
How to Protect Yourself without Perfect
Shredding�

Ran Canetti1, Dror Eiger2, Shafi Goldwasser3, and Dah-Yoh Lim4

1 IBM T. J. Watson Research Center
2 Google, Inc. (work done at Weizmann Institute of Science)

3 MIT and Weizmann Institute of Science
4 MIT

Abstract. Erasing old data and keys is an important tool in crypto-
graphic protocol design. It is useful in many settings, including proac-
tive security, adaptive security, forward security, and intrusion resilience.
Protocols for all these settings typically assume the ability to perfectly
erase information. Unfortunately, as amply demonstrated in the systems
literature, perfect erasures are hard to implement in practice.

We propose a model of partial erasures where erasure instructions
leave almost all the data erased intact, thus giving the honest players
only a limited capability for disposing of old data. Nonetheless, we pro-
vide a general compiler that transforms any secure protocol using perfect
erasures into one that maintains the same security properties when only
partial erasures are available. The key idea is a new redundant represen-
tation of secret data which can still be computed on, and yet is rendered
useless when partially erased. We prove that any such a compiler must
incur a cost in additional storage, and that our compiler is near optimal
in terms of its storage overhead.

Keywords: mobile adversary, proactive security, adaptive security, for-
ward security, intrusion resilience, universal hashing, partial erasures,
secure multiparty computation, randomness extractors.

1 Introduction

As anyone who has ever tried to erase an old white board knows, it is often
easier to erase a large amount of information imperfectly, than to erase a small
amount of information perfectly.

In cryptographic protocol design, perfect erasures, namely the complete dis-
posal of old and sensitive data and keys, is an important ability of honest players
in fighting future break-ins, as this leaves no trace of sensitive data for the ad-
versary to recover.

Examples where perfect erasures have been used extensively include the areas
of proactive security [7,17,19,22,30,36], forward security [1,12,20] and intrusion
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resilience [27], and adaptive security [2,6,28,37]. Whereas erasures merely sim-
plify the design of adaptively secure protocols, some form of erasures is provably
necessary for achieving proactive security and even for defining the task of for-
ward security as we explain below.

The goal of Proactive Security introduced in [36] is to achieve secure multi-
party computations where some fraction of the parties are faulty. The identity
of faulty parties are decided by a mobile adversary who can corrupt a different
set of players in different time periods (here the protocols assume time is di-
vided into well-defined intervals called time periods) subject to an upper bound
on the total number of corrupted players per time period. At the heart of the
solutions pursued in the literature are secret sharing methods in which in every
time period, the old shares held by players are first replaced by new shares and
then perfectly erased. It is easy to prove that secret sharing would be impos-
sible to achieve without some form of erasures: otherwise a mobile adversary
which is able to corrupt every single player in some time period or another,
can eventually recover all old shares for some single time period and recover
the secret. Forward security [1,12,20]. is an approach taken to tackle the private
key exposure problem, so that exposure of long-term secret information does not
compromise the security of previous sessions. Again, the lifetime of the system
is divided into time periods. The receiver initially stores secret key SK0 and
this secret key “evolves” with time: at time period i, the receiver applies some
function to the previous key SKi−1 to derive the current key SKi and then key
SKi−1 is perfectly erased. The public (encryption) key remains fixed throughout
the lifetime of the scheme. A forward-secure encryption scheme guarantees that
even if an adversary learns the secret key available at time i, SKi, messages
encrypted during all time periods prior to i remain secret. Intrusion Resilience is
a strengthening of forward security [27] which can be viewed as combination of
forward and backward security. Obviously, erasures are essential to define (and
solve) both the forward security and intrusion resilience problems.

Finally, an example of a different flavor of the utility of erasures to guard
against adversaries that can choose which future parties to corrupt as the proto-
col proceeds, based on information already gathered. Erasures are useful in this
context since they limit the information the adversary sees upon corrupting a
party. Protocols designed without erasures (although possible in this context),
tend to be much more complex than those that rely on data erasures [2,6,28,37].

Unfortunately, perfect erasures of data are hard to achieve in practice and
are thus problematic as a security assumption, as pointed out by Jarecki and
Lysyanskaya [28] in their study of adaptive adversaries versus static adversaries
in the context of threshold secret sharing.

Some of the difficulty in implementing perfect erasures is illustrated in the
works of Hughes and Coughlin, Garfinkel, and Vaarala [18,24,25,39]. The root
cause of this difficulty is that systems are actually designed to preserve data,
rather than to erase it. Erasures present difficulties at both the hardware level
(e.g. due to physical properties of the storage media) and at the software level
(e.g. due to the complications with respect to system bookkeeping and backups).
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At the hardware level, e.g. for hard drives, the Department of Defense recom-
mends overwriting with various bit patterns [35]. This takes the order of days
per 100GB, and is not fully effective because modern hard drives use block re-
placement and usually employ some form of error correction. For main memory,
due to “ion migration”, previous states of memory can be determined even after
power off. At the software level, many operating systems detect and remap bad
sectors of the hard drive on the fly, but original data can remain in the bad
sectors and be recoverable.

1.1 This Paper

In light of the above difficulties, we propose to study protocols that can guarantee
security even when only imperfect or partial erasures are available.

The first question to be addressed is how to model erasures that are only par-
tially effective. One option is to simply assume that each erasure operation suc-
ceeds with some probability. However, such a modeling does not capture all the
difficulties described above. In particular, it allows obtaining essentially perfect
erasures by applying the erasure operation several times on a memory location;
therefore such a model is unlikely to yield interesting or effective algorithms.
In addition, such modeling does not take into account potential dependencies
among information in neighboring locations.

The model of Partial Erasures. We thus take a much more conservative
approach. Specifically, we model partial erasures by a length-shrinking function
h : {0, 1}m �→ {0, 1}�φm�, that shrinks stored information by a given fraction
0 ≤ φ ≤ 1. We call φ the leakage fraction. When φ = 0 then we get the perfect
erasures case; when φ = 1 nothing is ever erased. For the rest of this work we
think of φ being a value close to 1 (namely, the size of what remains after data
is partially-erased is close to the original size). Note that we do not require φ to
be a constant – for instance, for reasonable settings of the parameters, it may be

1
poly(α) close to 1, where α is a security parameter of the protocol in question.

The shrinking function may be chosen adversarially. In particular, it is not
limited to outputting exact bits, and any length-shrinking function (efficiently
computable or not) on the inputs is allowed. This modeling captures the fact
that the remaining information may be a function of multiple neighboring bits
rather than on a single bit. It also captures the fact that repeated erasures may
not be more effective than a single one.

The function h is assumed to be a function only of the storage contents to
be erased. Furthermore, for simplicity we assume that h is fixed in advance
– our schemes remain secure without any modification even if the adversary
chooses a new hi prior to each new erasure. This choice seems to adequately
capture erasures that are only partially successful due to the physical properties
of the storage media1. However, this may not adequately capture situations
where the failure to erase comes from interactions with an operating system, for
1 Indeed, physical properties of the storage are mostly fixed at the factory; from then

on the behavior of the hardware only depends on what is written.
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instance memory swapping, and caching. In order to capture this sort of erasure
failures, one might want to let h to be a function of some information other than
the contents to be erased, or alternatively to be determined adaptively as the
computation evolves.

We treat m, the input length of h, as a system parameter. (For instance, m
might be determined by the physical properties of the storage media in use.)
One can generalize the current model to consider the cases where h is applied
to variable-length blocks, and where the block locations are variable.

Our Memory Model. We envision that processors participating in protocols
can store data (secret and otherwise) in main memory as well as cache, hard drives,
and CPU registers. We assume all types of storage are partially erasable, except a
constant number of constant size CPU registers which are assumed to be perfectly
erasable. We emphasize that the constant size of the registers ensures that we do
not use this to effectively perfectly erase main memory and thus circumvent the
lack of perfect erasures in main memory, since at no time can the registers hold
any non-negligible part of the secret. We call this the register model.

We shall use these registers to perform intermediate local computations during
our protocols. This will allow us to ignore the traces of these computations, which
would otherwise be very messy to analyze.

Results and Techniques. Our main result is a compiler that on input any
protocol that uses perfect erasures, outputs one that uses only partial erasures,
and preserves both the functionality and the security properties of the original
protocol. Our transformation only applies to the storage that needs to be erased.

The idea is to write secrets in an encoded form so that, on the one hand, the
secret can be explicitly extracted from its encoded form, and on the other hand
loss of even a small part of the encoded form results in loss of the secret.

Perhaps surprisingly, our encoding results in expanding the secret so that the
encoded information is longer than the original. We will prove that expanding
the secret is essential in this model (see more discussion below). This expansion
of secrets seems a bit strange at first, since now there is more data to be erased
(although only partially). However, we argue that it is often easier to erase a
large amount of data imperfectly than to erase even one bit perfectly.

We describe the compiler in two steps. First we describe a special case where
there is only a single secret to be erased. Next we describe the complete compiler.

Our technique for the case of a single secret is inspired by results in the bounded
storage model, introduced by Maurer [32,33]. Work by Lu [29] casted results in the
bounded storage model in terms of extractors [34], which are functions that when
givenasourcewithsomerandomness,purifiesandoutputsanalmostrandomstring.

At a high level, in order to make an n-bit secret s partially erasable, we
choose random strings R, X and store R, X, Ext(R, X)⊕s, where Ext is a strong
extractor that takes R as seed and X as input, and generates an n-bit output
such that (R, Ext(R, X)) is statistically close to uniform as long as the input X
has sufficient min-entropy. To erase s, we apply the imperfect erasure operation
on X . Both R and Ext(R, X) ⊕ s are left intact.
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For sake of analysis, assume that |X | = m, where m is the input length for the
partial erasure function h. Recall that erasing X amounts to replacing X with a
string h(X) whose length is φm bits. Then, with high probability (except with
probability at most 2−(1−φ)m/2), X would have about (1 − φ)m/2 min-entropy
left given h(X). This means that, as long as (1 − φ)m/2 > n, the output of the
extractor is roughly 2−(1−φ)|X|/2-close to uniform even given the seed R and the
partially erased source, h(X). Consequently, s is effectively erased.

There is however a snag in the above description: in order to employ this
scheme, one has to evaluate the extractor Ext without leaving any trace of the
intermediate storage used during the evaluation. Recall that our model the size
of the perfectly erasable memory is constant independently of n, the length of
the secret. This means that Ext should be computable with constant amount of
space, even when the output length tends to infinity. We identify several such
extractors, including ε-almost universal hashing, strong extractors in NC0, and
Toeplitz Hashing [31]. It would seem superficially that locally computable strong
extractors [40] can be used, but unfortunately they cannot (proof deferred to full
version [5]).

Now let us move on to describe the general compiler. Suppose we want to
compute some function g (represented as a circuit) on some secret s, only now,
s is replaced by a representation that is partially erasable, and we would like to
make sure that we can still compute g(s). We are going to evaluate the circuit in
a gate-by-gate manner where the gate inputs are in expanded form. The inputs
are reconstructed in the registers, and the gate is evaluated to get an output,
which is in turn expanded and stored in main memory. Even though some small
(negligible) amount of information is leaked at each partial erasure, we show
that as long as the number of erasure operations is sub-exponential, the overall
amount of information gathered by the adversary on the erased data is negligible.

For maximum generality we formulate our results in the Universally Compos-
able (UC) framework. In particular we use the notion of UC emulation [3], which
is a very tight notion of correspondence between the emulated and emulating
protocols. Our analysis applies to essentially any type of corruption – adaptive,
proactive, passive, active, etc. That is, we show:

Theorem (informal): For any protocol Πorg that requires perfect erasures
(for security), the protocol Πnew = Compiler(Πorg) UC-emulates Πorg, and
tolerates (maintains security even with) imperfect/partial erasures in the register
model. For leakage fraction of φ, if Πorg uses n bits of storage then Πnew uses
about 2

1−φn bits of storage.

Optimality of the scheme. One of the main cost parameters of such compilers
is the expansion factor, the amount by which they increase the (erasable part
of the) storage. That is, a compiler has expansion factor Ψ if whenever Πorg

uses n bits of storage, Πnew uses at most Ψn bits of storage. It can be seen
that our compiler has expansion factor Ψ ≤ 2

1−φ + ν(n) where ν is a negligible
function. In addition, in [5] we show that if ε-almost universal hashing is used
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and φ > 1/4, then our compiler would have an expansion factor of about c
1−φ ,

where 1 < c < 2 is a constant.
We show that our construction is at most twice the optimal in this respect.

That is, we show that any such compiler would necessarily have an expansion
of roughly Ψ ≥ 1

1−φ . This bound holds even for the simplest case of compiling
even a single secret into one that is partially erasable. Roughly speaking, the
argument is as follows. If we do not want to leak any information on a secret of
n bits the function h must shrink the expanded version of s by at least n bits. In
our model, h shrinks by (1−φ)Ψn bits and therefore, (1−φ)Ψn ≥ n ⇒ Ψ ≥ 1

1−φ .

Some specific solutions. In addition to the general compiler, in [5] we de-
scribe some special-tailored solutions to two specific cases. One case is where
the function to be evaluated is computable by NC0 circuits. The second case
is the case for all known proactive secret sharing schemes. These solutions are
computationally more efficient since they do not require running the compiler
on a gate by gate basis. In particular, in the case of proactive secret sharing
we can apply our expanded representation directly to the secret and its shares
and the instructions which modify the shares (to accordingly modify the new
representations) and leave the rest of the protocol intact. Note that this greater
efficiency also translates into tighter security – for instance if the original proto-
col assumed some timing guarantees, then the new protocol need not assume a
timing that is much looser than the original.
Remark 1. As we elaborate in [5], a side benefit of using using our constructions
is that it can be resistant to a practical class of physical attacks [21] that involves
freezing RAM and recovering secrets from it.

Remark 2. Note that because we prove statistical security, our schemes are “ev-
erlastingly secure” in the sense that even if the adversary stores all the partially
erased information, whatever happens in the future will not help him, e.g. even
if it turns out that P = NP .

1.2 Related Work

The Bounded Storage Model (BSM). The Bounded Storage Model (BSM)
proposed by Maurer [32,33], considers computationally unbounded but storage
limited adversaries. This enables novel approaches to the secure communication
problem as follows. The communicating parties begin with a short initial secret
key k. In the first phase they use this key k and access to a long public random
string R to derive a longer key X . The storage bounded adversary computes an
arbitrary length-shrinking function on R. In the second phase, R “disappears”,
and the parties will use X as a one-time pad to communicate privately.

We will use the same kind of length-shrinking function to capture the act of
partially erasing old shares of a secret.

However, conceptually the settings of the BSM and partial erasures are fun-
damentally different. In the BSM model possibility is proved by putting limi-
tations on the adversary (storage), where as in our work possibility is proved
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inspite of putting limitation on the honest parties (erasing capability). Thus,
although some of techniques are similar the setup is entirely different. From a
technical point of view there are two differences we emphasize as well. Firstly,
the extractors that we use must be computable with constant sized memory),
whereas in the BSM the extractors are not necessarily computable with constant-
sized memory. Secondly, in the BSM, it is assumed that the adversary’s storage
bound remains the same as time goes by, namely a constant fraction φ of the
public randomness R. The same assumption is used in the bounded retrieval
model [11,10,14,15,16]. For instance [16] constructs intrusion resilient secret shar-
ing schemes by making the shares large and assuming that the adversary will
never be able to retrieve any share completely. For partial erasures this bound is
unreasonable, and we allow the adversary to get φ fraction of Ri for each erasure
operation.

Exposure Resilient Functions. Exposure-Resilient Functions, or ERFs, were
introduced by Canetti et al. [4,13]. An �-ERF is a function with a random input,
such that an adversary which learns all but � bits of the input, cannot distinguish
the output of the function from random.

At a high level the ERF objectives seem very similar to partial erasures.
However, the settings are different. In particular, ERFs only deal with the leakage
of exact bits whereas we deal with the leakage of general information. (We remark
that this limitation of ERFs is inherent in their model: It is easy to see that there
do not exist ERFs that resists arbitrary leakage functions).

Encryption as Deletion. As Di Crescenzo et al. [9] noted, one simple but
inefficient way to implement erasable memory can be obtained by using the
crypto-paging concept of Yee [41]. Assume that some amount of storage that
is linear in the security parameter is available that is perfectly erasable, and
some other poly storage is persistent. To make the persistent memory effectively
erasable, pick an encryption scheme and keep the key in the erasable part. Always
encrypt the contents to be kept on the persistent storage. Then erasing the key
is as good as erasing the contents.

By combining these ideas with ours, it is possible to have an increase in storage
that is linear in the security parameter, while using only a constant amount of
perfectly erasable memory.

2 How to Make Secrets Partially Erasable

To change a protocol using perfect erasures to one that uses only partial erasures,
the high level idea is that instead of having a piece of secret s ∈ {0, 1}n directly
in the system, we let the parties store it in expanded form. At the cost of more
storage, this gives the ability to effectively erase a secret even when only partial
erasures are available. In the end, the number of bits that have to be partially
erased might be more than the number of bits that have to be perfectly erased.
This is still reasonable because it is often much easier to partially erase a large
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number of bits than to perfectly erase a small number. Furthermore, we show
in 2.1 that such expansion is inherent in the model.

We write UX to denote an r.v. uniformly random on some set X .

Definition 1 (Statistical Distance). Suppose that A and B are two distri-
butions over the same finite set Σ. The statistical distance between A and B is
defined as Δ(A; B) := 1

2

∑
σ∈Σ

∣
∣
∣ PrA[σ] − PrB[σ]

∣
∣
∣.

Definition 2 (Statistical Distance from the Uniform). Let d(A) := Δ
(A; UA). Also define d(A|B) :=

∑
b d(A|B = b) · PrB[b] =

∑
b PrB[b] 12

∑
a |

PrA|B=b[a] − 1
|A| |. We say that a random variable A is ε-close to the uniform

given B to mean that d(A|B) ≤ ε.

Due to lack of space we refer the reader to the introduction for the definitions
of a partial erasure function h : {0, 1}m �→ {0, 1}�φm� and a leakage fraction
0 ≤ φ ≤ 1.

Definition 3 (Partially Erasable (or Expanded) Form of a Secret). Let
Exp(◦, ◦) be the “expansion” function taking the secret s to be expanded as the
first input and randomness as the second, and Con be the “contraction” function
taking the output of Exp as the input. Let hs

i := h(Exp(s, $i)), where $i are
independent randomness. We say that (Exp, Con) is (�, α, φ)-partially erasable
form of a secret if ∀s ∈ {0, 1}n, for any h with leakage fraction φ,
1. (Correctness) Con (Exp(s, r)) = s for all r ∈ {0, 1}poly(n).
2. (Secrecy) ∀s′ ∈ {0, 1}n, Δ

(
hs

1, ..., h
s
� ; h

s′

1 , ..., hs′

�

)
≤ 2−α.

3. (With Constant Memory) Both Exp, Con are computable with constant mem-
ory.

Remark 3. We require both Exp and Con to be computable with constant mem-
ory to ensure that intermediate computations can be kept in the registers which
are perfectly erasable.

Remark 4. We require indistinguishability for many (� above) erasures to
account for the fact that many computations may be done during the proto-
col (directly or indirectly) on the secret, from which the adversary might gain
more information on a secret. Generally, an adversary may have many partially
erasable forms of the same secret (i.e adversary can see h(Exp(s, $i)) s.t for each
i adversary knows a 1-1 and onto correspondence qi from Exp(s, $i) to s).

An example of an expanded form of a secret which can be partially erased and
satisfies correctness and secrecy (in the above definition) would be to use a
universal hash function family {HR} as follows: expand s to (v, R, k) s.t. s =
HR(k) ⊕ v. By using the leftover hash lemma [26], for any constant φ such that
0 < φ < 1, for any arbitrary partial erasure function h with leakage fraction
φ, for any universal hash function family {HR}, HR(k) can be made negligibly
close to uniform given R and h(k) (so HR(k) is as good as a one time pad).

Let us first focus on bounding d(HR(k)|R, h(k)).
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Theorem 1 (Security for a Single Erasure using Universal Hash). Let
{HR} be a universal family of hash functions. Let (R, h(k)) be a tuple such
that R ∈ {0, 1}n×m, k ∈ {0, 1}m, and h(k) ∈ {0, 1}φm, where R picks out a
random function out of {HR}, and k is random. Then, d(HR(k)|R, h(k)) ≤
2−

1
3 (1−φ)m+ n

3 +1.

The proof of this theorem and the next is deferred to the full version [5].

Theorem 2 (Security for Multiple Erasures using Universal Hash). Let
{HR} be a family of universal hash functions. Let (R1, h(k1)), ..., (R�, h(k�)) be
� tuples such that Ri ∈ {0, 1}n×m, ki ∈ {0, 1}m, and h(ki) ∈ {0, 1}φm, where Ri

picks out a random function out of {HR}, ki is random, and qi are public 1-1
correspondences such that s = qi(HRi(ki)). Then, for any β > 0, m poly in n,
and sufficiently large n,

d(HRi(ki)|R1, h(k1), ..., R�, h(k�)) ≤
√

ln 2
2

�2−
1
3 (1−φ)m+ (β+1)n

3 − 1
3 .

Note that to get 2−(α+1) security when the adversary gets � partially erased
tuples, we need:

√
ln 2
2

�2−
1
3 (1−φ)m+ (β+1)n

3 − 1
3 ≤ 2−(α+1)

⇔ � ≤ 2
4
3−2(α+1)− 1

3 (1+β)n+ 1
3 m(1−φ)

ln 2
(1)

⇔ m ≥ 3 log ((ln 2)�) − 4 + 6(α + 1) + (1 + β)n
(1 − φ)

(2)

Let us make a few observations. Inequality 1 shows that if h has leakage fraction
φ, how many times can you partially erase a secret (or computations on the
secret) without leaking too much information. Rearranging, and fixing the other
parameters, we can also see that the fraction that needs to be erased, (1 − φ),
has to be at least logarithmic in �. Inequality 2 on the other hand lower bounds
m, which as we will see shortly, translates into a statement about the space
efficiency of using universal hashing to get partially erasable forms.

Let us now consider two partially erasable forms based on universal hashing
which satisfy correctness, secrecy and moreover can be computed with constant
size memory. The expansions we consider can be thought of as having two parts,
R, k, each serving different purposes. Furthermore, only one part, k, needs to be
partially erased2.

The first expanded form of s is random matrix R ∈ {0, 1}n×m and vector
k ∈ {0, 1}m subject to the constraint that R · k = s. Only the vector k needs to
be erased. However, this simple construction is highly randomness inefficient.

Our preferred partial erasable form will be to use Toeplitz hashing instead
(whose universality is proven in [31]). A random Toeplitz matrix R ∈ {0, 1}n×m

2 Which makes our results stronger than required by the definition.
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which selects a random hash function out of the Toeplitz family {HR}, where
HR : {0, 1}m �→ {0, 1}n. In order to store an n-bit secret s in a partially erasable
manner, we choose random Toplitz matric R ∈ {0, 1}n×m, k ∈ {0, 1}m (where R
is fully specified by a random string of n + m − 1 bits), and store R, k, R · k ⊕ s
instead. Again, only the k part needs to be erased. In this case Exp(s, r) uses r
to form a random Toeplitz R and a random k, and outputs R, k, R · k ⊕ s, and
Con(R, k, x) recovers s by computing R · k ⊕ x.

It is easy to see how to implement (Exp, Con) corresponding to Toeplitz hash
that is computable with constant memory, bit by bit. From the triangle in-
equality, for all s, s′ ∈ {0, 1}n, Δ

(
HR(k) ⊕ s, R, h(k); HR(k) ⊕ s′, R, h(k)

)
≤

2d(HR(k)|R, h(k)). Combining these with theorem 2 proves that:

Corollary 1 (Toeplitz Hashing gives a Partially Erasable Form).
Toeplitz hashing yields a partially erasable form of a secret.

2.1 Space Efficiency

Lower Bound. Say that an expansion function Exp is Ψ -expanding if for any
r we have |Exp(s, r)| ≤ Ψ |s|. One parameter we would like to minimize is Ψ , the
storage overhead, whose lower bound is given below (proof in [5]):

Theorem 3 (Lower Bound on the Storage Expansion Ψ). For any Ψ -
expanding, (�, α, φ)-partially erasable expansion function Exp that is applied to
inputs of length n we have: Ψ ≥ 1

1−φ

(
1 − n+α−1

n�2α−1

)
.

For typical settings of the parameters, where both α and � are polynomial in n,
we get that Ψ ≥ 1

1−φ (1 − neg(α)) .

Efficiency. Let us see how tight our construction is to the lower bound. If a
completely random R is used and HR := R · k (whose universality is proven
in [8]), then the expansion factor Ψ of the storage would be (size of R + size of
k) · 1

n , which is (n + 1)m · 1
n = (1 + 1

n )m. Plugging this into inequality 2, we see
that this bound is a (growing) factor of n away from the optimal.

If a Toeplitz matrix R is used instead, then the corresponding expanded form
will be R ∈ {0, 1}n×m, k ∈ {0, 1}m and x ∈ {0, 1}n such that R · k ⊕ x = s. In
this case, R requires n+m−1 bits to specify (since it is Toeplitz), and k requires
m bits and x requires n bits respectively. So in this case, n bits get expanded
into 2m+2n−1 bits, and Ψ is 2m

n +2− 1
n . Plugging in inequality 2, we see that

for α = O(n) and � = 2O(n), then this bound is a constant factor away from the
optimal given in theorem 3. If � is subexponential in n and α is sublinear in n,
then the bound we get is about Ψ ≥ 2

1−φ + 2, so it is essentially a factor of 2
away from the optimal bound3.
3 In the full version [5] we discuss two other partially erasable forms: 1. ε-almost

universal hashing which, provided that φ > 1/4, gives roughly Ψ ≥ c
1−φ

for some
constant 1 < c < 2, and 2. strong extractors computable with constant memory (e.g.
those in NC0), which, provided that the extractor is near optimal, would achieve
the lower bound. Unfortunately we do not know of such extractors.



How to Protect Yourself without Perfect Shredding 521

3 A General Construction

3.1 Computing on Partially Erasable Secrets at the Gate Level

Let s ∈ {0, 1}n be the secret involved, and let (Exp, Con) be the partially erasable
form of s. Consider any efficient computation on s, which can be modeled as a
poly(n)-sized circuit. Without loss of generality, we consider gates with fan-in
of two and fan-out of one, and consider each output bit separately as being
computed by a polynomial-sized circuit.

To evaluate a gate, the two corresponding input bits are reconstructed from
their expanded forms in the registers (using Con). The gate is evaluated, resulting
in an output bit b in the registers. This output bit is expanded into the partially
erasable form and output to main memory4, by using Exp. This can be done
with constant memory. Note that if we just store the values of the wires näıvely,
i.e. by individually expanding the 1-bit value of each wire to a Ψn size secret,
then the overhead of our scheme will not even be constant. So we must amortize
the cost: group the wires of the circuit into groups of size t (i.e., there are t wires
in each group), where t is such that secrets of size t are expanded into m-bit
strings. Now, when we write the values of the wires in an expanded form, we
expand all the t values into a single m-bit string. This will make sure that the
overhead of the general compiler will still be the same as the overhead for the
scheme described in section 2.

The above is an informal description of Compute-in-register(g, Exp(s, $)),
which makes sure that the computation of g(s) is done properly without leaking
intermediate computation (through expressing them in expanded form). The
proof of the following lemma is in [5].

Lemma 1. Let s ∈ {0, 1}n be any secret, g be the function to be computed
on s, where each bit i of output of g(s) is computed by a poly(n)-sized circuit
Cgi , consisting of gates {Xj

i }j. Let vi denote the number of partially erased
intermediate computations while computing the i-th output bit (Compute-in-

register(g, Exp(s, $))), where Exp(s, $) is the expansion function of a (�, α, φ)-
partially erasable form and v :=

∑
i vi ≤ �.

Then, the adversary cannot distinguish the case of s versus any s′ ∈ {0, 1}n

being partially erased, by more than 2−α probability, i.e.:

Δ
(
h(Exp(s, $1)), ..., h(Exp(s, $v)); h(Exp(s′, $′1)), ..., h(Exp(s′, $′v))

)
≤ 2−α.

Starting with any protocol that uses perfect erasures, we replace all computations
on the secrets to use Compute-in-register instead. The result that we get is
(proof in [5]):

4 Note that even if in practice, storage locations holding expanded forms of the inter-
mediate computations may be overwritten, for analyzing security we can think of all
the expanded forms as being written in a new memory location. Put another way,
overwriting is just one form of the imperfect erasures we are capturing.



522 R. Canetti et al.

Theorem 4. For any protocol Πorg that requires perfect erasures (for security),
the protocol Πnew = Compiler(Πorg) UC-emulates Πorg, and tolerates (main-
tains security even with) imperfect/partial erasures in the register model.
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