time is O((NT )τN(N + τ)3). This is
tractable when the number of topics τ appearing in a document is a constant.

2.2 Inference is NP-hard for large numbers of topics

In this section, we show that probabilistic inference is NP-hard in the general setting where
a document may have a large number of topics in its MAP assignment. Let MAX-LDA(α)
denote the decision problem of whether Φ > V (see Eq. 2) for some V ∈ R, where the
hyperparameters αt = α for all topics. We consider both α < 1 and α ≥ 1 because, as
shown in Figure 1, the optimization problem is qualitatively different in these two cases.
Theorem 1. MAX-LDA(α) is NP-hard for all α > 0.

Proof. Our proof is a straightforward generalization of the approach used by Halperin &
Karp [2005] to show that the minimum entropy set cover problem is hard to approximate.

The proof is done by reduction from k-set packing (k-SP), for k ≥ 3. In k-SP, we are given
a collection of k-element sets over some universe of elements Σ with |Σ| = n. The goal
is to find the largest collection of disjoint sets. There exists a constant c > 1 such that
it is NP-hard to decide whether a k-SP instance has (i) a solution with n/k disjoint sets
covering all elements (called a perfect matching), or (ii) at most cn/k disjoint sets (called a
(cn/k)-matching).

We now describe how to construct a LDA inference problem from a k-SP instance. This
requires specifying the words in the document, the number of topics, and the word log
probabilities lit. Let each element i ∈ Σ correspond to a word wi, and let each set correspond
to one topic. The document consists of all of the words (i.e., Σ). We assign uniform
probability to the words in each topic, so that Pr(wi|zi = t) = 1

k for i ∈ t, and 0 otherwise.
Figure 1 illustrates the resulting LDA model. The topics are on the top, and the words
from the document are on the bottom. An edge is drawn between a topic (set) and a word
(element) if the corresponding set contains that element.

What remains is to show that we can solve some k-SP problem by using this reduction and
solving a MAX-LDA(α) problem. For technical reasons involving α > 1, we require that k
is sufficiently large. We will use the following result, proved in the Appendix.

Lemma 2. Let P be a k-SP instance for k > (1 + α)2, and let P ′ be the derived MAX-
LDA(α) instance. There exists constants CU and CL < CU such that, if there is a perfect
matching in P , then Φ ≥ CU . If, on the other hand, there is at most a (cn/k)-matching in
P , then Φ < CL.

Let P be a k-SP instance for k > (3 + α)2, P ′ be the derived MAX-LDA(α) instance, and
CU and CL < CU be as in Lemma 2. Then, by testing Φ < CL and Φ > CU we can
decide whether P is a perfect matching or at best a (cn/k)-matching. Hence k-SP reduces
to MAX-LDA(α).
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The bold lines in Figure 1 indicate the MAP assignment, which for this example corresponds
to a perfect matching for the original k-set packing instance. More realistic documents would
have significantly more words than topics used. Although this is not possible while keeping
k = 3, since the MAP assignment always has τ ≥ N/k, we can instead reduce from a k-set
packing problem with k � 3. Lemma 2 shows that this is hard as well.

3 Conclusion

In this paper, we have shown that the complexity of inference in LDA strongly depends on
the effective number of topics per document. When we can guarantee that a document is
generated from a small number of topics (regardless of the number of topics in the model),
MAX-LDA can be solved in polynomial time. On the other hand, if a document can use an
arbitrary number of topics, MAX-LDA is NP-hard. The choice of hyperparameters for the
Dirichlet does not affect our results.

It would be interesting to show analogous results for computing marginals and the partition
function. It is straightforward to extend both our positive and negative results to related
models, such as probabilistic latent semantic analysis (PLSA) [Hofmann, 1999] or correlated
topic models [Blei & Lafferty, 2006].

Appendix: Proof of Lemma 2

Proof of Lemma 2. Assume there are T sets each having k ≥ 3 elements, and let Φ be the
optimal LDA objective. Define F (n) = log Γ(n+ α). Since lit is constant across all topics,
the linear term in Eq. 2 will be a constant K. First, note that, if there is a perfect matching,

Φ ≥ n

k
F (k) + (T − n

k
)F (0) +K. (4)

The F (0) term is the contribution of unused topics. Otherwise, assume that the best packing
has γ ≤ cn/k sets, each with k elements. Then, by the properties of the log-gamma function,

Φ ≤ γF (k) +
n− γk
k − 1

F (k − 1) + (T − n

k
)F (0) +K, (5)

where we assume, conservatively, that all of the remaining words are explained by topics
assigned (k−1) words. Also, since there was no perfect matching, there were at most T − n

k
unused topics. Using our bound on γ, we have

Φ ≤ cn

k
F (k) +

n− cn
k k

k − 1
F (k − 1) + (T − n

k
)F (0) +K (6)

=
cn

k
F (k) +

n(1− c)
k − 1

F (k − 1) + (T − n

k
)F (0) +K (7)

=
dn

k
F (k) + (T − n

k
)F (0) +K, (8)

where

d := c+ (1− c)β, for β :=
k

F (k)
F (k − 1)
k − 1

. (9)

Note that F (k)/k → ∞ as k → ∞. Along with the convexity of F , it follows that there
exists a k0 such that β < 1 for all k > k0. Note that k > (3 +α)2 suffices. This implies that
d < 1, which shows that there is a non-zero gap between the possible values of Φ. We have
that k

k−1 ↓ 1 as k → ∞. Therefore, β < 1 for some k if and only if the slope of F exceeds
one at some point.

Note that the maximum concentration objective, F (n) = n log n, satisfies the conditions on
F and, in particular, we have β < 1 for k = 3.
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