
Efficiently Searching for Frustrated Cycles in MAP Inference

(Supplementary Material)

David Sontag, Do Kook Choe, Yitao Li
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

1 Derivation of Dual with Cycle Inequalities

In this section we show how to derive the dual of the LP relaxation which includes all of the k-ary cycle
inequalities. We show this for pairwise MRFs, but it is straightforward to generalize to arbitrary factor
graphs (see, e.g., [2]). Consider the primal LP,

max
µ≥0

∑
i

∑
xi

µi(xi)θi(xi) +
∑
ij

∑
xi,xj

µij(xi, xj)θij(xi, xj) (1)

subject to: ∑
xj

µij(xi, xj) = µi(xi), ∀ij ∈ E, xi∑
xi

µij(xi, xj) = µj(xj), ∀ij ∈ E, xj∑
ij∈C\F

∑
xi,xj :

πi(xi) 6=πj(xj)

µij(xi, xj) +
∑
ij∈F

∑
xi,xj :

πi(xi)=πj(xj)

µij(xi, xj) ≥ 1, ∀cycles C,F ⊆ C, |F | odd, π

∑
xi,xj

µij(xi, xj) = 1, ∀ij ∈ E

∑
xi

µi(xi) = 1, ∀i ∈ V

We first introduce the Lagrange multipliers δji(xi) an δij(xj) for the first two constraints. We also introduce
Lagrange multipliers λC,F,π for each k-ary cycle inequality. Leaving the last two equality constraints and
the non-negativity constraints explicit, we obtain the following equivalent optimization problem:

min
λ≥0,δ

max
µ≥0

∑
i

∑
xi

µi(xi)θi(xi) +
∑
ij∈E

∑
xi,xj

µij(xi, xj)θij(xi, xj)

+
∑
ij∈E

∑
xi

δji(xi)
(
µi(xi)−

∑
xj

µij(xi, xj)
)

+
∑
ij∈E

∑
xj

δij(xj)
(
µj(xj)−

∑
xi

µij(xi, xj)
)

+
∑
C,F,π

λC,F,π

(∑
ij∈C\F

∑
xi,xj :

πi(xi)6=πj(xj)

µij(xi, xj) +
∑
ij∈F

∑
xi,xj :

πi(xi)=πj(xj)

µij(xi, xj)− 1
)

1

subject to: ∑
xi,xj

µij(xi, xj) = 1, ∀ij ∈ E (2)

∑
xi

µi(xi) = 1, ∀i ∈ V. (3)

Re-arranging the objective, we get

min
λ≥0,δ

max
µ≥0

∑
i

∑
xi

µi(xi)
(
θi(xi) +

∑
j∈N(i)

δji(xi)
)

+
∑
ij

∑
xi,xj

µij(xi, xj)
(
θij(xi, xj)− δji(xi)− δij(xj)

+
∑

C,F,π : ij∈C\F

λC,F,π1[πi(xi) 6= πj(xj)]

+
∑

C,F,π : ij∈F
λC,F,π1[πi(xi) = πj(xj)]

)
−
∑
C,F,π

λC,F,π .

Finally, we analytically solve the maximization with respect to µ ≥ 0 and the normalization constraints from
Eq. 2 and Eq. 3 to obtain the dual objective

J(δ, λ) =
∑
i

max
xi

(
θi(xi) +

∑
j∈N(i)

δji(xi)
)

(4)

+
∑
ij

max
xi,xj

(
θij(xi, xj)− δji(xi)− δij(xj)

+
∑

C,F,π : ij∈C\F

λC,F,π1[πi(xi) 6= πj(xj)]

+
∑

C,F,π : ij∈F
λC,F,π1[πi(xi) = πj(xj)]

)
−
∑
C,F,π

λC,F,π .

2 Coordinate Descent on Cycle Inequality Dual Variables

We next show how to take a coordinate descent step with respect to one λC,F,π variable. The corresponding
update could be used together with the block coordinate-descent approaches for solving the dual together
with cycle inequalities. In our paper, however, we use this as the basis for the bound criterion that we use
to choose cycles.

The dual objective J(δ, λ) is a piecewise linear function of λC,F,π (see Figure 1). As long as λC,F,π does
not play a role in the edge terms (we will make this precise in a moment), we can increase the value of
λC,F,π, thereby decreasing J(δ, λ). On the other hand, if λC,F,π is active in two or more edge terms (which
outweighs the single −λC,F,π term), decreasing its value will decrease J(δ, λ).

For ij ∈ C, consider the inside of the edge maximization terms, ignoring the terms that involve λC,F,π.

2

−p2

−p1 = −min
ij

wij

λC,F,π

∆J(δ, λ)

Figure 1: Illustration of decrease in dual objective (see Eq. 4) as a function of λC,F,π. p1 refers to the
minimal value in {wij}, while p2 is the next smallest value. Clearly we must have wij > 0 for all edges, as
otherwise the decrease would be zero.

Defining

b−C,F,πij (xi, xj) = θij(xi, xj)− δji(xi)− δij(xj) +
∑

(C′,F ′,π′)6=(C,F,π)
: ij∈F ′

λC′,F ′,π′1[π′i(xi) = π′j(xj)]

+
∑

(C′,F ′,π′)6=(C,F,π)
: ij∈C′\F ′

λC′,F ′,π′1[π′i(xi) 6= π′j(xj)] ,

we can rewrite the relevant terms of the dual objective in Eq. 4 as

J(λC,F,π) =
∑
ij∈F

max
xi,xj

(
b−C,F,πij (xi, xj) + λC,F,π1[πi(xi) = πj(xj)]

)
+

∑
ij∈C\F

max
xi,xj

(
b−C,F,πij (xi, xj) + λC,F,π1[πi(xi) 6= πj(xj)]

)
− λC,F,π .

If ij ∈ F , we call λC,F,π active for edge ij when maxxi,xj :πi(xi)=πj(xj)

(
b−C,F,πij (xi, xj) + λC,F,π

)
≥

maxxi,xj
b−C,F,πij (xi, xj), in which case further increasing λC,F,π results in a linear increase in the corre-

sponding edge term of J(λC,F,π). Similarly, if ij 6∈ F , we call λC,F,π active for edge ij when

max
xi,xj :πi(xi)6=πj(xj)

(
b−C,F,πij (xi, xj) + λC,F,π

)
≥ max

xi,xj

b−C,F,πij (xi, xj). (5)

We define wij to be the largest that λC,F,π can be before becoming active for edge ij:

wij = max
xi,xj :πi(xi) 6=πj(xj)

b−C,F,πij (xi, xj)− max
xi,xj :πi(xi)=πj(xj)

b−C,F,πij (xi, xj) if ij ∈ F, (6)

max
xi,xj :πi(xi)=πj(xj)

b−C,F,πij (xi, xj)− max
xi,xj :πi(xi) 6=πj(xj)

b−C,F,πij (xi, xj) if ij 6∈ F.

When minij∈C wij > 0, the dual objective J(δ, λ) decreases as λC,F,π increases, until λC,F,π = minij∈C wij
= p1 (let ij∗ denote the argmin). At this point, the function has zero slope, and remains constant until
λC,F,π = minij 6=ij∗ wij = p2. Thus, by setting λC,F,π = p1+p2

2 we obtain the maximal decrease. When
p2 6= p1, there are a range of values for λC,F,π that achieve the maximal decrease in the dual objective. The
midpoint might be preferable because it leads to dual optimal solutions for which “decoding”, or finding the
corresponding primal optimal solution, is easier.

3

3 Proofs for Section 4

Theorem 3.1. When k = 2 and the beliefs bij(xi, xj) correspond to a dual optimal solution, maxC∈Ccycles(G) d(C)
= maxC,F :|F | odd d(C,F).

Proof. First, defining we(xe) = maxx̂e
be(x̂e)− be(xe), note that

d(C) =
∑
e∈C

max
xe

be(xe)−max
xC

[∑
e∈C

be(xe)

]
(7)

=
∑
e∈C

max
xe

be(xe) + min
xC

[
−
∑
e∈C

be(xe)

]
(8)

= min
xC

∑
e∈C

[(
max
x̂e

be(x̂e)

)
− be(xe)

]
= min

xC

∑
e∈C

we(xe) . (9)

Our proof proceeds as follows. In part (a) we show that for any cycle C where d(C) > 0, for all
edges ij ∈ C, either arg maxxi,xj bij(xi, xj) = {(0, 0), (1, 1)} or arg maxxi,xj bij(xi, xj) = {(1, 0), (0, 1)}.1
Then, calling the edges with maximizing assignments equal to {(1, 0), (0, 1)} “cut” and the edges with
maximizing assignments equal to {(0, 0), (1, 1)} “not cut”, we show in part (b) that a cycle C has d(C) > 0
if and only if it has an odd number of cut edges. In part (c) we show that, when d(C) > 0, d(C) =
mine∈C,xe s.t. we(xe)>0 we(xe).

Recall that, by part (a), bij(0, 0) = bij(1, 1) for an edge that is not cut and bij(0, 1) = bij(1, 0) for an edge
that is cut. Let the cost of “cutting” an edge ij refer to the smallest value t such that either of bij(0, 1) + t
or bij(1, 0)+ t is equal in value to bij(0, 0) and bij(1, 1) Similarly, let the cost of “un-cutting” an edge ij refer
to the smallest value t such that either of bij(0, 0)+ t or bij(1, 1)+ t is equal in value to bij(0, 1) and bij(1, 0).
It follows from part (c) that, when d(C) > 0, d(C) is the minimal cost, over all edges in C, of cutting an
edge that is not cut, or un-cutting an edge that is cut. Thus, letting F ′ be the set of cut edges in C, when
d(C) > 0 we have

min
e∈C,xe s.t. we(xe)>0

we(xe) = max
F⊆C:|F | odd

min
ij∈C

wij , (10)

where wij was defined in Eq. 6. The equality is because mine∈C,xe s.t. we(xe)>0 we(xe) = minij∈C wij for
F = F ′ (and, by part (b), |F ′| is odd), and minij∈C wij < 0 for F 6= F ′ (whereas the left hand side
of Eq. 10 is positive). By part (b), when d(C) = 0 we have that minij∈C wij < 0 for all |F | odd, so
maxF⊆C:|F | odd d(C,F) = 0. We conclude that d(C) = maxF⊆C:|F | odd d(C,F), which shows the claim.

(a) We first show that either {(0, 0), (1, 1)} ⊆ arg maxxi,xj
bij(xi, xj) or {(1, 0), (0, 1)} ⊆ arg maxxi,xj

bij(xi, xj), or both (these are not mutually exclusive). By the definition of we(xe), every edge ij has at least
one assignment xi, xj such that wij(xi, xj) = 0. Suppose for contradiction that there is an edge ij such that
{(0, 0), (1, 1)} 6⊆ arg maxxi,xj

bij(xi, xj) and {(1, 0), (0, 1)} 6⊆ arg maxxi,xj
bij(xi, xj). We will show just the

following case, with the others following by similar arguments:

(1, 1) 6∈ arg max
xi,xj

bij(xi, xj) , (11)

(1, 0) 6∈ arg max
xi,xj

bij(xi, xj) , and (12)

(0, 0) ∈ arg max
xi,xj

bij(xi, xj) . (13)

Let µ be any primal optimal solution corresponding to b. By complementary slackness, we have that
µij(0, 0) > 0, which implies that µi(0) > 0. Let j and k denote the two neighbors of node i in the
cycle. By complimentary slackness and the pairwise consistency constraints, for any xi, if there exists xk

1We use the notation argmaxxi,xj bij(xi, xj) to refer to the set of assignments x̂i, x̂j such that bij(x̂i, x̂j) =
maxxi,xj bij(xi, xj).

4

such that wki(xk, xi) = 0, then there exists xj such that wij(xi, xj) = 0. Using this property, we can
construct an assignment xC for the variables of the cycle such that

∑
e∈C we(xe) = 0 by starting with xi = 0

and consecutively setting each neighbor’s assignment (starting with k, and continuing in the same direction
along the cycle). Importantly, we must return to xi = 0 because we have assumed that wij(1, 0) > 0 and
wij(1, 1) > 0. We have thus contradicted our assumption that d(C) > 0.

To show the equality, suppose for contradiction that there is an edge ij such that {(0, 0), (1, 1), (0, 1)} ⊆
arg maxxi,xj bij(xi, xj). Then, we can construct an assignment using the same technique, starting at xi = 0
and going in the direction of k, which shows that d(C) = 0, again contradicting our assumption.

(b) Since we(xe) ≥ 0,
∑
e∈C we(xe) = 0 if and only if every edge assignment xe is consistent with our

definition of “cut” and “not cut”. However, any assignment to the variables in a cycle must correspond to
an even number of cut edges. Thus, d(C) = 0 if and only if the cycle has an even number of cut edges.

(c) If d(C) > 0, then there are an odd number of cut edges. Cutting an uncut edge or un-cutting a
cut edge would make the cycle have an even number of cut edges, and so there would be an assignment
xC such that we(xe) = 0 for all edges other than the modified edge, using the construction from part (a).
Thus, for all edges e′ and edge assignments xe′ such that we′(xe′) > 0, minxC\e′

∑
e∈c we(xe) = we′(xe′).

Since we(xe) ≥ 0 always, if d(C) > 0 then for all assignments xc, there must be some e′ and xe′ such that
we′(xe′) > 0. However, we just showed that there exists a completion xC′\e′ such that we(xe) = 0 for all
edges e 6= e′. Thus, when d(C) > 0, the value of d(C) is equal to mine∈C,xe s.t. we(xe)>0 we(xe).

Theorem 3.2. The optimization problem maxC∈Ccycles(G) d(C) is NP-hard for k = 2 and beliefs bij(xi, xj)
arising from a non-optimal dual feasible point.

Proof. Our reduction is from the Hamiltonian cycle problem, which is known to be NP-hard. The Hamil-
tonian cycle problem is: Given a graph G = (V,E), decide whether there exists a cycle in G that visits all
vertices exactly once.

We show how to efficiently construct a Markov random field G′ = (V ′, E′) with xi ∈ {0, 1} and be-
liefs bij(xi, xj) for ij ∈ E′ such that there is a 1-1 mapping between cycles C ∈ G and C ′ ∈ G′, and
evaluating d(C ′) for C ′ ∈ G′ gives the length of the corresponding cycle in G. As a result, we have that
maxC′∈Ccycles(G′) d(C ′) gives the length of the longest cycle in G. Thus, if we could solve this optimization
problem, then, simply by checking whether the solution is |V |, we answer the Hamiltonian cycle problem.

Let V ′ = V ∪ {xij ,∀ij ∈ E}, where we introduce a new variable xij for every edge in E. The edges are
E′ = {(i, xij), (xij , j),∀ij ∈ E}, where we replace every edge in G with a length-2 path in G′. For each
ij ∈ E, denoting k = xij , we let the beliefs be:

bik(xi, xij) =
xij = 0 xij = 1

xi = 0 |V | 0
xi = 1 0 0

bkj(xij , xj) =
xj = 0 xj = 1

xij = 0 0 0
xij = 1 0 1

Then, we have that:

wik(xi, xij) =
xij = 0 xij = 1

xi = 0 0 |V |
xi = 1 |V | |V |

wkj(xij , xj) =
xj = 0 xj = 1

xij = 0 1 1
xij = 1 1 0

As a result of our construction, every cycle C ∈ G on nodes i, j, k, . . . ,m corresponds 1-1 with the cy-
cle C ′ ∈ G′ on nodes i, xij , j, xjk, . . . ,m, xmi. It can be verified that for all cycles C ′ ∈ G′, d(C ′) =
minxC′

∑
e∈C′ we(xe) = |C ′|/2 = |C|, where C is the cycle corresponding to C ′ (the minimum is attained by

the all zeros assignment). We thus have that maxC′∈Ccycles(G′) d(C ′) = maxC∈G |C|.

Theorem 3.3. The optimization problem maxC∈Ccycles(G) d(C) is NP-hard for k ≥ 3 even for beliefs bij(xi, xj)
corresponding to a dual optimal solution of the pairwise relaxation.

Proof. As in the proof of Theorem 3.2, we reduce from the Hamiltonian cycle problem, for an input graph
G. First, we show that the Hamiltonian cycle problem is NP-hard even when restricted to graphs with an

5

odd number of nodes, by reducing from the general case. Suppose we are given a graph with an even number
of nodes and we want to decide whether it has a Hamiltonian cycle. We repeat the following, once for each
edge ij: construct a new graph which is identical to the original except that we introduce a new node n and
replace the edge ij with the edges in and nj. We then check whether any of the new graphs (all of which
now have an odd number of vertices) have a Hamiltonian cycle. If the answer is “yes”, we have found a
Hamiltonian cycle for the original graph. Otherwise, the original graph does not have a Hamiltonian cycle.

Assume for the rest of the proof that G has an odd number of vertices. We show how to efficiently
construct a Markov random field G′ = (V ′, E′) with xi ∈ {0, 1, 2} and beliefs bij(xi, xj) for ij ∈ E′ such
that there is a 1-1 mapping between cycles C ∈ G and C ′ ∈ G′, and evaluating d(C ′) for C ′ ∈ G′ gives the
length of the corresponding cycle in G. As a result, we have that maxC′∈Ccycles(G′) d(C ′) gives the length of
the longest cycle in G. Thus, if we could solve this optimization problem, then, simply by checking whether
the solution is |V |, we answer the Hamiltonian cycle problem.

Let V ′ = V ∪ {xij ,∀ij ∈ E}, where we introduce a new variable xij for every edge in E, also with 3
states. The edges are E′ = {(i, xij), (xij , j),∀ij ∈ E}, where we replace every edge in G with a length-2
path in G′. For each ij ∈ E, denoting k = xij , we let the beliefs be:

bik(xi, xij) =

xij = 0 xij = 1 xij = 2
xi = 0 |V | 0 0
xi = 1 0 |V | 0
xi = 2 0 0 |V | − .5

(14)

bkj(xij , xj) =

xj = 0 xj = 1 xj = 2
xij = 0 0 |V | 0
xij = 1 |V | 0 0
xij = 2 0 0 |V | − .5

As a result of our construction, every cycle C ∈ G on nodes i, j, k, . . . ,m corresponds 1-1 with the cycle
C ′ ∈ G′ on nodes i, xij , j, xjk, . . . ,m, xmi. Every cycle C ∈ G where |C| is even corresponds to a cycle C ′ ∈ G′
such that minxC′

∑
e∈C′ we(xe) = 0 (the minimum is attained by the assignment 0011 . . . 0011). On the other

hand, every cycle C ∈ G where |C| is odd corresponds to a cycle C ′ ∈ G′ such that minxC′

∑
e∈C′ we(xe) =

.5|C ′| = |C| (the minimum is attained by the assignment of 2 to every node). Thus, G (which has an odd
number of nodes) has a Hamiltonian cycle if and only if maxC′∈Ccycles(G′) d(C ′) = |V |.

What remains is to show that the beliefs bij(xi, xj) that we constructed are dual optimal for some
potentials θ(x). We do this by illustrating a primal and dual feasible point for which the primal objective is
equal to the dual objective. Let θij(xi, xj) = bij(xi, xj) and δij(xj) = 0 for all edges ij ∈ E and assignments
xj . Clearly δij(xj) is dual feasible, and it gives an objective value of |E||V |. Consider the following primal
point µ:

µik(xi, xij) =

xij = 0 xij = 1 xij = 2
xi = 0 .5 0 0
xi = 1 0 .5 0
xi = 2 0 0 0

(15)

µkj(xij , xj) =

xj = 0 xj = 1 xj = 2
xij = 0 0 .5 0
xij = 1 .5 0 0
xij = 2 0 0 0

The point µ satisfies the pairwise consistency constraints (the single node marginals are µi(xi) = .5 for xi ∈
{0, 1}, and 0 otherwise), and has objective value |E||V |. Note that µ and δ also satisfy the complementary
slackness conditions (as they must, since they are a primal-dual optimal pair).

6

4 Bound Criterion in Sparse Graphs

One potential approach for using the bound criterion from [3] on a sparse graphical model (which may not
have any short cycles) is to first triangulate the graph before running the algorithm. Of course, for a sparse
graphical model with large treewidth, this could result in a very large number of new edges being added,
which would significantly increase the running time for minimizing the dual. In this section we show that,
even if we had done this, the bound criterion can be non-informative in these settings, and thus triangulation
may not even be helpful.

Consider a binary-valued MRF on four variables X1, X2, X3, X4 which has edges in the form of a square:
E = {(1, 2), (2, 3), (3, 4), (1, 4)}. We now define the edge potentials. For (i, j) ∈ {(1, 2), (2, 3), (3, 4)}, let
θij(xi, xj) = 1 if xi 6= xj , and 0 if xi = xj . We do the opposite for edge (1, 4), letting θ1,4(x1, x4) = 1 if
x1 = x4, and 0 if x1 6= x4.

All of the MAP assignments have value 3. For example, one MAP assignment is (X1, X2, X3, X4) =
(1, 0, 1, 0). The pairwise LP relaxation, on the other hand, has value 4, obtained by µi(xi) = 0.5 for
i ∈ {1, 2, 3, 4} and xi ∈ {0, 1}, µij(0, 1) = µij(1, 0) = 0.5 for (i, j) ∈ {(1, 2), (2, 3), (3, 4)}, and µ1,4(0, 0) =
µ1,4(1, 1) = 0.5. One way to triangulate the graph is to add the edge (1, 3). However, as can be seen
by setting the edge marginal for (1, 3) to µ1,3(1, 1) = µ1,3(0, 0) = 0.5 (note that this satisfies the pairwise
consistency constraints), the pairwise LP relaxation still has value 4.

Now consider adding a triplet consistency constraint for the cluster c = {1, 2, 3}. Solving the new LP
relaxation, we find that it again has value 4. The solution is the same as earlier, with the new triplet marginal
taking value µ1,2,3(1, 0, 1) = µ1,2,3(0, 1, 0) = 0.5 (note that this is consistent with the edge marginals already
given, as it should be). Let’s see what this corresponds to in the dual. Suppose that we solve the dual
of the pairwise LP relaxation to optimality. By LP duality, the dual objective has value 4. Also by LP
duality, we know that the optimal dual objective after adding the triplet cluster must also be 4. Recall that
the bound criterion d(c) corresponds to the amount that the dual objective will decrease after one block
coordinate descent step involving the new cluster. Since the dual objective is lower bounded by 4 (its value
at optimality), we conclude that d(c) must be zero for the triplet cluster c = {1, 2, 3}.

The same can be shown for the triplet cluster c = {1, 3, 4}. A generalization of the argument shows that,
for a MRF that consists of a single cycle of length larger than 3, and for any dual optimal solution of the
pairwise LP relaxation (after triangulation), d(c) = 0 for all of the triplets in the triangulation. In contrast,
if we had evaluated d(c) for c corresponding to the whole cycle we would see that it is non-zero.

5 Algorithm FindPartition

In this section, we give an algorithm to find partitions of each variable’s states, giving a tractable approach to
go beyond the k-projection graph in the case of non-binary Markov networks. The algorithm FindPartition is
given in Figure 2 and illustrated in Figure 3. First, for each variable and each state, it adds to the projection
graph the corresponding one-versus-all partition – that is, we start with the k-projection graph. Then, for
each each edge ij ∈ E, it finds a partition for variable i and for variable j that maximizes Eq. 10 for the
single edge belief bij(xi, xj), and adds both partitions to the projection graph (if they do not already exist).
To be efficient, the algorithm makes use of the Union-Find data structure [1].

For an edge ij, FindPartition finds a partition πqi (xi) and πrj (xj) that maximizes maxxi,xj :π
q
i (xi)=πr

j (xj)

bij(xi, xj). It can be shown that these partitions at the same time minimize maxxi,xj :π
q
i (xi)6=πr

j (xj) bij(xi, xj)

and thus it suffices to consider just the maximization problem.
First, note that either maxxi,xj :π

q
i (xi)=πr

j (xj) bij(xi, xj) or maxxi,xj :π
q
i (xi)6=πr

j (xj) bij(xi, xj) will be equal

to maxxi,xj
bij(xi, xj) regardless of what the partitions are, since the argmax states xi, xj necessarily have

either πqi (xi) = πrj (xj) or πqi (xi) 6= πrj (xj). Thus, the optimal first choice is to assign the highest weight
states to the same partition. This argument is then repeated. With sorted edges in decreasing bij(xi, xj)
order, Union-Find sequentially adds each pair of states xi, xj to the same partition. When Union-Find
cannot add a pair of states to the same partition (this happens when doing so would create one partition
with all states of one of the nodes, which would be invalid), the optimal partition is found. The remaining

7

FindPartition ({beliefs bij(xi, xj)})

1 Initialize Gπ to have one-versus-all partitions for every variable and state.
2 for each edge ij, where xi ∈ {1, . . . ,m}, xj ∈ {1, . . . , n} :
3 Initialize M to be the collection of all possible states of node i and node j, namely :
4 M ← {{(i, xi)} : xi ∈ {1, . . . ,m}} ∪ {{(j, xj)} : xj ∈ {1, . . . , n}}
5 Define list L as 〈((i, u1), (j, v1), bij(u1, v1)), . . . , ((i, umn), (j, vmn), bij(umn, vmn)〉 given by sorting
6 {(xi, xj , bij(xi, xj)) : xi ∈ {1, . . . ,m} , xj ∈ {1, . . . , n}} by bij(xi, xj) in descending order
7 for k = 1 to mn :
8 find (as in union-find) m1,m2 ∈M such that (i, uk) ∈ m1, (j, vk) ∈ m2

9 if m1 6= m2 then :
10 if replacing m1,m2 with m1 ∪m2 in M causes all states of i or j to be in 1 partition then :

11 A← m1, B ←
(

({i} × {1, . . . ,m}) ∪ ({j} × {1, . . . , n})
)
\m1

12 break
13 remove m1,m2 from M and add m1 ∪m2 to M
14

15 Add partitions defined by A,B to Gπ.
16 Return Gπ.

Figure 2: Pseudocode of FindPartition algorithm.

states are assigned randomly (in practice we canonically assign them to the largest partition, to allow for
us to re-use identical partitions that are found using different edges). When FindPartition is finished, each
variable i will have at most ki +Ni partitions where ki is its cardinality and Ni is its number of neighbors.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2nd
edition, 2001.

[2] David Sontag, Amir Globerson, and Tommi Jaakkola. Introduction to dual decomposition for inference.
In Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright, editors, Optimization for Machine Learning.
MIT Press, 2011.

[3] David Sontag, Talya Meltzer, Amir Globerson, Yair Weiss, and Tommi Jaakkola. Tightening LP relax-
ations for MAP using message-passing. In UAI, pages 503–510. AUAI Press, 2008.

8

All possible states of node j

All possible states of node i

0 1 2

0 1

4.0

2.0

1.0

0.0

3.0 5.0

0 1 2

0 1

4.0

2.0

1.0

0.0

3.0 5.0

0 1 2

0 1

4.0

2.0

1.0

0.0

3.0 5.0

0 1 2

0 1

4.0

2.0
0.0

3.0

1.0

5.0

Step 1: Step 2:

Step 3:

Figure 3: Illustration of the algorithm FindPartition for optimally choosing partitions with respect to a single
edge. In this example, node i has 2 states, node j has 3 states, and the bij(xi, xj) values are 0.0, 1.0, . . . , 5.0.
The algorithm first merges {(i, 1)} with {(j, 2)} (as shown in green), and then {(i, 0)} with {(j, 1)} (as
shown in yellow), before considering merging {(i, 1)} with {(j, 1)} (as shown with the red dashes). Because
merging {(i, 1)} with {(j, 1)} would cause an invalid partitioning of states on node i, and in this case
m2 = {(i, 0), (j, 1)}, m1 = {(i, 1), (j, 2)} (yellow and green, respectively), the algorithm terminates with 2
partitions {(i, 0), (j, 1)} and its complement {(i, 1), (j, 0), (j, 2)}.

9

